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Billiard in the space with a time machine
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We study a system of an elastic ball moving in the non-relativistic spacetime with a nontrivial
causal structure produced by a wormhole-based time machine. For such a system it is possible to
formulate a simple model of the so-called “grandfather paradox”: for certain “paradoxical” initial
conditions the standard straight trajectory of the ball would self-collide inconsistently. We analyze
globally consistent solutions of local equations of motion, namely, we find all trajectories with one
self-collision. It is demonstrated that all standard initial conditions have a consistent evolution,
including those “paradoxical” ones, for which the inconsistent collision-free trajectory is superseded
by a special consistent self-colliding trajectory. Moreover, it is shown that for a wide class of initial
conditions more than one globally consistent evolution exist. The nontrivial causal structure thus
breaks the uniqueness of the classical theory even for locally deterministic physical laws.

PACS numbers: 04.20.Gz,45.20.D-,45.50.Tn

I. INTRODUCTION

Time travel is a phenomenon which has been attracting
interest both in fiction and general discussions for a long
time. However, only after a formulation of the theory of
relativity such considerations could be investigated on a
more scientific and solid basis. Already the special rela-
tivity shows that different observers experience different
times and one of them can “travel” to the future of others
by means of his relative motion. Thanks to the general
theory of relativity a possibility opens that an observer
could travel even to his own past – his worldline could
pass through a geometrically or topologically nontrivial
area to a region where the worldline originally started
[1, 2]. Worldlines which even cross themselves are called
closed timelike curves (CTCs) and it is customary to say
that spacetimes with CTCs contain time machines [3, 4].

Spacetimes with time machines are causally nontrivial
– in such spacetimes you can send a signal to your own
past or even try to influence the past – which immediately
opens a question of consistency of standard physical laws
as we know them. On a formal level it is the question of
the existence of solutions of physical equations of motion
and the question whether the initial value problem is well
possessed. On a less formal level these problems can be
phrased as the well-known “grandfather paradox”, sug-
gested, e.g., in [5–7]: in spacetimes with time machines
one has to face a logical riddle what happens if one travels
to his own past and kills his grandfather. Consequently
one would never be born and therefore one could not
travel to the past.

This is a clearly inconsistent situation which suggests
that spacetimes with CTCs are pathological and they
should be excluded from a serious scientific consideration.
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†Electronic address: Pavel.Krtous@mff.cuni.cz

However, a system containing live beings is too compli-
cated by too many unknown physical laws and therefore
one cannot be sure that the inconsistency of the “grand-
father paradox” is really inescapable. Therefore, people
tried to formulate analogous situations for much simpler
systems which could be studied exactly [8–11].

As an example, in [12], and especially in [13], the sys-
tem of the billiard balls in spacetime with wormholes has
been studied. This system allows a straightforward re-
formulation of the grandfather paradox: the ball could
be sent through the time machine in such a way that it
hits itself and thus prevents inconsistently its entry to the
time machine, cf. Fig. 1. It seems that such “paradoxical”
initial conditions do not lead to a consistent evolution of
the system.

Maybe surprisingly, the extensive studies of systems
with CTCs during the 1980s and the 1990s showed, that
for a simple physical system pathology of spacetimes is
not so severe and the equations of motion can be consis-
tently solved.

Let us formulate this point more precisely. We consider
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Figure 1: The ball self-colliding inconsistently. The ball
(in gray) comes from a distant region and enters the wormhole
without any self-collision. It leaves the time machine (now in
white) in such a way that it inconsistently hits itself. Thus,
this situation represents an inconsistent evolution which is the
direct analogue of the grandfather paradox.
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a spacetime containing a time machine and we want to
study a system with well known local physical laws (e.g.,
a particle or electromagnetic field). We do not change
these local laws, i.e., we require that they hold locally
in any small spacetime domain. However, in addition to
the local laws, we also require the so-called principle of
self-consistency [8, 10, 14]. Namely, a globally consistent
solution of local laws must exist. It means that we allow
the system to propagate to its own past, however, it must
be done in a consistent way with the original evolution in
the past. The past cannot be changed since it has been
already changed.

The key question of studies of time machines is whether
such globally consistent evolutions exist for given local
laws and whether these global evolutions are sufficiently
generic. More accurately, we would like to show that
there exist consistent solutions for all, or, at least, for
almost all standard initial data. Otherwise, if the local
laws have no globally consistent solution, the spacetime
would be clearly pathological and we could rule it out
from our consideration. Similarly, the pathology would
be serious if the local physical laws had only few globally
consistent solutions.

As we have said, the studies of different systems show
that spacetimes with CTCs are not necessarily causally
pathological. Let us mention the results for a system of
interacting particles [8, 12, 13] or the scalar field theory
[9, 10] where it was shown that standard local laws have
generic globally consistent solutions even in the presence
of CTCs. Another surprising result of such studies is that
the existence of time machines does not usually restrict
a number of consistent solutions, but on the contrary, it
leads to a possibility of more than one globally consis-
tent solutions for given initial values. In spacetimes with
time machines we thus usually lose the uniqueness of the
evolution [13].

Especially for the apparently paradoxical initial con-
ditions from the “grandfather paradox”-like situation it
was shown [13] that a consistent evolution exists, al-
though it can be rather nonintuitive. On less formal level
of the human version of the paradox it could be rephrased
as a conjecture of a hidden law which always prevents the
grandson from killing his grandfather [15].

In the present work we want to study the system of a
ball moving in a non-relativistic space with CTCs which
is very close to that of [13]. However, we have chosen a
different time-machine configuration which significantly
simplifies the analysis. We will be able to solve the equa-
tions of motion explicitly and we will confirm the behav-
ior described above: “paradoxical” initial conditions are
not really paradoxical, and the evolution is not, in gen-
eral, unique. The contribution of our analysis is that it
can be done very explicitly, since our model is sufficiently
simple; at the same time it is sufficiently non-trivial to
reproduce the most important features of systems with
time machines.

Our work proceeds as follows. In the next section we
describe the system of a ball moving in the space with
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Figure 2: Spatial representation of two simple worm-

holes. A wormhole obtained by gluing two planar sections
cut from otherwise Euclidian space. Planar wormhole mouths
could be obtained, e.g., by squeezing the mouths of the spher-
ical wormhole into very thin planes). The external curvature
is vanishing with the exception of the boundary of the planar
sections and the geometry through the wormhole is thus flat.

wormhole-based time machine. We derive the equations
characterizing trajectories. In Sec. III we discuss the
character and number of solutions for various initial con-
ditions and also the resolution of the “grandfather para-
dox”. Sec. IV describes geometry of the trajectories and
the paper is summarized in the conclusion.

II. DESCRIPTION OF THE SYSTEM

Wormhole time machine

The simplest and most natural way how to construct
a spacetime with CTCs is to use a wormhole [7, 11, 13].
The wormhole can be viewed as a shortcut between two
location of the spacetime. It forms CTCs if one of the
mouths of the wormhole lies in the past of the other
mouth.
In the nonrelativistic setting we can consider spatial

wormholes connecting two places in space with an ad-
ditional time-shift. The speed of light is infinite and it
determines a unique notion of simultaneity and thus it al-
lows us to define a global time – at least, before introduc-
ing the time difference. Introducing the time-shift means
that traveling through the wormhole not only sends the
observer to a different place in space but also to a differ-
ent time.
A simple spatial wormhole in otherwise Euclidian space

can be obtained by the cutting and gluing method. For
example, we can cut out two spheres and glue their sur-
faces together, cf. [3], or [13]. We thus obtain a topo-
logically and geometrically nontrivial space—it is not a
simply connected space and the geometry on the glued
surface is not flat.
In this work we consider even a simpler situation of the

wormhole with planar mouths instead of spherical ones.
Namely, we cut out from the space two planar sections
which we identify as in Fig. 2. Since we use flat planar
sections, their identification is geometrically trivial. The
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whole curvature of the mouths is squeezed to the bor-
ders of the planar sections which can be understood as
a kind of solid frames on which the traversable parts of
the wormhole are spanned. To avoid a discussion of the
wormhole boundary we assume that the planar sections
are much larger than the scales of our experiments. As
idealization, we consider the mouths of our wormhole to
be two half-planes which form an angle γ with a common
boundary line, called the axis.

If we identify these half-planes (first, say, at the same
moment of time), the space between them becomes a lo-
cally Euclidean space with a conical singularity localized
on the axis. Indeed, if we restrict ourselves to the two
dimensional picture and ignore the direction parallel to
the axis, our space forms a cone with the angle γ around
the vertex.

Of course, this is a over-idealized situation. We should
keep in mind that the mouths of the wormhole are large
but finite, so somewhere very far from the axis the conical
part of the space ends and goes over to the full Euclidean
space. But in most of our discussions we restrict ourselves
only to the part of the space between the mouths of the
wormhole. We thus effectively work in the conical space
with angle γ around the axis.

Let us stress that in our construction the mouths of
the wormhole are special and privileged. However, after
enlarging them to the semi-infinite size and restricting
ourselves only to the conical space between mouths, we
can no longer localize the position of the mouths by local
experiments. The geometry through the mouths is locally
Euclidean as anywhere else. We thus obtained a space
which is axially symmetric with respect to the rotation
around the axis (it has also translation symmetry along
the axis and it is static). The position of the wormhole
can be identified only on scales larger than the wormhole,
from the surrounding globally Euclidean space.

Finally, we assume that the angle γ ∈ (π
2
, π). Only for

γ smaller than π, we obtain interesting situations when
the straight trajectory of a free particle intersects itself.
For γ > π/2 the straight trajectory intersects itself only
once. The second condition is not a crucial assumption,
it just simplifies the discussion.

Since we want to study a space with a time machine, we
have to identify the mouths of the wormhole with a time-
shift ∆t. Of course, it destroys the standard causal struc-
ture of the non-relativistic spacetime (a clear distinction
between future and past). Despite this, we will keep us-
ing and referring to the original notion of the simultaneity
and to the global time of the surrounding space, which
is, certainly, reasonable for small wormholes, but we ad-
mit, it can be slightly confusing and less founded in the
idealized case considered below.

Indeed, the constructed spacetime is still locally Eu-
clidian (of course, except the axis), but endowed with a
strange causal structure. Hypersurfaces of simultaneity
(visualized in the standard non-relativistic spacetime dia-
gram as horizontal planes) propagate through the worm-
hole and form “helical” surfaces winding around the axis.
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Figure 3: A spacetime diagram of the conical time ma-

chine. The vertical direction is temporal, horizontal planes
correspond to the hypersurface of simultaneity of the original
spacetime (the third spatial direction is suppressed). Two
half-planes on the boundary of the conical spacetime repre-
sent the history of the mouths of the wormhole and they are
identified with a time-shift ∆t.

This indicates that the spacetime contains CTCs. The
particle moving towards the wormhole reads that the ex-
ternal time t increases continuously until it enters the
wormhole mouth. By crossing one of the mouths the
external time t either increases by ∆t into t + ∆t, or
decreases by −∆t into t−∆t.
This can be visualized in the spacetime diagram in

Fig. 3. Here, two spatial directions perpendicular to the
axis are shown in horizontal directions, the direction par-
allel to axis is suppressed. The vertical direction corre-
sponds to time. Semi-planar mouths of the wormhole at
one moment are thus depicted as horizontal semi-lines,
their time evolution as vertical half-planes. The identifi-
cation of such two half-planes is not on the same vertical
level, but with the vertical shift ∆t. We assume that
going through the wormhole in anticlockwise direction
takes us time ∆t > 0 to the past, in clockwise direction
to the future.

Equation of motion

Now, we want to derive equations of motion for a ball
moving in the non-relativistic spacetime which has just
been described. We assume that the motion satisfies clas-
sical local laws of motion. Additionally, we restrict our-
selves to motions perpendicular to the axis of the worm-
hole because the ball can self-interact only for such a
motion.
Clearly, a free particle moves uniformly along a straight

line. However, for γ ∈ (π/2, π), a straight line in a con-
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Figure 4: Character of self-collision of the ball with

itself. The incoming velocity ~u of the younger version of the
ball (in grey) is complementary to mirror reflection of the
outgoing velocity ~v′ of the older version of the ball (white)
and similarly for velocities ~u′ and ~v.

ical space must intersect itself. If the trajectory of the
particle crosses itself in different times, we speak about
self-intersection. If the particle intersects its trajectory
exactly at the same time—which is allowed thanks to
time-shift −∆t gained in the wormhole—it hits itself and
we speak about self-collision. Our goal is to describe tra-
jectories with exactly one consistent self-collision.

We assume that an elastic collision occurs when the
ball collides with itself. The classical elastic impact of
two balls is determined by the momentum and energy
conservation and the assumption that it occurs in one
plane. In our case two versions of the same ball collide:
the younger version of the ball coming from infinity hits
the older version coming from the wormhole; after the
collision the younger ball flies to the wormhole and the
older one away to infinity. Since the traverse of the worm-
hole does not change the velocity of the ball, magnitude
v of the outgoing velocity ~v of the younger ball is the
same as the magnitude of the incoming velocity ~v′ of the
older ball. All these conditions determine [16] that the
impact of the ball with itself must have the form depicted
in Fig. 4. Namely, in the rest frame of the wormhole the
incoming velocity ~u of the younger ball is complemen-
tary to the mirror reflection of the outgoing velocity ~u′

of the older ball with respect to the plane tangent to
balls at the point of impact. We call this plane the im-
pact plane. Similar property holds for velocities ~v and
~v′. Moreover, projections of the incoming and outgoing
velocities ~u and ~v (respectively ~v′ and ~u′) to the impact
plane are the same.

Now we want to find a location of the self-collision in
such a way that the outgoing younger ball consistently
passes to the incoming older ball. It can be done [16] in
two ways depicted in Fig. 5. The key property is that
the impact plane must be radial, i.e., it contains the axis
(dashed line in the figure). Type I represents the situa-
tion when the older ball touches the younger one by its
rear part, i.e., the younger version must collide from the
left side.1 For type II the younger ball touches its older

1 Left and right side is selected by our choice of time-shift of the

time machine.

vr~

~

t t

R
R

r

leftward

u

v

u

(a)

r

r
~

t
t

R
R

v

v

u

u

rightward

~

(b)

Figure 5: Physical self-collisions of types I and II. (a)
The configuration of type I represents situation when the
younger ball (in grey) is on the left side while the older ball (in
white) is on the right side with respect to the radial line. The
self-collision is physical when the momentum transfer is pos-
itive and the trajectory of the particle is deflected leftward.
(b) The configuration of type II represents situation when the
older ball is on the left side while the younger ball is on the
right side with respect to the radial line. The self-collision is
physical if the trajectory of the particle is deflected rightward.

version by its front part and is incoming from the right
side.

For both types we can distinguish the physical col-
lisions with a positive momentum transfer from the
younger ball to the older ball from “spurious” collisions
which would need a negative momentum transfer. The
latter are unphysical not only for the sign of the ex-
changed momentum but also because the ball would not
fit geometrically into space for such collisions—it would
have to fly through itself. For the physical self-collision of
type I the younger ball must deflect leftward, i.e., closer
to the vertex than if it followed the collision-free trajec-
tory. For the physical self-collisions of type II the trajec-
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Figure 6: Geometry of self-colliding point-particle tra-

jectory. (a) A point particle is approaching the wormhole
from infinity with a velocity u and impact parameter ρ, it col-
lides with the version of itself which already passed through
the time machine, and with a velocity v moves toward the
wormhole. After passing it and self-colliding with itself, it
moves with the velocity u back to infinity. The self-collision
occurs at the distance r from the axis and the outgoing tra-
jectory forms with the radial direction the orientated angle ω.
Thanks to symmetry of the self-collision with respect to radial
direction, the angle ω is a half of the angle between the incom-
ing and outgoing trajectory. (b) The same situation depicted
in a map which cuts the conical space not along the wormhole
but along the radial direction through the self-collision. The
length s of the straight trajectory between its self-intersection
is given by s = 2ρ tan γ

2
= 2r sin γ

2
.

tory of the younger ball is deflected rightward, cf. Fig. 5.

Point-like particle

To determine parameters of the self-collision, we start
with a simpler case of a point particle, i.e., taking radius
of the ball R→ 0. In this case the distinction between the

two types described above disappears2 and the geometry
of the self-collision is depicted in Fig. 6. The trajectory
of the incoming particle can be determined by two ini-
tial parameters: the impact parameter ρ which gives the
distance of the incoming trajectory from the vertex of
the cone, and the magnitude of incoming velocity u > 0.
We adopt the convention that the impact parameter ρ
is positive if the particle circles the cone in the counter-
clockwise direction and it is negative if it circles the cone
in the clockwise direction.
Of course, the parameters u and ρ do not determine

the incoming trajectory uniquely since they do not spec-
ify its angular location around the axis and its tempo-
ral location—we would need additional two parameters
for that.3 However, the conical space has the rotational
symmetry and it is static, so the exact angular and tem-
poral location is irrelevant for the character of solutions.
Therefore we can ignore the additional initial parameters
when we investigate the geometry of the self-collision.
The self-collision can be parametrized by its radial dis-

tance r > 0 from the axis and by the oriented scattering
angle ω ∈ (−π

2
, π
2
) between the outgoing trajectory and

the radial direction, see Fig. 6a.
Thanks to the symmetry of the self-collision with re-

spect to the radial direction, the angle ω also determines
the direction of incoming trajectory. For the same rea-
son, the outgoing particle also has velocity u and impact
parameter ρ. The angle between the inner trajectory and
the radial direction is determined by the conical geome-
try and it is equal to π

2
− γ

2
, cf. Fig. 6b. The length s of

the inner trajectory is then s = 2r sin γ/2.
The collision parameters r and ω encode the same in-

formation as the initial parameters u and ρ. Indeed, ρ in
terms of r and ω is given by the simple geometry

ρ = r sinω . (2.1)

Since the radial projection of the particle velocity before
and after the collision is the same (as a consequence of the
laws of the elastic impact as we discussed for finite balls),
the incoming velocity u is related to the inner velocity v
along the trajectory between the self-collision as

u cosω = v sin
γ

2
. (2.2)

However, the inner velocity must be such that the particle
passes the inner trajectory exactly in the time ∆t gained
in the wormhole,

v =
s

∆t
=

2r sin γ
2

∆t
(2.3)

2 More precisely, the physical solutions of type I are geometri-

cally identical to spurious solutions of type II and vice versa. Of

course, for a point particle we cannot distinct from which side

the particle hits itself.
3 Here we completely ignore motion along the axis of the wormhole.
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We thus obtain relation for u:

u =
2r sin2 γ

2

∆t cosω
. (2.4)

It will be also useful to write down the relation for ρ as
function of ω and u

ρ =
u∆t

4 sin2 γ
2

sin(2ω) . (2.5)

Equations (2.1) and (2.4) thus relate the parameters of
the incoming trajectory u, ρ and the parameters of the
self-collision r, ω. Their consequences will be discussed
in more detail in Sec. IV.
Before we return to the case of finite balls, let us note

that we can introduce similar parameters also for the free
trajectory. The only difference is that r and ω refer, in
general, to self-intersection (i.e., not necessarily to self-
collision) of the free trajectory. Clearly, the angle ω is
now given just by the conical geometry

ω = ωfree ≡
π − γ

2
. (2.6)

The solutions, for which the younger version of the parti-
cle passes through the point of self-intersection later than
the older version (coming from the time machine), are
the solutions of type I. When the younger particle passes
the point of self-intersection earlier, we speak about the
solutions of type II.
The self-intersection threatens to become a self-

collision if time spent on the inner part of the free trajec-
tory is equal to the time-shift of the time machine. Since
for a free trajectory u = v, conditions (2.3) and (2.1) give

upx∆t = 2ρpx tan
γ

2
. (2.7)

Such values upx, ρpx correspond to the “paradoxical” free
trajectory for which the particle occurs at the point of
self-intersection twice at the same time. For a point par-
ticle, it is not possible to decide plausibly what happens
in such a situation. We can only observe, that the same
parameters upx, ρpx also describe the trajectory with
one self-collision, which is given by the same parameters
as “paradoxical” self-intersection of the free trajectory,
namely r = ρpx/ cos

γ
2
and ω = ωfree. A detailed analysis

of this situation will be done for finite balls in Sec. III.
The direction ωfree also plays a role of the limiting

value between physical collisions of type I and II. Physical
self-collisions of type I, for which the trajectory deflects
leftward from the free trajectory, are bounded within
the interval ω ∈ (ωfree,

π
2
); while physical self-collisions of

type II (with rightward deflection) sweep out the interval
ω ∈ (−π

2
, ωfree).

Finite ball

We have to be more precise to define the param-
eters of the self-collision for a finite ball. Let r be

the radial distance from the axis of the intersection of
the incoming and outgoing trajectories (extended be-
yond the actual self-collision), and r̃ be the radial dis-
tance from the axis of the self-intersection of the in-
ner trajectory (for type II extended beyond the self-
intersection), see Fig. 5. Clearly, Eq. (2.1) still holds,
and r = r̃ ±R(tan γ/2− cotω), with upper sign for type
I and lower sign for type II. The geometry of the inner tra-
jectory of the finite balls is identical with that of a point
particle with modified impact parameter ρ̃ = r̃ sinω. The
path s traveled during time ∆t gained in the time ma-
chine must be corrected due to finite radius of balls,
s = s̃± 2R

cos γ/2 , where, analogously to the point-particle

case, s̃ = 2r̃ sin γ/2 is the length of the inner trajectory
between its self-intersection. The corrected relation (2.3)
together with (2.2) finally leads to equation between u,
ρ, and ω:

ρ =
1

4 sin2 γ
2

(

u△t sin 2ω ∓ 4R sin
γ

2
sin

(γ

2
+ ω

)

)

, (2.8)

again, with upper/lower sign for type I/II, respectively.
Physical self-collisions of type I or II are restricted by

the conditions

ω > ωfree for physical solutions of type I ,

ω < ωfree for physical solutions of type II ,
(2.9)

otherwise the ball would deflect to a wrong side of the free
trajectory and the momentum transfer from the younger
to older version of the ball would be negative.
Eq. (2.8) supersedes relation (2.5) for the point par-

ticle, as can be also seen by taking limit R→ 0. This
can be regarded as the key equation of motion which de-
termines the scattering angle ω in terms of the initial
conditions u and ρ. The position of the self-collision is
then determined by the parameter r which is given by
Eq. (2.1).

III. NUMBER AND CHARACTER OF

SOLUTIONS

Point-like particle

In the case of the point particle there is only one length
scale u∆t given by the initial velocity u and the time-
shift ∆t. The velocity u thus changes only the scale of
the whole experiment. Therefore, we can fix u and study
only the relations among ρ, r, and ω.
The relation between ω and ρ is given by Eq. (2.5) and

depicted in Fig. 7, the relation to the parameter r is given
by (2.1) (or, alternatively, implicitly by Eq. (2.4)).
We immediately see that the self-collision can happen

only for

|ρ| < ρmax ≡
u∆t

4 sin2 γ
2

. (3.1)
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Figure 7: The ρ-ω diagram of consistent solutions for

a point particle. Each point of the graph in the ρ-ω plane
represents a consistent solution for a point particle with at
most one self-collision. The velocity u is fixed (it changes
only a scale of the solutions) and the parameter r is given
by Eq. (2.1). Collision-free solutions are represented by the
straight vertical lines. The line ω = −ωfree (in green) repre-
sents collision-free trajectories to the future, the line ω = ωfree

represents free trajectories to the past. The points below
the value ρpx (in red) corresponds to the solutions of type
I, for which the younger particle passes the point of self-
intersection later than that coming from the wormhole. The
solutions with ρ > ρpx (in blue) are of type II. The sinusoidal
part of the graph represents solutions with one self-collision.
The part with ω > ωfree (in red) represents self-collisions of
the type I, the part with ω < ωfree (in blue) represent self-
collisions of type II. Self-colliding solutions are thus possible
only for |ρ| < ρmax. The point (ρpx, ωfree) represents both
the paradoxical collision-free solutions for which younger and
older versions of the particle meet at the point of intersection
at the same moment, and the consistent self-colliding solution
(which is geometrically identical to the paradoxical solutions).
Exact relation of these solution is clarified in the case of balls
with a finite radius.

For larger |ρ| the particle would not be fast enough to
travel through the wormhole and hit itself consistently—
it would be too far from the axis of the wormhole and
the path through the wormhole would be too long.
For |ρ| < ρmax, the map ρ→ ω is not a unique rela-

tion: for a given ρ we have, in general, two ω satisfying
(2.5). For the given initial conditions, we thus obtain, in
addition to the collision-free trajectory, two self-colliding
solutions. These two solutions have the scattering angles
complementary to ±π

2
and represent completely differ-

ent evolutions of the system. Note, that the self-colliding
solutions exist even if ρ < 0, i.e., if the free trajectory
passes the wormhole to the future.
All three possible solutions for the given initial condi-

tions (with ρ < ρmax) are shown in Fig. 8.
For the paradoxical value ρ = ρpx, Eq. (2.7), the “par-

doxical” collision-free solution geometrically coincides
with one of the self-colliding solutions. It is called “para-

wormholeworm
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uu’
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Figure 8: Three possible solutions for given initial con-

ditions of a point-like particle. For |ρ| < ρmax, ρ 6= ρpx
there exist three possible solutions: the collision-free trajec-
tory (black) and two self-colliding trajectories (red/gray and
blue/light-gray). One of the self-colliding trajectories is close
to the free trajectory (it coincides in the limit ρ→ ρpx), an-
other is rather different.

doxical”, since for this initial values the free moving par-
ticle meets itself at the point of self-intersection exactly
at the same moment, so it cannot be the collision-free so-
lution. However, since for a point-like particle we cannot
distinguish the non-colliding solution from the colliding
one, it is dubious to study the nature of this “paradox-
ical” situation. Therefore, we will discuss the details of
the “paradoxical” initial conditions in the case of finite
balls. After that we will return to the simpler case of a
point-like particle to study the geometry of the trajecto-
ries in more detail.

“Paradoxical” situations for a finite ball

In the case of finite balls the system has an additional
length scale given by the radius R of the ball. Therefore,
the dependence on the velocity u is not trivial any more.
Nevertheless, we still fix the value of the initial velocity
and discuss the structure of the corresponding solutions.
The values of various quantities can, however, depend on
u in a more complicated way than just a rescaling.
Collision-free trajectories of a finite ball are again char-

acterized by the angle ωfree and they can be also divided
into types I and II, see Fig. 9. However, due to the finite
radius of the balls, there is a whole interval of the im-
pact parameter ρ, for which the collision-free trajectory
becomes “paradoxical”—if the ball hits itself inconsis-
tently. Checking the geometry of the free trajectory of a
ball, it turns out [16], that the boundary of this interval
is given by values of ρ determined by Eqs. (2.8) for types
I and II with ω = ωfree,

ρ paradoxical ⇔ ρ ∈ (ρpxI, ρpxII) . (3.2)
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Figure 9: Two types of collision-free trajectories pass-

ing the time machine to the past. (a) Trajectory of
type I. For ρ < ρpxI, time s/v spent by the ball between the
self-collision is smaller than the time-shift ∆t, i.e., the younger
version of the ball goes through the point of self-intersection
later than the older version. (b) Trajectory of type II. For
ρ > ρpxII the younger version of the ball goes through the
point of intersection earlier than the older version.

Explicitly, the “paradoxical” values of the impact param-
eter are given by

ρpxI,II =
u△t

2 tan γ
2

∓
R

sin γ
2

. (3.3)

For ρ < ρpxI the collision-free trajectory is of type I, i.e.,
the older version of the ball overtakes the younger one at
the point of intersection. If ρ > ρpxII, the collision-free
trajectory is of type II, cf. Fig. 9.
The parameters of the self-colliding trajectories are

characterized by relations (2.8) and (2.1). We can de-
pict the physical solutions (cf. conditions (2.9)) with at
most one self-collision in a diagram analogous to the one
we used in the point-particle case, see Fig. 10.
We see here that the solutions split into two branches:

the physical self-colliding solutions of type I together with
collision-free solutions of type I, and self-colliding and
collision-free solutions of type II. The collision-free so-
lution of type I becomes self-colliding solution of type I
for ω = ωfree, ρ = ρpxI. It is limiting case when the ball
on the free trajectory just touches itself but it does not
exchange any momentum. It is thus identical to the lim-
iting case of physical self-colliding solutions of type I.
Similarly, for ω = ωfree, ρ = ρpxII the ball on the free tra-
jectory just touches itself, now from the other side, and
it becomes the self-colliding solution of type II.
Inspecting Fig. 10, we can also conclude, that for

the initial conditions with ρ 6∈ (−ρmaxII, ρmaxI) (where
ρmaxI,II are given by the maximal values of the expression
(2.8) for type I and II, respectively), there exist just one
consistent solution. It is typically a collision-free trajec-
tory, however, for certain values of parameters it can also
be a self-colliding solution, cf. Fig. 11b.
For initial conditions with ρ ∈ (−ρmaxII, ρmaxI), there

are three possible solutions; typically, one collision-free
and two self-colliding. However, for the paradoxical
values of the impact parameter ρ ∈ (ρpxI, ρpxII), the
collision-free solution is superseded by a self-colliding
solution, cf. Fig. 11. In this case, we obtain two self-
colliding solutions of type I and one solution of type II,
see Fig. 12.

R

II

free
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n
-f

re
e 

to
 t

h
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fu
tu

re

II

I

I

�R

pxI

pxII

free

I

II

II

Figure 10: Physical solutions in the ρ-ω plane. The
points on the curves represent solutions characterized by the
parameters ρ and ω. The initial velocity u is fixed. The phys-
ical solutions correspond to the solid curves, the spurious one
to the dashed curves. Vertical lines are collision-free solu-
tions. Sinusoidal curves, determined by Eqs. (2.8), represent
the solution with one self-collision. The type of the solution
is indicated in a similar way as in Fig. 7.

We can conclude that the “paradoxical” initial condi-
tions are not paradoxical in any dangerous way. These
initial conditions lead to the same number of solutions
as other sufficiently close initial conditions. Only, the
character of solutions is different: the collision-free solu-
tion changes to the self-colliding solution. The number
of solutions depends on other characteristics, namely if
ρ ∈ (−ρmaxII, ρmaxI): for a large |ρ| only the collision-free
solution is admissible.

However, it should be said that the situation changes
if the angle between the wormhole mouths is smaller.
For γ < π

2
, the equations for the trajectory remain the

same but the value of the angle ωfree is larger than π
4
.

The structure of the solutions thus changes as depicted
in Fig. 13. Clearly, for ρ ∈ (ρpxI, ρpxII) the collision-free
trajectory is not possible and it is not superseded by an-
other solution. Moreover, for such ρ, there exists only
one self-colliding solution. In this case we can indeed
speak about paradoxical initial conditions since the solu-
tions evolved from these conditions are really restricted.
However, in the case γ < π

2
the whole discussion is more

complicated since the particle can self-interact in a more
complicated way (there is possibility of self-intersection
between several self-collisions, etc.). We do not have any
indications that these more complicated processes could
improve the discussed behavior, however we have not ex-
cluded it completely [16]. In the following we restrict
again to the larger angles, γ > π

2
.
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Figure 11: Number of solutions for given initial condi-

tions. The number of solutions for chosen initial parameter
ρ can be determined from Fig. 10 by intersecting the graph
with the horizontal line corresponding to ρ. The choice of
the initial velocity u can slightly modify a shape of the dia-
grams. Here, two representative cases are shown. Only the
part with ω > 0 is depicted—it approximately corresponds to
the initial conditions ρ > 0 with the ball directed to the time
machine toward the past. Clearly, the number of solutions
steps from one to three with ρ becoming smaller than ρmaxI.
In the “paradoxical” interval (ρpxI, ρpxII) the number of solu-
tions remains the same. Only the character of the solutions
is different: the collision-free solution is superseded by the
self-colliding solution. In the case (b) the limiting value ρmaxI

belongs to the “paradoxical” interval. For ρ ∈ (ρmaxI, ρpxII)
there exists just one self-colliding solution.

IV. MOTION OF A POINT-LIKE PARTICLE

Clarifying the character of solutions with “paradox-
ical” initial conditions, in this section we describe the
motion of a point-like particle in more detail.
The geometry of the inner trajectory is given only by

the parameter r and by the angular position of the self-
collision with respect to the wormhole—i.e., it is inde-
pendent of the scattering angle ω. The geometry is such
that the point of self-collision, the point of the entry to
wormhole, the point of the departure from the wormhole,
and the axis itself, belong to a common circle, cf. Fig. 6a.
The inner particle velocity v is given by Eq. (2.3). For

t +
 ∆t

v
1

t - ∆t

u

u

tt

u'
1

v
2v

3

u'
2

u'
3

v'
1

v'
2

v'
3

wormholewo
rm
ho
le

Figure 12: Three self-colliding solutions for ρ from the

“paradoxical” interval. Unlike the point-like case, there is
a whole interval (ρpxI, ρpxII), where collision-free trajectories
do not exist. As we can see from Fig. 11a, the collision-free
trajectory is replaced by a self-colliding one. The diagram
depicts all three self-colliding solutions, two of type I (in light
and dark red) and one of type II (in blue).

pxI

pxII

maxII

free

Figure 13: Solutions from “paradoxical” interval for

γ <
π

2
. In this case the collision-free angle ωfree >

π

4
. For

the impact parameter ρ from the corresponding paradoxical
interval ρ ∈ (ρpxI, ρpxII) we find a gap in the solution curves.
For a paradoxical ρ we obtain only one self-colliding solution.
Moreover, this solution corresponds to a value of ω which is
substantially different from ωfree.

the fixed point of self-collision one can then choose any
ω ∈ (−π

2
, π
2
), which determines ρ through Eq. (2.1), and

calculate the initial velocity using Eq. (2.2).

Taking into account the rotational symmetry of the
conical space between the mouths of the wormhole, we
can ignore the angular position with respect to the worm-
hole in the discussion about many features of the motion.
But, when discussing the asymptotic behavior of the in-
coming and outgoing trajectories, the angular informa-
tion must be taken into account. Namely, one has to
track if the outer trajectories pass through the wormhole.
Clearly, it must occur for the scattering angle ω > γ

2
,

but, depending on the angle between the self-collision
and wormhole, it can happen also for smaller angles ω.

However, we first describe the motion without a ref-
erence to the wormhole mouths. It can be done in the
simplest way employing the totally covering space for our
conical space. Namely, instead of the conical space with
angular coordinate ϕ ∈ (− γ

2
, γ
2
), we use the space with-

out any restriction on ϕ, i.e., a helical surface winding
around the axis infinitely. The original conical space is
then obtained by the identification of points which differ
in coordinate ϕ by an integer multiple of γ.

In this covering space the trajectory can be described
as follows. Let us assume a particle incoming along the
direction ϕin = 0 with the impact parameter ρ and the
initial velocity u. The self-collision C for such a tra-
jectory always happens on the circle (let us call it the
collision circle) which has the center S on the radial line
ϕ = 0, it passes through the axis, and its radius is ρmax,
cf. Fig. 14. For ρ ∈ (−ρmax, ρmax), the incoming trajec-
tory intersects this circle twice, which corresponds to two
possible self-colliding solutions. The angular coordinate
ϕ of self-collision is given exactly by the scattering angle
ω. At the point of self-collision C the trajectory is de-
flected, and it continues toward the point C′, which can
be obtained by a contra-clockwise rotation of the point
C around the axis by angle γ, cf. Fig. 14. In the cov-
ering space C and C′ are different points, however, in
the original conical space these points are identified as
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S
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C in
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Figure 14: Self-colliding trajectory in the totally cover-

ing space. The particle incoming along the direction ϕin = 0
with the impact parameter ρ is deflected at the point of self-
collision C. The point C must lie on the collision circle with
the center S on the radial line ϕ = 0, it passes through the
axis A, and its radius is ρmax. The trajectory continues to-
ward the point C′, which is obtained by a contra-clockwise
rotation of the point C around A by angle γ. In the original
conical space points C and C′ are identified and correspond
to the point of self-collision. From C′ the trajectory con-
tinues in the direction which aims from the center S′ of the
rotated collision circle. The direction of the inner trajectory
goes through the focusing point F . The diagram shows only
a part of the totally covering space.

the point of self-collision—of course, the particle must
pass the point of self-collision twice. Finally, from C′

the particle continues through the covering space in the
direction which aims from the center S′ of the rotated
collision circle, cf. Fig. 14.
It means, that particles which approach the time

machine along the same direction ϕ = 0 (with various
ρ ∈ (−ρmax, ρmax), forming thus congruence with “plane-
wave” wavefront) self-collide on the common colliding cir-
cle and, in the end, leave in the directions which point
out from the common point S′, cf. Fig. 15. In the cover-
ing space, the original plane-wave congruence of particles
scatters to the circular-wave congruence, but the parti-
cles are phase shifted. They fly in radial directions, but
the wavefront of the congruence at one moment does not
form a circle since the particles start to move in the ra-
dial directions in various times. Indeed, the incoming
particles do not self-collide at the same time: they reach
the collision circle in various times.
Let us mention an interesting feature of the trajectories

of the discussed congruence: all inner trajectories (be-
tween the self-collisions) have the direction going through
one focusing point F , cf. Fig. 15. For ω ∈ (− γ

2
, γ
2
) they

even pass through this point. The congruence thus fo-
cuses in this point, however, the particles do not pass
the focusing point at the same moment.
We have obtained a simple picture of the motion in

S’

F

Figure 15: Scattering of the plane-wave congruence

of particles in the totally covering space. Congruence
of particles coming along ϕin = 0 direction in “plane-wave”
configuration (i.e., aligned at an initial moment on a pla-
nar “wavefront” perpendicular to the direction of motion)
approaches the time machine. The particles scatters on the
collision circle and moves toward the corresponding points on
the rotated collision circle. Here, they are deflected in the
directions coming from the center S′ of the rotated collision
circle. The dotted curve depicts the wavefront after the scat-
tering in the totally covering space. The particles do not
scatter on the collision circle at the same time; however, for
large final times the wavefront after scattering approaches the
circle. The real wavefront projected back to the conical space
is drawn as dashed curves. Segments projected from various
sheets of the totally covering space gain additional time-shift
thanks to the passage through the time machine. Therefore,
these parts of the wavefront are larger since the particle had
more time for their motion. Inner trajectories focus at one
focusing point, for ω ∈ (− γ

2
, γ

2
) they pass through this point.

The diagram shows only part of the totally covering space,
given approximately by ϕ ∈ (− γ

2
, 2π − γ

2
).

the covering space. It complicates slightly if we return
to the conical space by choosing the orientation of the
wormhole (i.e., setting mouths at the angles − γ

2
+ ψ and

γ
2
+ ψ with ψ ∈ (− γ

2
, γ
2
)) and making the identification

of points with ϕ differing by an integer multiple of γ.
The resulting picture depends on the values of γ, ψ and
of the impact parameter ρ; some of the representative
trajectories are depicted in Fig. 16.

The typical quantity, which depends on the angular
position of the self-collision, is the total time T gained
in the wormhole during the whole scattering process. It
can be read out in the covering space from the angular
coordinate ϕout = 2ω + γ of the outgoing trajectory:4 if

4 We have chosen the incoming trajectory with ϕin = 0 and its an-

gular position with respect to the wormhole is given by the pa-

rameter ψ. Alternatively, we could set ψ = 0 and admit ϕin 6= 0.
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Figure 16: Examples of the self-colliding trajectories. Diagrams show trajectories with various choices of the impact
parameter ρ, or, equivalently, with a different scattering angle ω. The angle ω also parameterizes the position of the self-collision
on the collision circle. Diagrams (a)-(c) represent typical cases ω ∈ (0, π

4
), ω ∈ ( γ

2
, π

2
), and ω ∈ (−π

2
,− γ

2
), respectively. The

diagram in the first column depicts the trajectory in the totally covering space, the second column shows the trajectory in the
conical space with the wormhole centered on the direction of the incoming trajectory, ψ = 0, the third and the fourth columns
correspond to other orientations of the wormhole. The diagrams (d)-(g) depict special choices of the trajectory, namely those
with ω = γ

2
, ω = ωfree, ω = −ωfree, and ω = − γ

2
, respectively; in all of them with the wormhole centered on the incoming

trajectory. The arrows indicate passages through the wormhole; however, they do not count the time-shift, since the particle
can travel through the time machine in both directions. We can observe that the structure of the trajectory can change
substantially with various choices of the impact parameter and of the incoming direction with respect to the wormhole. For
example, the particle can self-collide after passing through the wormhole, both into the past and future, or it can move through
the wormhole after the self-collision.

it belongs to n-th copy of the wormhole in the covering
space, n ∈ Z, the particle gains the time-shift T = −n∆t:

ϕout ∈
(

−
γ

2
+ψ+nγ,

γ

2
+ψ+nγ

)

⇒ T = −n∆t . (4.1)

Taking into account the restrictions on γ, ψ and ω, the
total time-shift can be −3∆t ≤ T ≤ ∆t. See Fig. 16 for

examples.

The total time-shift can be similarly calculated for the
collision-free trajectories. In this case the direction of the
outgoing trajectory in the covering space is ϕout = π for
the trajectories passing the wormhole to the past, and
ϕout = −π for the trajectories passing the wormhole to
the future. The condition (4.1) gives that the trajectory
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traveling to the past, ρ > 0, gains the time-shift T = −∆t
for ψ ∈ (− γ

2
, 3
2
γ − π), or it can pass the wormhole twice,

T = −2∆t, if ψ ∈ (3
2
γ − π, γ

2
). Similarly, for ρ < 0, the

particle gains the time-shift T = ∆t for ψ ∈ (π − 3
2
γ, γ

2
)

and T = 2∆t for ψ ∈ (− γ
2
, π − 3

2
γ).

V. CONCLUSION

We have analyzed a simple interacting system in the
space with a nontrivial causal structure. We have as-
sumed the principle of self-consistency, i.e., we have re-
quired the validity of standard local physical laws and we
searched for consistent global solutions. In such setting
one can formulate the analogue of the so called “grand-
father paradox” as a question whether all natural initial
conditions lead to the global consistent solutions of the
local physical laws. Initial conditions which do not lead
to such solutions would be paradoxical and the system
with nontrivial set of paradoxical initial conditions would
be logically inconsistent.
We have shown that the investigated system of finite

billiard balls in the non-relativistic space with a time ma-
chine realized by a wormhole with a time-shift is not logi-
cally inconsistent in this sense. A näıve guess can identify
potentially paradoxical initial conditions for which the
ball sent through the time machine hits itself and changes
inconsistently its own motion. The detailed analysis has
shown that even for such initial conditions there exists a
global solution satisfying locally all physical laws.
This result was anticipated since it agrees with the

previous results obtained for various other systems, in
particular, for the very closely related system studied in
[13]. Our results thus endorse one of the main messages
of the study of the system with a nontrivial causal struc-
ture: that the presence of time machines does not neces-
sarily imply a drastic reduction of space of the classical
solutions of the equations of motion. However, the pre-
vious results have been obtained mainly for linear (non-
interacting) systems or through a rather complicated and
cumbersome analysis of interacting systems. Therefore,
the confirmation for the interacting system allowing a
detailed explicit analysis is valuable.
We have confirmed also another similarly interesting

result discussed in [13]. The presence of the nontrivial
causal structure in our system has enlarged the space
of solution. We have found that for a wide class of ini-
tial conditions (namely for |ρ| < ρmax with given u) more
than one classical evolutions exist. In addition to the
“standard” collision-free trajectory the particle can also
move along two different self-colliding trajectories, see
Fig. 8. The evolution of the system thus fails to be deter-
ministic and the classical theory does not have any means
to determine which of the different evolutions would be
realized.
One can speculate that the quantum theory would be

a more complete description. It does not determine exact
trajectory of the particle—it just estimates a probability

for various possible evolutions (specified up to a quan-
tum uncertainty). In the classical limit only evolutions
close to the solutions of the classical laws would have a
non-trivial probability. In systems with standard causal
structure, there is usually only one such a solution. How-
ever, in our system, one can expect that all three classical
solutions would have non-trivial probabilities and a semi-
classical approximation could give an estimate for these
probabilities.
Nevertheless, one has to emphasize that it’s not trivial

at all to complete this program. The status of quantum
theory in the presence of time machines is unclear. The
common formulations of the quantum theory are heavily
based on the standard notion of time, so a nontrivial
causal structure would change the theory substantially.5

It would be extremely interesting to find a modification of
the quantum mechanics for a space with time machines,
but it is a hard challenge for further work. The simplicity
of our model could give hope that such a challenge is
treatable.
However, one could ask what a key ingredient is for

the existence of more solutions of the classical equations
of motion. Is it really the presence of the time ma-
chine? One could also suspect a peculiar geometrical
structure of our conical space. The conical space breaks
the uniqueness of the classical solutions even without the
time machine. Indeed, for given initial and final points,
in the conical space there exist more trajectories which
join them. This effect is purely geometrical and does
not need a nontrivial causal structure. However, we have
identified a different kind of uniqueness: we have found
that the specification of both the initial position and
the momentum (the complete initial conditions) admits
more different evolutions, which is certainly surprising
when the local evolution is given by standard differential
equations which are generally accepted as deterministic.
Non-uniqueness appears here as a strange result of the
interplay between a local deterministic evolution and a
nontrivial causal structure on a global scale for which the
time machine is the key ingredient.
Let us finally mention, that further study [16] of our

system revealed, that if one takes into account a possi-
bility of multiple self-collisions, the situation gets even
more interesting. In this work we have studied only the
collision-free trajectories, and the trajectories with one
self-collision. However, the incoming and outgoing tra-
jectories from the self-collision can easily self-intersect

5 As an example of possible difficulties let us mention that one

would have to take into account the quantum space for degrees

of freedom “hidden inside” the time machine, i.e., the degrees of

freedom which are not encoded in the standard initial conditions.

We ignored them on the classical level—they correspond, e.g., to

a mysterious particle which appears from the wormhole, hits the

particle coming from infinity, and deflects itself back to the time

machine in such a way that it reappears from it exactly as the

introduced mysterious particle. On quantum level such degrees

of freedom cannot be easily ignored or separated.
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and for a special choice of parameters even self-collide
again. It is possible to show that when the impact pa-
rameter ρ gets smaller (with fixed u), there exist more
and more multi-self-colliding solutions. For a point-like
particle, there exist a finite value ρmax∞ under which
there exist infinite number of possible evolutions for sin-
gle initial parameters ρ and u, cf. [16]. We leave further
details to the subsequent publication.
Summarizing, the studied system with a wormhole-

based time machine does not suffer from the paradoxical
initial conditions. On the contrary, it breaks the deter-

ministic character of the theory and offers more solutions
for single initial conditions.
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