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Covariant derivative on non-linear fiber bundles
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A gauge field is usually described as a connection on a principal bundle. It induces
a covariant derivative on associated vector bundles, sections of which represent matter
fields. In general, however, it is not possible to define a covariant derivative on non-
linear fiber bundles, i.e. on those which are not vector bundles. We define logarithmic
covariant derivatives acting on two special non-linear fiber bundles — on the principal
bundle and on the local gauge group bundle. The logarithmic derivatives map from sections
of these bundles to the sections of the local gauge algebra bundle. Some properties of the
logarithmic derivatives are formulated.
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1 Motivation and summary

The standard geometrical representation of a gauge field is a covariant derivative
on a vector bundle over a spacetime (cf. [1,2]). Sections of such a bundle describe
a matter field which interacts with other matter through the gauge field. However,
because the gauge field can interact with different matter fields, it is necessary to
have the same covariant derivatives on different vector bundles.

A natural way to define the same covariant derivatives on different vector bun-
dles is to start with a principal bundle PM over spacetime M with a structure
(gauge) group G (which represents a gauge symmetry of a theory). The gauge
field is then represented by a connection on the principal bundle. Vector bundles
of matter fields are defined as fiber bundles associated with the principal bundle.
The connection on the principal bundle allows to define covariant derivatives on
these vector bundles. These are used to construct the Lagrangian of matter fields
interacting with the gauge field.

The only problem of this construction is the necessity of manipulating objects
from tangent spaces of the principal bundle. The usual mathematical description of
the connection on the principal bundle is the connection form ω (which defines hor-
izontal subspaces in the tangent space of the principal bundle), and the “strength”
of the gauge field is the curvature form Ω. The connection form is a gauge algebra

∗) E-mail: Pavel.Krtous@mff.cuni.cz

Czech. J. Phys. Vol. 54 (2004) 273



Pavel Krtouš

valued 1-form on the principal bundle PM and the curvature form is a gauge alge-
bra valued 2-form on PM . However, it is not very common in physics to work with
objects which live on such complicated spaces. Usually one works with fields (ten-
sor valued functions or sections of vector bundles) on spacetime or with covariant
derivatives in vector bundles with spacetime as a base manifold.

A standard way how to avoid working with objects from tangent space of PM
is a trivialization — a choice of a section of PM , i.e. a choice of coordinates in
the principal bundle and in associated fiber bundles. Then all objects can be rep-
resented as matrix or vector valued functions on spacetime. However, since there is
no canonical choice of trivialization, it is an input alien to the geometrical descrip-
tion of the theory. From the geometrical point of view, we would like to avoid any
specific choice of coordinates.

Fortunately, for a semisimple structure group1), it is possible to represent the
connection on the principal bundle by a covariant derivative on the local gauge
algebra bundle gM and the strength of the gauge field by a curvature tensor F
— a gM -valued tensor field on spacetime (see Definition 3). Hence, it is possible
to substitute the covariant derivative for the connection form and the curvature
tensor for the curvature form. Therefore, it is not necessary to work with objects
defined on the principal bundle but only with objects localized on spacetime.

However, there are still some operations and quantities where it is necessary
to use a trivialization. A typical example are the transformation properties of the
gauge field under a gauge transformation. This is usually written as2)

Ã�
m
n = A�

m
n − g-1m

p d�gpn . (1)

Here A�mn, Ã�mn are vector potentials describing the gauge field before and after
a gauge transformation, expressed in a trivialization, i.e., represented as matrices
on the gauge algebra g with a spacetime index � and algebra indices m,n. gmn is a
gauge group element represented as a matrix on the gauge algebra, which defines the
gauge transformation, and d is the usual gradient of a (matrix valued) function on
the spacetime M . However, we would like to avoid choosing the trivialization, i.e.,
we would like to work with abstract objects — with the element of the local gauge
group g ∈ SectGM , and with the vector potential as an element of local gauge
algebra A ∈ Sectg ⊗ T∗M instead of their matrix representation. Unfortunately,
we cannot write an abstract relation like

Ã� = A� − g-1 D�g , (2)

because a covariant derivative D�g on the local gauge group bundle GM is not
defined. The connection on the principal bundle allows us to define the covariant

1) The semisimplicity of the structure group G is necessary to guarantee that the adjoint rep-
resentation of the structure group on the gauge algebra g is faithful. Another standard case is a
commutative structure group (e.g. a Maxwell field) where the local gauge algebra bundle gM is
trivial. However, it is always possible to describe the connection as a covariant derivative on a
properly chosen vector bundle with faithful representation of the structure group.

2) Any constant factor (a charge or maybe the imaginary unit in the case of complex represen-
tation of a unitary group) which is often written in front of the vector potential is included into
the vector potential here.
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derivative only on a fiber bundle with a linear structure (see Definition 1), i.e., only
when the standard bundle is a vector space. However, in the case of the local gauge
group bundle GM , the standard fiber is the structure group G. Therefore, we have
to use the adjoint representation and trivialization to represent the structure group
as matrices on the gauge algebra. Then, we can use the gradient to take a derivative
of the local gauge group element g.

Another way often used to write the transformation properties of the gauge field
is

Ãm

�
≈ Am

�
− d�am . (3)

Here A�m, Ã�m are gauge algebra valued vector potentials3) (g-valued 1-forms on
the spacetime) and am is a generator of the gauge transformation (i.e., g = exp(a)).
This relation is generally valid only to the first order in a. It is usually called the
“infinitesimal gauge transformation”.

The aim of this paper is to define the logarithmic covariant derivative on the
local gauge group bundle GM (Definition 5) — a tool that allows us to write the
relations above without specifying coordinates and without any approximation —
see Lemma 12 and Theorem 9. The logarithmic covariant derivative Dln g acts on
sections of the local gauge group bundle GM and its result is a section of the local
gauge algebra bundle gM .

We will also define the logarithmic covariant derivative on the principal bundle
PM (Definition 4) which allows a generalization of the following construction4):
It is often possible to represent the principal bundle as a space of frames in some
vector bundle, typically in the local gauge algebra bundle gM . That is, an element
E ∈ PM can be represented as E = {θm}m=1...N , where θm ∈ gM are linearly
independent, and N is the dimension of the gauge algebra. The trivialization means
a choice of a section E ∈ SectPM , i.e. a choice of base vectors in all fibers of gM .
The vector potential A of the covariant derivative can then be written as

A� =
(
D�θm

)
θm , (4)

θm being the dual base in g∗M 5). However, we do not always wish or can represent
the principal bundle as a space of frames and we usually want to work with the
vector potential A from g⊗T∗M , not with its adjoint representation A. With the
help of the logarithmic covariant derivative on the principal bundle introduced in
this paper we will be able to write the equivalent of Eq. (4) in a general case (cf.
expression (19)). The logarithmic covariant derivative DlnE acts on sections of
the principal bundle PM and gives as a result a section of the local gauge algebra
bundle gM .

The plan of the paper is the following. In Section 2 we shortly review the
geometrical setting of the gauge field theory. There are no new results here — the

3) Matrices Awith antisymmetric multiplication given by commutator are adjoint representation
of A with multiplication given by Lie bracket of the gauge algebra.

4) See also the discussion of this construction in the case of the principal bundle of the tangent
bundle in the next section.

5) Of course, the tensor multiplication is assumed here — θm are vectors from gM , θm are forms
from g∗M , and the vector potential is from g1

1⊗T∗M .
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main aim of this section is to fix the notation and to review facts needed later. The
logarithmic covariant derivatives on the principal and on the local gauge group
bundles are defined in Section 3. Some important properties of these derivatives
are also mentioned there — mainly generalizations of the chain rule, the relation
between two different logarithmic covariant derivatives, and the expressions for the
curvature tensor in terms of the logarithmic derivatives. The proofs of the lemmas
and theorems of Section 3 are relegated to the Appendix.

All constructions in this article are local; we will not study global topological
properties of the principal bundle and their consequences for the derivatives defined.
The definition of logarithmic derivatives does not introduce new issues in this area.
Due to the essential locality of all definitions, we will not refer to any transformation
properties under change of a map from an atlas of the spacetime manifold or the
principal bundle. All this can be done in standard way. Similarly, we will not discuss
issues of differentiability — we assume sufficient smoothness of all objects under
consideration.

The logarithmic derivatives on the principal and local gauge group bundles do
not bring any essentially new information that could not, in some manner, be ex-
pressed without using them. However, they are useful tools when expressing certain
quantities in a natural, coordinate-free geometrical way. They are a natural gen-
eralization of the notion of covariant derivative in case of non-linear fiber bundles.
This generalization has its limitations — it works only for the case of two special
non-linear bundles that are closely related with a vector bundle, namely, with the
local gauge algebra bundle gM . The logarithmic derivatives have a number of use-
ful properties formulated in Theorems 6, 9–11, in Lemma 12, and in Eq. (19), that
extend the standard covariant derivative calculus to the new area. An application
of this formalism can be found, e.g., in the proofs of Theorem 10(ii), Theorem 11,
and Lemma 12.

2 Geometry of gauge fields

Fiber bundles

Fiber bundles are standard kinematical area for geometrical description of gauge
and matter fields. A gauge field is represented by a connection on the principal
bundlePM with a structure groupG and matter fields are sections of the associated
vector bundles. Gauge symmetry is invariance of the theory under a “rotation” of
the inner degrees of freedom, i.e. under the action of the local gauge group.

In this section, we shortly review some basic facts from the theory of fiber
bundles — to fix the notation and for later references. For details see, e.g., [3].

We denote the tangent space of a manifold X by TX , the tangent tensor space
Tk

l X , and the space of its sections Tk
l X . We use abstract indices (bold letters;

see, e.g., [4]) to indicate tensor character of tangent tensors and coordinate indices
(plain letters) to label components of a tensor in a special frame. However, we try
to avoid the use of indices; instead, we use a dot to indicate contraction between
vectors and forms.
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Fiber bundles describing the inner degrees of freedom are built above a space-
time manifold M . We use Greek indices for tensors from the tangent space TM
and we denote a contraction by dot “·”, i.e., a·ω = a�ω�.

The principal bundle is denoted by PM , and the bundle projection by π. The
intuitive meaning of a fiber PxM of the principal bundle is the space of “frames”
in the space of inner degrees of freedom at a base manifold point x. We will use
letters E,F, . . . for elements of PM . The structure group G acts on the principal
bundle from the right: e.g., F = Rḡ E = Eḡ. It corresponds to a “change of frame”.
We assume that G is a semisimple Lie group and thus an adjoint representation is
faithful.

If a manifold A with an action T of the structure group G is given (i.e.,
T : G × A → A, Tḡh̄ = Tḡ Th̄), we can define an associated fiber bundle with
the standard fiber A. Intuitively, this is a space of objects φ with “coordinates”
φ̄ from the standard fiber A taken with respect to a frame E from the principal
bundle PM . We will write6)

φ = TE φ̄ , φ̄ = φ[E] . (5)

The coordinates change by the action T under a change of frame, i.e.,

φ = TE φ̄ = TEḡ Tḡ-1 φ , φ[Eḡ] = Tḡ-1 φ[E] . (6)

We call such an associated fiber bundle (TPA)M , or shortly AM .
Let us mention some special cases of the associated fiber bundles. First, the

principal bundle PM itself can be viewed as an associated bundle with the structure
group G as the standard fiber and with left multiplication as the action on it, i.e.,
PM ∼= (LPG)M . Here, we identify

LE ḡ = Rḡ E , (7)

i.e., F [E] = ḡ if F = Eḡ. The fundamental vector field fā ∈ T PM on the principal
bundle PM associated with an element ā ∈ g of the gauge algebra (Lie algebra of
the structure group G) is defined by

fā
∣∣
E
=

D

dα
Rḡα E

∣∣∣
α=0

, where ā =
Dḡε

dε

∣∣∣
ε=0

, ḡ0 = ē . (8)

The fundamental form θ on the principal bundle PM at a point E ∈ PxM is a
linear mapping from the tangent space of the fiber PxM to the gauge algebra g
“inverse” to the fundamental vector field:

θ • fā = ā . (9)

Here, the bold dot “ • ” represents contraction in the tangent space to the fiber
PxM . We use it also for contraction in the tangent space to the entire principal
bundle PM .

6) Here we use the same symbol T as for the action of the group G on the standard fiber A.
These are different operations, of course, but our notation is justified by, for example, the formal
associativity TEḡ φ̄ = TE(Tḡ φ̄) — see (6).
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Another example of an associated fiber bundle is the local gauge group bundle
GM . Its standard fiber is again the structure group G but now with the adjoint
representation Ad as the action: GM = (AdPG)M . Each fiber of the local gauge
group bundle has a group structure — group operations are:

gh = TE(g[E]h[E]) , g−1 = TEg[E]−1 , e = TE ē . (10)

It is easy to check that this is independent on the choice of E ∈ PM . This bundle
is called the local gauge group bundle because its sections form the local gauge
group. The whole theory should be invariant under the action of this group. The
action of the local gauge group on any associated fiber bundle (TPA)M is defined
as

Tg φ = TE(Tg[E] φ[E]) . (11)

Again, it does not depend on the choice of E. As a special case, we have “left”
action of GM on PM (we write Lg E = gE) and the adjoint representation Ad of
GM on itself.

Next example of an associated fiber bundle is the local gauge algebra bundle gM .
The standard fiber g is the Lie algebra of the structure group G, which we identify
with the tangent space TeG at the unit element e. The action of the structure
group on G is adjoint representation ad, i.e., gM = (adPg)M . Again, each fiber
gxM has the structure of a Lie algebra, where the Lie brackets and exponential
map are defined by

[a, b] = adE [a[E], b[E]] , exp a = adE exp(a[E]) . (12)

Contraction in the algebra bundle will be denoted by a square dot “ � ”.
Finally, we mention the case of the standard fiber E having a linear structure and

the action of the structure group being a representation. In this case, in addition to
the representation T ofGM , we can also define a representation t of the local gauge
algebra gM . Let T be the representation of the structure group G on the linear
standard fiber E and t its generator — the representation of the Lie algebra g:

Texp ā = exp(tā) . (13)

Then the representation of gxM on ExM is given by

taφ = TE ta[E]φ[E] . (14)

The dependence of ta is linear in a; thus we can write ta = a � t with t ∈ E1
1⊗g∗M .

The principal bundle FM of tangent spaces of the base manifold (spacetime)M
can be viewed as a space of vector bases in TM , i.e., we can write E = {e�µ}µ=1,...,d.
The structure group is the groupGL(d) of nondegenerated matrices, the local gauge
group bundle GLM can be represented as a space of nondegenerated (1,1)-tensors
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(i.e., g = g��), and the local gauge algebra bundle as a space of all (1,1)-tensors:
glM = T1

1M . Clearly,

Eḡ = Rḡ E = {e�ν ḡν
µ} , gE = Lg E = {g��e�µ} , (15)

(gh)�� = g��h
�
� , [a, b]�� = a��b

�
� − b��a

�
� , (16)

(E ∈ FM , g, h ∈ GLM , a, b ∈ glM and ḡ ∈ GL(d)). Finally, tangent tensor spaces
are associated bundles with the standard fiber given by a tensor power of Rd with
the standard GL-action on it.

Connection

The gauge field is represented by a connection on the principal bundle. Let us recall
that a connection H defines horizontal subspaces HE of the tangent fibers TE(PM)
that are invariant under the action of the structure group. We denote by hor and
ver the projectors on the horizontal and vertical subspaces. The connection can
be given by a connection form ω (g-valued 1-form on the principal bundle). The
connection defines a horizontal lift (“parallel transport”) in the principal bundle
and it can be extended to associated bundles by the rule of keeping the coordinates
constant with respect to a parallelly transported frame.

This allows us to define a covariant derivative on associated vector bundles:
Definition 1 (Covariant derivative on vector bundle)
Let EM = (TPE)M be a vector bundle associated with the principal bundle
PM , and let a connection H be given. We define covariant derivative

Dφ ∈ Sect(E⊗T∗M)

of a section φ ∈ SectEM as

ξ·Dφ def= Dξφ ,

Dξφ
def= TE0

d

dε
φε[Eε]

∣∣∣
ε=0

.

Dξφ is the covariant derivative in a direction ξ ∈ TM , Eε is a horizontal lift in
PM of a curve xε with tangent vector ξ, and φε = φ|xε . ◦

The principal condition here is the linear structure of the standard fiber — it is only
thanks to this structure that the derivative (d/dε)φε[Eε]

∣∣
ε=0

is again an element
of the standard fiber. It is not possible to use a similar definition to introduce a
covariant derivative on a non-linear fiber. Only if we were able to map a result
of the derivative (d/dε)φε[Eε]

∣∣
ε=0

to a standard fiber of some associated bundle
(maybe a different one) we could define a covariant derivative. This will be done
for the principal bundle and for the local gauge group bundle in the next section.

Later we will need the following:
Lemma 1
Let φ be a section of a fiber bundle AM = (TP A)M and ξ ∈ TM . We can
choose a curve xε such that ξ = Dxε/dε

∣∣
ε=0

. We denote the values of φ along xε
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by φε and a horizontal lift of xε in PM by Eε. Then

ver(ξ·Dφ|x0) =
D
dε
(
TE0 φε[Eε]

)∣∣∣
ε=0

,

hor(ξ·Dφ|x0) =
D
dε
(
TEε φ0[E0]

)∣∣∣
ε=0

,

where Dφ is a differential of the map φ :M → AM . �

It is well known that all connections form an affine space and that a difference
between two connections can be characterized by a vector potential:

Definition 2 (Vector potential)
Let H and H̃ be two connections on the principal bundle PM given by funda-
mental forms ω and ω̃. The vector potential A ∈ Sectg⊗T∗M of the connection
H̃ with respect of H is defined by equation

π∗A[E] = (ω̃ − ω)|E ,

where π is the projection from PM to the base manifold M and E ∈ SectPM .
We will write

A = H̃�H . ◦

Remark

The consistency (independence on the choice of E) follows from the transformation prop-
erties of ω̃ and ω under the action of the structure group and from the fact that both
these forms act as the fundamental form on the vertical vectors — see, e.g., [3]. ◦

Finally, let us recall the definitions of the curvature form and curvature tensor:

Definition 3 (Curvature)
Let H be a connection on the principal bundle PM given by a connection form
ω. The curvature form Ω (g-valued 2-form on PM) is given by

Ω def= hor∗ dω .

The curvature tensor F ∈ Sect(g⊗Λ2M) (i.e. gM -valued 2-form onM) is defined
by equation

π∗F [E] = Ω|E ,

where E is an arbitrary section of the principal bundle PM . ◦
Remark

Independence on the choice of E follows from the transformation properties of Ω — see
again [3]. ◦

The relation between curvature tensors of two connections follows from Cartan’s
structure equations and definitions of the vector potential:
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Theorem 2
Let H̃, H be two connections on the principal bundle PM with curvature tensors
F̃ , F and let A = H̃�H. Then

F̃ − F = dDA+ [A,A] = dD̃A− [A,A] . �

Here dD is the covariant external derivative; it acts on Sectg ⊗ ΛpM as the
external derivative d in tangent tensor indices, and as the covariant derivative D
in gauge algebra indices. If we extend the action of the covariant derivative D on
the tangent bundle TM using any torsion-free connection we can write

dDω = D ∧ ω . (17)

3 Logarithmic covariant derivative

Now we can define a covariant derivative on the principal bundle. The derivative
of a section F (x) is essentially a vertical part of a change of the section projected
to the local gauge algebra gM .

Definition 4 (Logarithmic covariant derivative on PM)
Let F ∈ SectPM . The logarithmic covariant derivative DlnF ∈ Sect(g⊗T∗M)
is defined as

DlnF def= adF ω •DF = adF θ • ver(DF ) .

Here, DF is a differential of the mapping F :M → PM . We will use notation

DξlnF
def= ξ·DlnF

for logarithmic covariant derivative in a direction ξ ∈ TM . ◦

Similarly, we can define a covariant derivative on the local gauge group GM .
Again, it is the vertical part of the change of a section g, now “left-shifted” to the
local gauge algebra:

Definition 5 (Logarithmic covariant derivative on GM)
Let g ∈ SectGM . The logarithmic covariant derivative Dln g ∈ Sect(g ⊗T∗M)
is defined as

Dln g def= L∗
g-1 ver(Dg) .

We will use notation

Dξln g
def= ξ·Dln g .

for logarithmic covariant derivative in a direction ξ ∈ TM . ◦

The derivatives DlnE and Dln g are called logarithmic because they substitute
heuristic expressions (DE)E-1 and Dln g = g-1Dg. This can be made rigorous for
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a principal bundle represented as a space of frames in a vector bundle — e.g., for
the principal bundle FM of tangent space TM (see Section 2). In this case we have

Lemma 3
Let E = {e�µ } ∈ SectFM , g = g�� ∈ SectGLM , and ∇ln , ∇ are covariant
derivatives associated with a connection on FM . Then

(∇�lnE)�� = (∇�e
�

κ ) e
κ
�
,

(∇�ln g)�� = g-1�
�∇� g

�
� ,

where eµ
�
is a dual base in T∗M . �

Now we return to the general situation. We write down two lemmas that could
also serve as definitions in a similar way as Definition 1 determines the covariant
derivative on vector bundles:

Lemma 4
Let F ∈ SectPM , ξ ∈ TM . Let xε, Eε be as in Lemma 1 with E0 = F |x0 ; we
denote the values of F along xε by Fε. Then

DξlnF |x0 = adE0

D

dε
Fε[Eε]

∣∣∣
ε=0

. �

Lemma 5
Let g ∈ SectGM , ξ ∈ TM . Let xε and Eε be as in Lemma 1; we denote gε = g|xε .
Then

Dξln g|x0 = adE0

D

dε

(
g0[E0]-1gε[Eε]

)∣∣∣
ε=0

. �

Next, we formulate some important properties of the covariant derivatives de-
fined above — the analogues of the usual chain rule for the derivative of a product.

Theorem 6 (Chain rules)
Let E ∈ SectPM , g, h ∈ SectGM , a, b ∈ SectgM , φ, ψ ∈ SectEM , where
EM = (TPE)M is a vector bundle associated with PM . Then

Dln (gE) = adg(DlnE +Dln g) = adg DlnE −Dln g-1 , (i)

Dln (gh) = adh-1 Dln g +Dlnh = adh-1(Dln g −Dlnh-1) , (ii)

D(Tgφ) = Tg

(
Dφ+ (Dln g) � tφ

)
, (iii)

D(adg a) = adg

(
Da+ [Dln g, a]

)
, (iv)

D(a � tφ) = (Da) � tφ+ a � t(Dφ) , (v)
D[a, b] = [Da, b] + [a,Db] , (vi)
D(φψ) = (Dφ)ψ + φ(Dψ) . (vii)

�
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The straightforward consequence of Theorem 6(ii) is
Lemma 7
Let g ∈ SectGM , then

Dln g-1 = − adg Dln g . �

Rules 6(iii) and 6(v) tell us that representations T and t are covariantly constant:
Lemma 8
Let g ∈ SectGM , a ∈ Sect gM , then

T−1
g DTg = (Dln g) � t ,

Dta = tDa , i.e., Dt = 0 . �

Covariant derivatives on GM and gM are, of course, related but this relation
is more complicated than one could expect from expression Dln exp a because the
gauge group multiplication is not commutative:
Theorem 9
Let a ∈ SectgM , then

Dln exp(a) = Da+ 1
2!
[Da, a] + 1

3!
[[Da, a], a] + . . . �

Now we formulate the relation between covariant derivatives corresponding to
two different connections in terms of the vector potential (see Definition 2):
Theorem 10 (Difference of covariant derivatives)
Let H, H̃ be two connections on PM , A = H̃ � H, and Dln , D be covariant
derivatives on the principal bundle PM , the local gauge group, and algebra
bundles GM and gM , and on an associated vector bundle EM . Then

D̃lnF −DlnF = A , F ∈ SectPM , (i)

D̃ln g −Dln g = adg-1 A−A , g ∈ SectGM , (ii)

D̃a−Da = [A, a] , a ∈ SectgM , (iii)

D̃φ−Dφ = A � tφ , φ ∈ SectEM . (iv)
�

The usual method of handling the covariant derivative is the so-called, trivializa-
tion (see, e.g., [4]). It consists of a choice of a section E of the principal bundle PM
(i.e. a choice of “frame” in associated fiber bundles) and of expressing all quantities
with respect to this “frame”. Such a choice also defines a coordinate connection h
by the requirement that E be horizontal. That is, for the corresponding covariant
derivative ðln on PM we get

ðlnE = 0 . (18)

The curvature tensor of the coordinate connection is zero. As a consequence of
Theorem 10(i), we conclude that the vector potential A = H�h of the connection
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H with respect to the coordinate connection h is given exactly by the logarithmic
covariant derivative of E:

A = DlnE . (19)

Finally we discuss the relation between the logarithmic covariant derivative
and the curvature tensor F . The curvature tensor plays a fundamental role in
expressions that contain the commutator of covariant derivatives, some of them are
summarized in the following theorem:
Theorem 11 (Curvature)
Let H be a connection, Dln and D be the corresponding covariant derivatives,
and F be the corresponding curvature tensor. Then

F = dDDlnE − [DlnE,DlnE] , E ∈ SectPM , (i)

adg-1 F −F = dDDln g + [Dln g,Dln g] , g ∈ SectGM , (ii)

[F , a] = dDdDa , a ∈ SectgM , (iii)

F � tφ = dDdDφ , a ∈ SectEM . (iv)
�

The first relation in the last theorem is essentially a well-known equation for
the curvature tensor in terms of the vector potential (19). From the second relation
and from Theorem 2 follows how the curvature tensor changes under a gauge trans-
formation. The gauge transformation is given by a “rotation” of the inner degrees
of freedom by a local gauge group element g, i.e., for example, a → ã = adg a
for a ∈ SectgM . The gauge field represented by a connection H transforms to
a connection H̃ and the corresponding covariant derivatives have to satisfy the
condition

D̃ã = D̃a . (20)

This is achieved by a proper choice of the vector potential:
Lemma 12 (Gauge transformation)
The vector potential A = H̃�H corresponding to a gauge transformation of the
connection H by a local gauge group element g ∈ SectGM is

A = Dln g−1 . (i)

The curvature tensor transforms as

F̃ = adg F . (ii)
�

The first equation is the desired coordinate-free relation for a change of a gauge
field under a non-infinitesimal gauge transformation mentioned in the introduction
(cf. Eq. (2)). The second equation is the standard behaviour of the curvature tensor
under a gauge transformation.
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Appendix: Proofs

Proof of Lemma 4
Using Lemma 1 we get

DξlnF = adF θ • ver(DF ) = adE0 θ •
D

dε

(
E0Fε[Eε]

)∣∣∣
ε=0

.

Due to F0[E0] = ē, we can use Equation (8) and the last expression transforms to:

adE0 θ • f(D/dε)Fε[Eε]
∣∣
ε=0

= adF
D

dε
Fε[Eε]

∣∣∣
ε=0

.

Here we used relation (9). This completes the proof of Lemma 4. �

Proof of Lemma 5
Using Lemma 1, we get

Dln g = L∗
g-1 ver(Dg) = L∗

g-1
0

D

dε

(
AdE0 gε[Eε]

)∣∣∣
ε=0

.

Including the left shift in the derivative and using (11), the last expression changes
to:

D

dε

(
Lg-1

0
AdE0 gε[Eε]

)∣∣∣
ε=0

=
D

dε

(
AdE0 g0[E0]−1gε[Eε]

)∣∣∣
ε=0

.

Extracting AdE0 from the derivative, we obtain Lemma 5. �

Proof of Theorem 6
Let ξ, Eε, Fε, gε, hε, φε be as in Lemma 4 and Lemma 5. It follows from the first
Lemma:

Dξln gF =

= adE0 θ •
D

dε

(
E0gε[Eε]Fε[Eε]

)∣∣∣
ε=0

=

= adE0 θ •

(D
dε

(
E0g0[E0]Fε[Eε]

)∣∣∣
ε=0

+ θ •
D

dε

(
E0gε[Eε]

)∣∣∣
ε=0

)
.

Equation (8) gives

Dξln gF =

= adE0 θ •

(
f(D/dε)Fε[Eε]|ε=0

∣∣
E0g0[E0]

+ f(D/dε)(g0[E0]-1gε[Eε])|ε=0

∣∣
E0g0[E0]

)
=

= adgF θ •
(
f(Dξln F )[E0] + f(Dξln g)[E0]

)∣∣
gF

=

= adF adg[F ]

(
DξlnF +Dξln g

)
[F ] =

= adg

(
DξlnF +Dξln g

)
,

where we used Eqs. (9), (11), and F |x = F0 = E0. This proves the first equality in
the rule (i).
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Using Lemma 5, we get

Dξln gh = adE0

D

dε

(
h0[E0]−1g0[E0]−1gε[Eε]hε[Eε]

)∣∣∣
ε=0

=

= adE0

(D
dε

(
h0[E0]−1g0[E0]−1gε[Eε]h0[E0]

)∣∣∣
ε=0

+
D

dε

(
h0[E0]−1hε[Eε]

)∣∣∣
ε=0

)
=

= adE0 adh0[E0]-1
D

dε

(
g0[E0]−1gε[Eε]

)∣∣∣
ε=0

+Dξlnh =

= adh-1 Dln g +Dlnh .

This concludes the proof of the first equality in (ii).
Part (iii) follows from Definition 1, Equation 11, and Lemma 5:

DξTgφ = TE0

d

dε

(
Tgε[Eε]φε[Eε]

)∣∣∣
ε=0

=

= TE0

( d
dε

(
Tg0[E0]φε[Eε]

)∣∣∣
ε=0

+
d

dε

(
Tgε[Eε]φ0[E0]

)∣∣∣
ε=0

)
=

= TE0Tg0[E0]

( d
dε
φε[Eε]

∣∣∣
ε=0

+
d

dε

(
Tg0[E0]-1gε[Eε]φ0[E0]

)∣∣∣
ε=0

)
=

= Tg

(
Dξφ+TE0 t(d/dε)

(
g0[E0]-1gε[Eε]

)∣∣
ε=0

φ0[E0]
)
=

= Tg

(
Dξφ+ tDξln gφ

)
.

Rule (iv) is just the corollary of (iii) in case of EM = gM , T = ad.
Rules (v)–(vii) are standard properties of a covariant derivative on a gauge

algebra bundle gM and a vector bundle EM and we do not prove them here.
The remaining parts of (i) and (ii) follow from Lemma 7. �

Proof of Lemma 7
The lemma is a straightforward consequence of the first equality in Theorem 6(ii)
and the fact that Dln e = 0. �

Proof of Lemma 8
The lemma is a consequence of rules 6(iii), 6(v), and of the tensor character of the
representation Tg and the generator t. �

Proof of Theorem 9
Let T be a representation of the gauge group on a vector bundle, and t its generator.
We denote the generator of the adjoint representation of the gauge algebra by c ,
i.e.,

adexpa = exp(ca) , cam = [a,m] .

Applying repeatedly tmta = tata+t−cam, it is straightforward to prove the relation:

tmtkm =
k∑

l=0

(
k

l

)
tk−l
a t(−ca)lm . (*)

286 Czech. J. Phys. 54 (2004)



Covariant derivative on non-linear fiber bundles

Expanding exp ta into power series we obtain

DTexp a = D exp ta =
∞∑

n=0

1
n!

D(tna ) =
∞∑

n=0

1
n!

n∑
k=1

tn−k
a tDatk−1

a ,

were we have used Lemma 8. Substituting Eq. (*) and rearranging sums we get

DTexp a =

=
∞∑

n=0

1
n!

n∑
k=1

tn−k
a

k−1∑
l=0

(
k − 1
l

)
tk−l−1
a t(−ca)lDa =

=
∞∑

n=0

n−1∑
l=0

(
1
n!

n∑
k=l+1

(
k − 1
l

))
tn−l−1
a t(−ca)lDa =

=
∞∑

m=0

1
m!

tma
∞∑
l=0

1
(l + 1)!

t(−ca)lDa =

= exp(ta)tP∞
l=0

1
(l+1)! (−ca)lDa ,

i.e., using Lemma 8,

(Dln expa) � t = T−1
expaDTexp a =

( ∞∑
l=0

1
(l + 1)!

(−ca)lDa
)
� t .

If we choose the faithful representation t, Theorem 9 follows. �

Proof of Theorem 10
With help of Definitions 4, 2 and thanks to πF = id, we get (i):

D̃lnF −DlnF = adF (ω̃ − ω) •DF = A·Dπ •DF = A·D(πF ) = A .

Using the relation we have just proved and Theorem 6(i), we can write:

A = D̃ln (gE)−Dln (gE) = adg

(
D̃lnE−D̃ln g−DlnE+Dln g

)
=

= adg

(
A+ D̃ln g −Dln g

)
.

Relation (ii) follows immediately.
Relations (iii) and (iv) are well-known properties of covariant derivatives on

vector bundles and we will not prove them here. �

Proof of Theorem 11
Part (i) follows from Theorem 2 if we choose H̃ as the coordinate connection given
by the section E, i.e., D̃ = ð, F̃ = 0, A = −DlnE (see (18), (19)).

To prove (ii), we substitute E = gF in the relation we just proved and use
Theorem 6(i)

adg-1 F = adg-1

(
dDDln (gF )− [Dln (gF ),Dln (gF )]

)
=

= adg-1

(
dD
(
adg(DlnF +Dln g)

)
− adg[DlnF +Dln g,DlnF +Dln g]

)
.
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From Theorem 6(iv) and (17), we have

dD adg a = adg

(
dDa+ [Dln g, a] + [a,Dln g]

)
,

and, therefore,

adg-1 F = dD(DlnF +Dln g) + [Dln g,DlnF +Dln g]
+ [Dln g,DlnF +Dln g]− [DlnF +Dln g,DlnF +Dln g]

= F + dDDln g + [Dln g,Dln g] ,

q.e.d. �

Proof of Lemma 12
From (20) with help of Theorem 10(iii) and Theorem 6(iv), we get

0 = D̃ adg a− adg Da = D adg a+ [A, adg a]− adg Da
= adg[Dln g, a] + [A, adg a] = [adg Dln g +A, adg a] .

This is true for any a ∈ SectgM , so due to the fact that the adjoint representation
is faithful and due to Lemma 7, we get (i):

A = − adg Dln g = Dln g−1 .

Relation (ii) follows from Theorem 2 and Theorem 11(ii). �
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