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Abstract
We analyze the conformal Einstein equation with a positive cosmological con-
stant to extract fall-off conditions of the gravitational fields. The fall-off con-
ditions are consistent with a finite, non-trivial presymplectic current on the
future boundary of de Sitter. Hence our result allows a non-zero gravitational
flux across the boundary of the de Sitter. We present an explicit gauge-free
computation to show that the Gibbons–Hawking boundary term, counterterm
in the action, and fall-off condition of gravitational field in conformal Einstein
equation are crucial to reproduce the finite symplectic flux.
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1. Introduction

Ever since LIGO’s first detection of gravitational waves [1], a breakthrough that was itself the
result of years of growing activity in the field, the field has continued to grow into one of the
most dynamic areas of research. At the theoretical level, the formalism describing gravitational
radiation has a long tradition in the zero cosmological constant setting. The first complete
formalism describing gravitational radiation in the full non-linear theory is the well-known
Bondi-Sachs formalism [2–5]. This is based on the existence of a particular coordinate gauge
which allows one to define the energy flux of gravitational radiation in terms of an object
known as Bondi News.

Another approach due to Penrose and Newman [6, 7] is based on a frame formalism to
give a description of radiation at null future (conformal) infinity I +. A remarkable result by
Geroch [8] is the definition of a tensor quantity at I +, which is additionally invariant under
conformal scalings, and that matches the Bondi News. This therefore receives the name of
News tensor. The News tensor depends entirely on the intrinsic quantities defined on I +. It is
worth to remark that the coordinate and conformal invariance of the News makes it an optimal
candidate for describing a physical quantity such as the gravitational energy flux.

The results byWald and Zoupas in [9] also provide further mathematical structure to under-
stand the News tensor and gravitational radiation. By giving a general definition of conserved
quantities (for arbitrary field theories) in terms of Hamiltonian or equivalently a symplectic
form defined at the boundary manifold, they find out that in the case of general relativity with
zero cosmological constant with conformal infinity I + as a boundary, such conserved quant-
ity is actually determined by the News tensor. The non-vanishing nature of the New tensor
or equivalently the symplectic structure on the boundary is attributed to the gravitational flux.
The symplectic form depends on the linear fields δg over a certain gravitational field g. Thus,
in order to evaluate it at the conformal boundary, one must perform a conformal rescaling of
both the background g̃=Ω2g and the linear field δg̃=Ω2δg, then analyze the fall-off behavior
of the unphysical linear field δg̃. An essential result in order to relate the symplectic structure
and the News tensor is the fact that δg̃ vanishes to first order at I +. This fall-off behavior
was previously proven by Geroch and Xanthopoulos in [10] and, as mentioned by Wald and
Zoupas, it can be seen as a consequence of the rigidity5 of the geometry atI +. The asymptotic
behavior of the linearized fields given by Geroch and Xanthopoulos have also been explored
by Ashtekar et al [12, 13] to understand the symplectic geometry of radiative modes of general
relativity.

Our aim in this paper is to address the above problem in the context of the positive cos-
mological constant Λ. Our approach will be based on Wald-Zoupas formalism. Namely, by
calculating a presymplectic potential at I +, which in turn determines the symplectic form,
we will define a conserved quantity that is a good candidate for gravitational energy flux [9].
TheWald-Zoupas formalism has been used in recent literature [14–20] to understand the grav-
itational radiation in presence of positive cosmological constant. Several [14, 17–19, 21] carry
out the analysis in a particular conformal and coordinate gauge, named after Fefferman and
Graham’s work [22, 23]. This is the conformal gauge in which ∇Ω is a geodesic vector field
and Gaussian coordinates {Ω,xi} adapted to Ω= const foliation. In a nutshell, there is an
asymptotic formal series expansion in the Fefferman–Graham gauge of the unphysical metric

5 Note that this happens only in four spacetime dimensions. For a higher dimensional approach see [11].
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g̃ab =Ω2gab, where g is the physical metric (i.e. solving the Einstein equation). In this gauge,
g̃ is written as [24]

g̃=−ℓ2dΩ2 + γ̃abdx̃
adx̃b =−ℓ2dΩ2 +

(
γ̃
(0)
ab +Ωγ̃

(1)
ab +Ω2γ̃

(2)
ab +Ω3γ̃

(3)
ab +O

(
Ω4
))

dx̃adx̃b,

(1.1)

where ℓ−2 = Λ
3 and γ̃

( j)
ab are coefficients6 in the Ω-expansion of the spatial metric γ̃ ‘near’

Ω= 0. The Λ-vacuum Einstein equation determines a recursive relation for these coefficients
and in four dimensions7 one obtains [25],

γ̃
(1)
ab = 0, (1.2)

γ̃
(2)
ab = ℓ2

(
r̃(0)ab − 1

4
r̃(0)γ̃(0)

ab

)
=: ℓ2s̃(0)ab , (1.3)

γ̃
(3)
ab = − 2ℓ2

3
ẽ(0)ab . (1.4)

Here γ̃(0) is the induced metric at I +, r̃(0)ab and r̃(0) its Ricci tensor and scalar, s̃(0) its three-
dimensional Schouten tensor, and ẽ(0) is the rescaled electric Weyl tensor of g̃ at the boundary.
All terms in the expansion to infinite order can be written solely in terms of γ̃(0) and ẽ(0). The
pair (γ̃(0), ẽ(0)) can be thus understood as Cauchy data for the spacetime metric specified in
the conformal setting at the infinity I +.

We also note that in Fefferman–Graham gauge, γ̃(3)
ab can also be identified with a holo-

graphic stress-energy tensor [14, 16, 26, 27]

Tab :=
2

|γ|1/2
δS
δγab

=
3

16πGℓ
γ̃
(3)
ab , (1.5)

which is trace-free and divergence-free with respect to the boundary metric γ̃(0)
ab .

In the Fefferman and Graham gauge, the fall-off behavior of the linear fields is obtained by
perturbing the seed data (γ̃(0), ẽ(0)) of the expansion (1.1)

δg̃ab ≡ δγ̃ab = δγ̃
(0)
ab +Ω2ℓ2δs̃(0)ab − 2ℓ2

3
Ω3δẽ(0)ab +O

(
Ω4
)
. (1.6)

The above behavior of the linear fields is general for all conformally extendable metrics. This
is a consequence of the strong non-linear stability result that stems from Friedrich’s con-
formal field equations with positive Λ [28] (see also [29]). By strong non-linear stability we
mean that metrics initially close remain close in the long term (wrt suitable Sobolev norms, cf
appendix A), and also that the conformal extendibility property is preserved. This implies that
the asymptotic data (i.e. initial data at I +) are also close. Interestingly, the asymptotic data
coincide with the degrees of freedom of the Fefferman–Graham expansion, namely (γ̃(0), ẽ(0)).
Thus, given a background metric g̃ with data (γ̃(0), ẽ(0)), a perturbed metric g̃+ δg̃ has data
(γ̃(0) + δγ̃(0), ẽ(0) + δẽ(0)), so that (1.6) follows.

The result obtained in four dimensions is that the presymplectic structure is determined
by the holographic stress-energy tensor at the boundary [14, 16]. From (1.4), and (1.5), it
follows that the holographic stress-energy tensor is related to rescaled electric Weyl tensor

6 These coefficients can be understood as tensors on the surface Ω= 0, i.e. at the infinity I +, and they are exported
into spacetime by the time flow, or, equivalently, using the Gaussian coordinates.
7 This can be similarly performed in arbitrary higher dimensions [22, 23].
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in Fefferman–Graham gauge, Tab =− ℓ
8πG ẽab. Therefore, one expects to rewrite the presym-

plectic structure in terms of the rescaled electric Weyl tensor. Although this implies a remark-
able coordinate independent identification of the symplectic form, there is no guarantee that it
is a conformal gauge invariant. This is because kinematical quantities (depending on the lapse
and shift of the foliation determined by Ω) may appear, which in the Fefferman and Graham
gauge vanish. One of the contributions in this paper is to carry out a coordinate and conformal
gauge independent definition of the presymplectic potential at I +. Our result matches pre-
vious calculations of the presymplectic potential in the Fefferman and Graham gauge, and
additionally shows its conformal gauge invariant nature. Without imposing any gauge, we
have shown that the natural extension of the holographic stress-energy tensor via conformal
Einstein equation can be obtained, and one can write the presymplectic structure in terms of
electric part of the rescaled Weyl tensor. Our approach is novel, and to the best of our know-
ledge we are not aware of explicit derivation of symplectic structure of linearized field in de
Sitter in terms of rescaled electric Weyl tensor without imposing any gauge.

The fall-off behavior in (1.6) is general in the sense that for every conformally extendible
physical metric g there exists a Fefferman–Graham gauge such that the linear perturbations
of the unphysical metric g̃=Ω2g satisfy (1.6). Although in a strongly gauge dependent way,
this solves the problem of analyzing the fall-off behavior of the linear fields with considerable
generality. There exists, however, the above mentioned interesting approach in the Λ = 0 case
by Geroch and Xanthopoulos [10], which would be interesting to extend to the Λ> 0 case.
The idea in [10] (see section 3 for a review) is to regularize the linearized Einstein equation
(with Λ = 0) for δg̃ by first guessing the fall-of behavior of its components and rescaling them
accordingly. Then, by introducing auxiliary fields and defining equations for them, one obtains
a regular hyperbolic partial differential equations (PDE) system in a suitable linear gauge,
extending up to I +. The fall-off of the linear fields follows then by the well-posedness of the
hyperbolic system.

What is remarkable from [10] is the relative simplicity of the whole procedure with respect
to other approaches such as Friedrich’s conformal field equations [28, 30], (see [31, 32]
for exhaustive review.) In essence, Friedrich framework also consists in supplementing the
Einstein equation with additional fields and equations, but the amount of auxiliary equations
and fields is bigger than in [10]. Note that, as a counterpart, Friedrich equations work in the
full non-linear regime. Linearizing Friedrich’s equations is also a possible approach for the
problem of determining the decay of the linear fields which, however, will not be considered
here. For a linearized treatment of these equations in the Λ = 0 case and their application to
gravitational radiation theory, we refer the reader to [33].

We wish to investigate the possibility of extending Geroch and Xanthopoulos results [10]
to Λ> 0 setting. We find that a major difference between Λ = 0 and Λ> 0 is that in the first
case, linear fields can be generally chosen (in a suitable gauge) to always vanish to the first
order at I +, namely δg̃= O(Ω), while this is not the case for Λ> 0. This appears to be an
obstacle to the regularization of the field equation, which seems to prevent the construction of
hyperbolic PDE system in the spirit of [10].

Over the last few years, the study of gravitational waves in presence of positive cosmolo-
gical constant has gained lot of attentions. In the context of gravitational wave generation from
spatially compact sources, quadrupolar truncated linearized solution of gravitational fields
around de Sitter background have been obtained in a generalized harmonic gauge [34–39].
For the linearized quadrupolar solution, quadratic flux-balance laws associated with de Sitter
isometries have also been obtained [40]. By now, Bondi-Sachs formalism for gravitational
radiation in de Sitter is also well understood [17, 21, 41–44]. Bondi-Sachs formalism also
plays a crucial role in understanding asymptotic symmetries and memory effect in de Sitter
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[34, 45–49]. Recently, there has also been work [50–53] related to the computation of sym-
plectic potential in partial Bondi gauge (the leading order fall-off for gravitational fields are
more generic than Bondi gauge) with non-vanishing cosmological constant. There are also
attempts [54–58] to understand gravitational radiation with a positive cosmological constant
in Penrose’s conformal completion technique. Our present work contributes in the direction of
understanding gravitational radiation with a positive cosmological constant in conformal com-
pletion formalism. In particular, we extract the fall-off behavior of gravitational fields from
conformal Einstein equation and show that these fall-off behavior induces non-zero gravita-
tional flux in the future infinity of de Sitter.

The paper is organized as follows. In section 2 we analyze, in an arbitrary conformal gauge,
the fall-off behavior of the linear fields with positive Λ directly from the Einstein equation.
In section 3, we study the differences with respect to the Λ = 0 case. Section 4 revisits the
infinitesimal diffeomorphisms group from a conformal perspective. Then, in section 5we study
where the gauge degrees of freedom are localized within the linear fields, which aims to help
understanding why the gauge (1.6) is actually general. We analyze the asymptotic behavior
for background gravitational fields in section 6. We conclude the paper with section 7, where
we apply our previous analysis to compute the presymplectic potential in a gauge-independent
manner. Relevant mathematical tools are given in the appendices.

Notation and conventions

Throughout this paper, we shall consider 4-dimensional manifold (M, g). The spacetime met-
ric, as well as their related objects, will be referred to as ‘physical’ and always denoted without
a tilde. The formalism employed to study asymptotic properties will be that of Penrose’s con-
formal completions. Namely, we consider a smooth positive function Ω nowhere vanishing on
M, in such a way that the boundary I := ∂M= {Ω= 0} must satisfy dΩ |I 6= 0. We define
the conformally rescaled metric

g̃ab =Ω2gab, (1.7)

which we require to be smooth on M̃ :=M∪ ∂M. The manifold (M̃, g̃) is called a conformal
extension of (M, g) or simply the ‘unphysical manifold’. All unphysical objects are denoted
with a tilde, and their indices are raised or lowered by g̃.

We will often make use of the foliation defined on M̃ with {Ω= const} leaves. Therefore,
we define the following objects:

ν̃a := ∇̃aΩ, −Ñ−2 := g̃cdν̃cν̃d, ña := Ñν̃a, (1.8)

where Ñ is the lapse function, which we define by the positive root of Ñ2.
We now have the following decomposition of the metric g̃

g̃ab =−ñañb+ γ̃ab, (1.9)

where γ̃ab is the induced metric at the leaves {Ω= const}, with associated Levi-Civita covari-
ant derivative D̃. We introduce also

K̃ab := ∇̃añb, k̃ab := γ̃caγ̃
d
bK̃cd, (1.10)

k̃ab being the extrinsic curvature of the leaves {Ω= const}. Note that typically we assume
Ω> 0 in the physical spacetime M. It implies that ν̃a and ña are inside oriented normal one-
forms, i.e. the past-oriented at the future infinity and the future-oriented at the past infinity,
while ν̃a and ña are outward oriented normal vectors.

5
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We focus on the positive cosmological constant Λ> 0 and we introduce the corresponding
cosmological length ℓ,

ℓ−2 =
Λ

3
. (1.11)

2. Fall-off analysis of linearized field in presence of cosmological constant

In this section, we wish to extract a fall-off condition for linearized gravitational fields in pres-
ence of positive cosmological constant. For this purpose, we will follow the method of Geroch
and Xanthopoulos [10], originally developed for Λ = 0. Their approach (see section 3 for a
review) regularizes the linearized conformal Einstein equations by first guessing the fall-off
behavior of the field components a priori and rescaling them accordingly. Then, by introducing
auxiliary fields and imposing suitable gauge conditions, they obtain a well-posed hyperbolic
PDE system that extends smoothly to I . Given the success of this method for Λ = 0, it is
worth exploring its applicability to Λ> 0.

We will only focus on extracting the fall-off condition of the linearized fields from the
conformal linearized Einstein field equation, and also explore whether the field variables pro-
duce a finite symplectic structure at the boundary, Ω= 0. The well-posedness of the system
of equations for a positive cosmological constant is beyond the scope of our paper.

Assume now that the physical metric gab satisfies the Einstein equation for some stress-
energy tensor Tab,

Rab−
1
2
Rgab+Λgab = 8πGTab. (2.1)

It is convenient and customary towrite downEinstein equation in terms of unphysical Schouten
tensor,

S̃ab := R̃ab−
1
6
R̃g̃ab. (2.2)

Using the conformal transformation between physical and unphysical Ricci tensor we obtain,

S̃ab =

(
Rab−

1
6
Rgab

)
− 2Ω−1∇̃a∇̃bΩ+Ω−2 g̃abg̃

cd ∇̃cΩ∇̃dΩ. (2.3)

Substituting for the curvature terms from the Einstein equation, we get

ΩS̃ab+ 2∇̃a∇̃bΩ−Ω−1
(
g̃cd ∇̃cΩ∇̃dΩ+ ℓ−2

)
g̃ab = 8πGΩ−1

(
T̃ab−

1
3
T̃g̃ab

)
, (2.4)

where we define T̃ab := Ω2Tab.
Since g̃ab and Ω are smooth on M̃, the first two terms in the left-hand side of (2.4) are

smooth on I . If the stress-energy tensor on the right-hand side vanishes asymptotically to
order one (i.e. Ω−1T̃ab ≡ ΩTab has a smooth limit on I ), the remaining term on the left-hand
side of (2.4) must be also smooth on I . We denote it as f̃,

f̃=Ω−1
(
g̃ab ∇̃aΩ∇̃bΩ+ ℓ−2

)
=Ω−1

(
g̃ab ν̃aν̃b+ ℓ−2

)
. (2.5)

Hence, the requirement of regularity for themost divergent term in (2.4) implies the asymptotic
behavior of the lapse function (cf equation (1.8)),

Ñ−2 = ℓ−2 − Ω̃f. (2.6)

6
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Although the analysis could be continued with a non-vanishing stress-energy tensor satis-
fying suitable fall-off conditions, we will consider only a vacuum case and assume Tab = 0
throughout the paper. Then (2.4) becomes,

ΩS̃ab+ 2∇̃a∇̃bΩ− f̃ g̃ab = 0. (2.7)

For convenience, we also write down Λ> 0-vacuum Einstein equation in terms of unphysical
Ricci tensor,

R̃ab =− 2
Ω
∇̃a∇̃bΩ− g̃cd∇̃c∇̃dΩ

Ω
g̃ab+

3
Ω2

(
g̃cd∇̃cΩ∇̃dΩ+ ℓ−2

)
g̃ab. (2.8)

We shall refer to (2.8) as conformal Einstein field equations.
Throughout our paper, we consider that f̃ has, in general, a smooth non-vanishing con-

tribution on the boundary, i.e. f̃∼O(1). However, we note that the conformal Einstein
equation (2.7) is invariant under a rescaling freedom,Ω→ ωΩ and g̃→ ω2g̃. This rescaling of
the conformal factor is a gauge freedom. One can use this gauge freedom to set ∇̃aν̃b = 0 on
I [8, 55, 59]. This implies f̃∼O(Ω), and, as a consequence, Ñ−2 = ℓ−2 +O(Ω2).

To introduce the perturbation, we consider a one-parameter family of physical metrics,
gab(ϵ) which is differentiable with respect to ϵ at ϵ= 0. The first-order perturbation of the
physical metric is given by δgab :=

dgab(ϵ)
dϵ |ϵ=0. We assume that the conformal rescaling is

independent of the perturbation procedure, i.e. the foliation Ω= const does not change, and
δΩ= 0, δνa = 0. The linearized Einstein equation for δgab, expressed in terms of correspond-
ing unphysical perturbation δg̃ab =Ω2δgab, is given by

□̃δg̃ab = 2∇̃(a∇̃mδg̃b)m−∇̃a∇̃bδg̃
m
m+ 2R̃ma

n
bδg̃mn+ 2R̃(a

mδg̃b)m+ R̃mnδg̃mng̃ab

− R̃
3

(
δg̃ab+

1
2
δg̃m

mg̃ab

)
− 2Ω−1ν̃m

(
2∇̃(aδg̃b)m−∇̃mδg̃ab

)
−Ω−1

(
2ν̃m∇̃nδg̃mn− ν̃m∇̃mδg̃n

n
)
g̃ab

− 2Ω−2
(
ℓ−2 + ν̃cν̃

c
)(

δg̃ab+
1
2
δg̃m

mg̃ab

)
+ 6Ω−2g̃abδg̃cdν̃

cν̃d, (2.9)

where δg̃mm := δg̃mag̃ma8.
We will assume a generic fall-off for gravitational perturbation as,

δg̃ab =Ωα τ̃ab, τ̃ab ν̃
b =Ωβ τ̃a, τ̃a ν̃

a =Ωγ τ̃ , (2.10)

with α⩾ 0,β ⩾ 0,γ ⩾ 0, and shall denote the trace of the τ̃ab field as,

ϕ̃ := g̃abτ̃ab. (2.11)

The fall-off condition introduced in (2.10), can also be written as

δg̃ab =Ωα τ̃ab, δg̃ab ν̃
b =Ωα+β τ̃a, δg̃ab ν̃

a ν̃b =Ωα+β+γ τ̃ . (2.12)

This choice of ansatz is inspired by the analysis of Geroch and Xanthopoulos [10]. For clarity,
we present the decomposition of the perturbations of the metric (1.9),

δg̃=

[
Ñ−4Ωα+β+γ τ̃ −Ñ−2Ωα+β τ̃i
−Ñ−2Ωα+β τ̃i Ωα τ̃ij

]
. (2.13)

8 Beware that we also use the standard convention δg̃ab ≡ δg−1 ab =−gacgbdδgcd which is however in a conflict with
the standard convention for raising indices.

7
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We assume that τ̃ab, τ̃a, τ̃ are regular9 of the orderO(1) on the conformal boundary I . Our
goal is to find a suitable choice ofα,β,γ so that the linearized conformal Einstein equationwith
a positive cosmological constant becomes regular. In terms of these variables, the linearized
Einstein equation becomes,

□̃τ̃ab = 2∇̃(a∇̃mτ̃b)m− 2R̃ambnτ̃
mn− αϕ̃

2
R̃ab−

αϕ̃

12
R̃g̃ab−∇̃a∇̃bϕ̃+

α

6
R̃τ̃ab

+Ω−2
(
ℓ−2α(α− 3) τ̃ab−α(α− 1) ϕ̃ν̃aν̃b− ℓ−2αϕ̃g̃ab

)
+Ω−1

(
2αν̃(a∇̃mτ̃b)m− 2αν̃(a∇̃b)ϕ̃−α(α− 1) f̃τ̃ab+ 2(1−α) ν̃m∇̃mτ̃ab+ g̃abν̃

m∇̃mϕ̃
)

+ 2Ωβ−2 [(α+β)(α− 2)−α] ν̃(aτ̃b) + 2Ωβ−1
[
(α− 2)∇̃(aτ̃b) − g̃ab∇̃mτ̃m

]
+ 2Ωβ+γ−2 [3− (α+β)] g̃abτ̃ . (2.14)

We now attempt to regularize equation (2.14). By ‘regularize’ we mean a choice of para-
metersα,β,γ such that factors multiplying the negative powers ofΩ in (2.14) cancel out or can
be gauged away, so that the resulting equation is regular at {Ω= 0}. Note that one can always
divide by themost negative power ofΩ and get a regular equation at {Ω= 0}, but then the prin-
cipal symbol of the equation vanishes at that hypersurface and therefore fails to be hyperbolic.
For Λ = 0 such choice was shown by Geroch and Xanthopoulos [10] to be α= 1= β,γ = 0
(we review this in section 3). As we shall next see, for non-zero Λ this ansatz does not make
the leading order divergent term (of order Ω−2) vanish. Moreover, this term contains τ̃ab and
therefore there is no chance that this can be gauged away. This is a remarkable difference
entirely due to the presence of a cosmological constant.

Let us start by examining the leading order divergent term at Ω= 0 for non-zero Λ. From
equation (2.14) this is

Ω−2
(
ℓ−2α(α− 3) τ̃ab−α(α− 1) ϕ̃ν̃aν̃b− ℓ−2αϕ̃g̃ab

)
+ 2Ωβ−2 ((α+β)(α− 2)−α) ν̃(aτ̃b) + 2Ωβ+γ−2 (3− (α+β)) g̃abτ̃ ,

(2.15)

where Ωβ−2 and Ωβ+γ−2 terms contribute only if β= 0 and β = γ = 0, respectively. We
need (2.15) to vanish or at least, be such that it can be gauged away. Thus, it cannot con-
tain the complete field τ̃ab, but there may only appear certain components, such as a trace or
a divergence of it. Also note that the term τ̃ab cannot be removed using the terms of Ωβ−2

and Ωβ+γ−2 either. Thus, in the case of non-zero Λ one is forced to choose α= 010. This is a
central difference between the zero and non-zero Λ cases.

Therefore, the highest order divergent terms Ω−2 vanishes for α= 0. A possible choice for
the regularization of the Ω−1 term in (2.14) is α= 0, β = 0,γ = 1. The regularity condition
then reads

2ν̃m∇̃mτ̃ab+ g̃abν̃
m∇̃mϕ̃− 4∇̃(aτ̃b) − 2g̃ab∇̃mτ̃m+ 6g̃abτ̃ =O (Ω) . (2.16)

9 From the perspective of PDE theory, the regularity condition (interpreted as smoothness of the fields) can, in prin-
ciple, be relaxed to require only an optimal degree of differentiability. However, we will not explore this issue in detail
and will simply assume that all fields involved are sufficiently differentiable. .
10 The case α= 3 faces problems at Ω−1 order and leads to vanishing symplectic structure. Therefore we do not
consider this option here.

8
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Taking the trace of this equation, we obtain

ν̃m∇̃mϕ̃− 2∇̃mτ̃m+ 4τ̃ =O (Ω) . (2.17)

Subtracting (2.17) from (2.16) multiplied by g̃ab, gives

−2∇̃(aτ̃b) + ν̃m∇̃mτ̃ab+ g̃abτ̃ =O (Ω) . (2.18)

Note that this condition is fully equivalent to (2.16). Similar to the discussion of theΩ−2 order
above, this term has no chance to be canceled out by a choice of gauge, because that would
imply a too strong condition on ν̃m∇̃mτ̃ab. Thus we must require that τ̃a satisfies the constraint

−2∇̃(aτ̃b) + ν̃m∇̃mτ̃ab+ g̃abτ̃ =ΩÃab (2.19)

with some regular field Ãab. Equation (2.14) then reads

□̃τ̃ab = 2∇̃(a∇̃mτ̃b)m− 2R̃ambnτ̃
mn−∇̃a∇̃bϕ̃+ Ãab. (2.20)

We now have a smooth equation at Ω= 0. However, the system is incomplete as there is no
dynamical equation for Ãab. In this situation, one needs to check if the core equation (2.20)
propagates the field Ãab too. There is no well-defined prescription on how to do this, although
this usually involves taking derivatives of (2.20) and using again definition (2.19) and (2.20)
to try to obtain a new propagation equation for Ãab. Unfortunately, this seems to introduce new
divergent terms that must be eliminated by defining additional auxiliary fields, leading to an
infinite process of solving the equations order-by-order in Ω.

In summary, we have found that the choice of parameters α= β = 0 and γ= 1 leads to a
constraint of the form (2.18). Such a constraint does not appear to be removable by any other
choice of parameters. Since the choice α= β = 0 and γ= 1 is minimal in the sense that it
includes all other cases as subcases, we shall refer to this condition as the minimal fall-off
behavior of the linearized fields in de Sitter spacetimes.

If we wish to extend this fall-off behavior up to the conformal boundary I , additional
results are required to guarantee the extendibility of linear fields to I . As the well-posedness
of the full system of equations lies beyond the scope of this paper, we instead rely on the
nonlinear stability results derived from Friedrich’s conformal field equations with Λ> 0 [28].
This implies linear stability of the fields and thus extendibility of the linear fields up to I
(see section A.2 of appendix A). With this result at hand, the condition α= β = 0, γ= 1 does
indeed yield the general fall-off behavior of linear fields with Λ> 0. In the remainder of this
paper, we will assume the minimal fall-off behavior and examine its implications.

We also emphasize that the regularization condition in (2.18) can also be understood as the
regularization of f̃=Ω−1(g̃cdν̃cν̃d+ ℓ−2) under the first order perturbation. Indeed, thanks to
δΩ= 0= δν̃a we obtain

−δg̃cdν̃
cν̃d =Ωδ̃f. (2.21)

Hence δg̃abν̃aν̃b =O(Ω), which corresponds to α+β+ γ = 1. To match with the notation
in (2.10), we obtain δ̃f=−τ̃ . From (2.7), we also have

∇̃aν̃b
∣∣
I

=
f̃
2
g̃ab. (2.22)

9
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Under the linearized perturbation, this equation transforms as

− ν̃c

2

(
∇̃aδg̃bc+ ∇̃bδg̃ac−∇̃cδg̃ab

)
=

δ̃f
2
g̃ab+

f̃
2
δg̃ab+O (Ω) ,

=⇒ ∇̃a (ν̃
cδg̃bc)+ ∇̃b (ν̃

cδg̃ac)− ν̃c∇̃cδg̃ab =−δ̃fg̃ab+O (Ω) . (2.23)

With the ‘minimal’ fall-off condition, α= 0= β,γ = 1, (2.23) reduces to (2.18). We emphas-
ize that this constraint equation is trivially satisfied for Geroch and Xanthopoulos’ anstaz
α= 1= β,γ = 0, in the context of asymptotically flat space-times.

3. Regularized conformal Einstein equation for vanishing cosmological
constant

We next review the regularization of (2.14) carried out by Geroch and Xanthopoulos for the
Λ = 0 case in [10]. A priori, Λ = 0 case of the equation (2.14) is not clear. For this case it is
convenient to write down (2.14) in a different form,

□̃τ̃ab = 2∇̃(a∇̃mτ̃b)m− 2R̃ambnτ̃
mn+ R̃mnτ̃mng̃ab+

αϕ̃

2
R̃ab−

R̃
6
ϕ̃g̃ab

(
1+

α

2

)
−∇̃a∇̃bϕ̃+

α

6
R̃τ̃ab

+Ω−2α(1−α)ϕ̃ν̃aν̃b+Ω−1
(
2αν̃(a∇̃mτ̃b)m− 2αν̃(a∇̃b)ϕ̃−α(α− 1)̃fτ̃ab

+ 2(1−α)ν̃m∇̃mτ̃ab+ g̃abν̃
m∇̃mϕ̃− 2g̃abν̃

m∇̃nτ̃mn− ϕ̃̃fg̃ab
(
1− α

2

))
+ 2Ωβ−2 [(α+β)(α− 2)−α] ν̃(aτ̃b) + 2Ωβ−1

[
(α− 2)∇̃(aτ̃b)

]
+ 2Ωβ+γ−2 (3−α) g̃abτ̃ .

(3.1)

In deriving equation (3.1), we have used the identity

Ω−1∇̃aν̃b =− R̃ab
2

+
1
12
R̃g̃ab+Ω−1 f̃

2
g̃ab, (3.2)

which follows by writing the trace components of (2.8) in terms of R. The suitable choice of
parameters for Λ = 0 made in [10] is α= 1= β, and γ= 0. Then (3.1) becomes

□̃τ̃ab = 2∇̃(aỹb) − 2R̃ambnτ̃
mn+ R̃mnτ̃mng̃ab+

R̃
6
τ̃ab+ ∇̃a∇̃bϕ̃− R̃

4
ϕ̃g̃ab+

ϕ̃

2
R̃ab+ 4∇̃(aτ̃b)

+ 2Ω−1

(
ν̃(aỹb) − g̃abν̃

mỹm− g̃ab

(
1
2
ν̃c∇̃cϕ̃+ ν̃cτ̃c+

f̃
4
ϕ̃

))
, (3.3)

where we have used the definition

ỹa := ∇̃mτ̃ma−∇̃aϕ̃− 3τ̃a. (3.4)

Introducing the auxiliary field variable

σ̃ := Ω−1

(
ñaτ̃a+

1
2
ña∇̃aϕ̃+

1
4
f̃ϕ̃

)
, (3.5)

10
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and using the identity between Riemann tensor and Weyl tensor, we rewrite equation (3.3) as

□̃τ̃ab = 2∇̃(aỹb) + ∇̃a∇̃bϕ̃+ 4∇̃(aτ̃b) − 2C̃ambnτ̃
mn− 1

6
R̃τ̃ab+

1
12
R̃ϕ̃g̃ab

− 1
2
R̃abϕ̃+ 2τ̃m(aR̃b)m− 2σ̃g̃ab+ 2Ω−1

(
ν̃(aỹb) − g̃abν̃

mỹm
)

(3.6)

For Λ = 0 case, we can choose the following gauge conditions (see [10])

ỹa := ∇̃bτ̃ab−∇̃aϕ̃− 3τ̃a = 0, (3.7)(
ña∇̃a+

1
6
ΩR̃+

3
2
f̃

)
∇̃2ϕ̃=

1
12
R̃̃fϕ̃− 1

2
ϕ̃∇̃2̃f− 1

3
R̃ñaτ̃a+ 4Ω−1C̃ambnτ̃

mnñañb. (3.8)

Therefore, from (3.7), equation (3.6) reduces to

□̃τ̃ab = ∇̃a∇̃bϕ̃+ 4∇̃(aτ̃b) − 2C̃ambnτ̃
mn− 1

6
R̃τ̃ab+

1
12
R̃ϕ̃g̃ab−

1
2
R̃abϕ̃+ 2τ̃m(aR̃b)m− 2σ̃g̃ab.

(3.9)

We have now removed all divergent terms, but we still need to introduce some dynamical
equation for the other components of the fields σ and τ̃a. Contracting (3.9) with ν̃b leads (after
doing some algebra) to

□̃τ̃a = 2∇̃aσ̃+
1
2
R̃am∇̃mϕ̃+

1
12
R̃∇̃aϕ̃− R̃mn∇̃mτ̃an−

1
3
τ̃ab∇̃bR̃

+ 2τ̃mn∇̃[mR̃a]n+ 2τ̃mR̃ma+
1
2
R̃τ̃a+

1
2
ϕ̃∇̃aR̃. (3.10)

Similarly, a second contraction with ν̃a, together with gauge condition (3.8) gives

□̃σ̃ =−1
2
R̃mn∇̃m∇̃nϕ̃− 2R̃mn∇̃mτ̃n−

1
12

(
∇̃mR̃

)(
∇̃mϕ̃

)
+ R̃σ̃

+
1
72
R̃2ϕ̃− 1

2
τ̃abR̃

amR̃bm−
1
3
τ̃m∇̃mR̃. (3.11)

The system of equations (3.9)–(3.11), supplemented with the gauge conditions (3.7), (3.8) with
some additional variables satisfying wave equations and transport equations, turns out to give
a hyperbolic PDE system [10]. A higher (even) dimensional generalization of this formalism
with different choice of gauge and field variables is also available in [11].

4. Gauge transformation of perturbation

Linearized perturbations are defined up to gauge transformations corresponding to infinites-
imal diffeomorphisms generated by a vector field ξa

δgab 7→ δg ′
ab = δgab+Lξ gab = δgab+ 2∇(aξb), (4.1)

whereLξ stands for the Lie derivative with respect to ξa and ξa = gabξb. Consider the generator
of an infinitesimal diffeomorphism of the form

ξa = ζ⊥n
a+ ζa (4.2)

where ζ⊥ is a scalar field and ζa satisfies ζa = ξbγab, both O(1) with respect to Ω. For linear
fields δgab admitting a conformal extension, δg̃ab =Ω2δgab, adding a gauge transformation

11
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may spoil the conformal extendability property if the normal component of ξa does not vanish
atI . As we shall see next, this is precisely the behavior of ξa as prescribed. Note that although
we ask ζ⊥ =O(1), this is the normal component wrt na, which is not defined at {Ω= 0}, so
we must first express ξa in terms of objects extendable to {Ω= 0}.

Since diffeomorphisms are metric independent transformations and its generators are natur-
ally the vector fields ξa, we do not rescale themwhen considering unphysical gauge transform-
ations. Namely, we shall consider unphysical gauge transformations generated by ξ̃a = ξa. In
order to write ξ̃ it in terms of unphysical quantities observe

ζ̃⊥ = ξ̃aña = ξaña = ζ⊥n
aña =Ωζ⊥, ζ̃a = ξ̃bγ̃ab = ξbγab = ζa. (4.3)

Therefore,

ξ̃a =Ωζ⊥ñ
a+ ζ̃a. (4.4)

Note that ña is a regular vector atI and by hypothesis ζ⊥ =O(1) and ζ̃a = ζa =O(1). Hence
ξ̃a is extendable to I . Since its normal component vanishes for Ω= 0, this means that ξ̃
becomes tangent at I . Thus, the diffeomorphisms generated by vectors of the form (4.4)
preserve the locus of I 11.

We may now write the gauge transformation (4.1) for the unphysical linear fields

δg̃ ′
ab =Ω2δg ′

ab =Ω2 (δgab+Lξ gab) = δg̃ab+Ω2Lξ̃

(
Ω−2g̃ab

)
= δg̃ab− 2Ω−1ξ̃ (Ω) g̃ab+ 2∇̃(aξ̃b)

= δg̃ab+ 2Ñ−1ζ⊥g̃ab+ 2ζ⊥Ñ
−1ñ(añb) + 2Ωζ⊥∇̃(añb) + 2Ωñ(a∇̃b)ζ⊥ + 2∇̃(aζ̃b)

= δg̃ab+ 2Ñ−1ζ⊥γ̃ab+ 2Ωζ⊥∇̃(añb) + 2Ωñ(a∇̃b)ζ⊥ + 2∇̃(aζ̃b). (4.5)

Now it is a matter of direct calculation to check that (4.5) respects the ‘minimal’ fall-off beha-
vior of the linearized field. For δg̃ ′

ab and ñ
bδg̃ ′

ab it is immediate that

δg̃ ′
ab = δg̃ab+ 2Ñ−1ζ⊥γ̃ab+ 2Ωζ⊥∇̃(añb) + 2Ωñ(a∇̃b)ζ⊥ + 2∇̃(aζ̃b) =O (1) , (4.6)

ñbδg̃ ′
ab = ñbδg̃ab+Ωζ⊥ñ

b∇̃bña−Ω∇̃aζ⊥ +Ωñañ
b∇̃bζ⊥ + 2ñb∇̃(aζ̃b) =O (1) . (4.7)

For ñañbδg̃ ′
ab we have

ñañbδg̃ ′
ab = ñañbδg̃ab− 2Ωña∇̃aζ̃⊥ + 2ñañb∇̃(aζ̃b)

= ñañbδg̃ab− 2Ωña∇̃aζ̃⊥ − 2ñaζ̃b∇̃añb, (4.8)

where we have used that ñaζ̃a = 0 and ña∇̃bña = 0. It follows from the Einstein equations
(cf (6.5)) that ∇̃añb has O(1) trace terms plus O(Ω) terms. Thus ñaζ̃b∇̃añb =O(Ω) and

ñañbδg̃ ′
ab = ñañbδg̃ab− 2Ωña∇̃aζ̃⊥ − 2ñaζ̃b∇̃añb =O (Ω) (4.9)

Taking into account that ña = Ñν̃a and that Ñ=O(1) (cf equation (2.6), also section 6 below),
it is ready to translate (4.6), (4.7) and (4.9) into conditions on the fields {τab, τa, τ} under
change of gauge

11 We note that for vanishing cosmological constant, when splitting the vector field ξa tangential to null I in similar
way as in (4.4) we have to use null (non-normalized) normal ν̃a := g̃abdbΩ, namely ξ̃a = ζ̃ν̃a + ζ̃a. Therefore, we do
not need any special behavior of ζ̃.

12
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τ ′
ab = δg ′

ab =O (1) , (4.10)

τ ′
a = ν̃bδg ′

ab = N−1ñbδg ′
ab =O (1) , (4.11)

τ ′ = ν̃aν̃bδg ′
ab = N−2ñañbδg ′

ab =O (Ω) , (4.12)

which match the analysis in section 2.
Therefore, we have considered the gauge fields of the form (4.4). These vector fields gener-

ate rather general class of diffeomorphisms of M̃, where the only restriction that they must pre-
serve the locus ofI . In addition, it turns out that this kind of gauge transformations respect the
fall-off conditions of the linear fields obtained directly from the Einstein equation in section 2.

5. Gauge degrees of freedom

As mentioned in the introduction, several recent literature [14, 16–19] analyze gravita-
tional waves in presence of positive cosmological constant in Fefferman–Graham gauge. The
unphysical metric in the Fefferman–Graham gauge is written as

g̃ab =−ℓ2ν̃aν̃b+ γ̃ab, (5.1)

where γ̃ is an object intrinsic to the leaves with Ω= const. If one assumes a one-parameter
family of metrics g̃(ϵ) sharing this gauge, the linear fields that one obtains are δg̃ab = δγ̃ab
thus satisfying δg̃abña = 0. In the notation of section 2, this amounts to set τ = 0 and τa = 0.
Our goal in this section is to verify that this indeed corresponds to a choice of linear gauge,
which, moreover, we will show it is independent of the gauge one uses for the background
fields. The strategy consists in splitting δg ′

ab into components that yield an evolution problem
(via equation (4.5)) for gauge fields {ζ⊥, ζ̃a} which we can control. Then we check that there
always exists a choice of gauge fields which yield τ = 0 and τa = 0. This result makes explicit
that the gauge degrees of freedom are localized into the normal-tangent and normal-normal
components of the linear fields.

First, consider the gauge transformations discussed in the previous section in the following
form:

δg̃ ′
ab = δg̃ab− 2Ω−1ξ̃ (Ω) g̃ab+ 2∇̃(aξ̃b) = δg̃ab+ 2Ñ−1ζ⊥g̃ab+ 2∇̃(aξ̃b) (5.2)

The normal-tangent terms of above equation, with definition vc = ñaγ̃bcδg̃ab, are

ñaγ̃bcδg̃
′
ab = ñaγ̃bc

(
∇̃aξ̃b+ ∇̃bξ̃a

)
+ ñaγ̃bcδg̃ab

= ña
(
∇̃a

(
γ̃bcξ̃b

)
−
(
∇̃aγ̃

b
c

)
ξ̃b

)
+ γ̃bc

(
∇̃b

(
ñaξ̃a

)
−
(
∇̃bñ

a
)
ξ̃a

)
+ vc

= ña∇̃aζ̃c− ña∇̃aγ̃
b
c

(
Ωζ⊥ñb+ ζ̃b

)
−Ωγ̃bc∇̃bζ⊥ − γ̃bc∇̃bñ

a
(
Ωζ⊥ña+ ζ̃a

)
+ vc

= ña∇̃aζ̃c−
(
ña∇̃aγ̃

b
c+ γ̃ac∇̃añ

b
)
ζ̃b

−Ω
(
γ̃bc∇̃bζ⊥ +

(
ñañb∇̃aγ̃bc+ γ̃bcña∇̃bñ

a
)
ζ⊥

)
+ vc

= ña∇̃aζ̃c−
(
ña∇̃aγ̃

b
c+ γ̃ac∇̃añ

b
)
ζ̃b−Ω

(
γ̃bc∇̃bζ⊥ +

(
ñañb∇̃aγ̃bc

)
ζ⊥

)
+ vc,

13
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where for the last equality we have used that ña∇̃bña = 0. Using K̃ab = ∇̃añb we may write

ñaγ̃bcδg̃
′
ab = ña∇̃aζ̃c−

(
ña∇̃aγ̃

b
c+ γ̃acK̃a

b
)
ζ̃b−Ω

(
γ̃bc∇̃bζ⊥ − γ̃bcñ

aK̃a
bζ⊥

)
+ vc, (5.3)

For the normal-normal components, we use (4.5)

ñañbδg̃ ′
ab = ñañb

(
δg̃ab+ 2Ñ−1ζ⊥γ̃ab+ 2Ωñ(a∇̃b)ζ⊥ + 2∇̃(aζ̃b)

)
=−2Ωñb∇̃bζ⊥ + 2ñañb∇̃aζ̃b+ ñañbδgab (5.4)

=−2Ωñb∇̃bζ⊥ − 2ñaζ̃b∇̃añ
b+ ñañbδgab (5.5)

Using the unphysical Einstein equation (2.8) we have

ñaζ̃b∇̃añ
b =−ΩÑ

R̃ab
2
ñaζ̃b.

In addition, since ñañbδgab = O(Ω) (cf section 2), we may write ñañbδgab =Ωu for a field u
regular at I and thus equation (5.5) yields

ñañbδg̃ ′
ab =−2Ωñb∇̃bζ⊥ +ΩÑR̃abñ

aζ̃b+Ωu. (5.6)

We will next show that there always exists a gauge choice such that

ñaγ̃bcδg
′
ab = 0, ñañbδg ′

ab = 0. (5.7)

From equations (5.3) and (5.5) this amounts to finding gauge fields {ζ⊥, ζ̃a} solving the fol-
lowing PDE system

ña∇̃aζ̃c−Ωγ̃bc∇̃bζ⊥ −
(
ña∇̃aγ̃

b
c+ γ̃acK̃a

b
)
ζ̃b+Ωγ̃bcñ

aK̃a
bζ⊥ + vc = 0, (5.8)

− 2ñb∇̃bζ⊥ + ÑR̃abñ
aζ̃b+ u= 0, (5.9)

where {vc,u} are given fields determined by the original components ñaγ̃bcδgab, ñañbδgab
respectively. Equations (5.8) and (5.9) form a symmetric-hyperbolic system of linear PDEs
(see section A.1 of appendix A for details). This means that it admits a well-posed initial value
problem and therefore we can always find a solution for given initial data, which moreover,
happen to be unconstrainted (cf appendix A).

Note that in terms of the fields defined in section 2, equation (5.7) means that there exists a
choice of gauge {τ ′

ab, τ
′
a , τ

′} such that τ ′
a = 0 and τ ′ = 0. Actually the inhomogeneous terms

vc and u in the system (5.3)–(5.8) coincide, respectively, with terms τ c and τ of the original
field configuration. A similar analysis can be carried out in terms of the fields {τab, τa, τ} just
by multiplying by the adequate power of an Ñ factor (cf (4.10)–(4.12)).

6. Fall-off analysis of background fields in presence of cosmological constant

In this section, we discuss the asymptotic behavior of the background gravitational fields. We
will use this result and the fall-off behavior of the linearized field from section 2 to compute
symplectic flux in section 7.

Assume that (2.8) holds at a neighborhood of the boundaryI = {Ω= 0}. We now examine
the fall-off conditions that arise from this assumption, which will later be applied in section 7
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to obtain a regular action functional up to the boundary, and consequently, a presymplectic
potential. To this end, we consider the 3+ 1 decomposition of equation (2.8) as outlined in the
introduction, specifically, associated to the Ω= const foliation, while using the notation from
expressions (1.8)–(1.10).

The lowest order term in (2.8) falls-off withΩ−2 . Hence regularizing higher order divergent
term, we obtain

g̃cd∇̃cΩ∇̃dΩ+ ℓ−2 =−Ñ−2 + ℓ−2 =O (Ω) . (6.1)

We have discussed the regularization of this term by introducing f in (2.5). Alternatively, we
can introduce an auxiliary field ã such that

Ñ−1 =: ℓ−1 −Ωã, (6.2)

and therefore

g̃cd∇̃cΩ∇̃dΩ+ ℓ−2 =−Ñ−2 + ℓ−2 =Ωã
(
2ℓ−1 −Ωã

)
. (6.3)

Note that ã and f̃ are related by

f̃= 2ℓ−1ã−Ωã2. (6.4)

For convenience, in this section, we will use ã instead of f̃.
Now (2.8) reads

R̃ab =Ω−1

{
−2ñb∇̃aÑ

−1 − 2

Ñ
K̃ab− g̃abñ

c∇̃cÑ
−1 − g̃ab

Ñ
k̃+ 3ã

(
2ℓ−1 −Ωa

)
g̃ab

}
, (6.5)

where we have used the definition of ν̃a, K̃ab, k̃ab from equations (1.8) and (1.10).
Next, we write the tangent components of (6.5) in terms of the intrinsic geometry of the

constant Ω leaves. Recall that the Gauss identity reads

R̃abcdγ̃
a
pγ̃

b
qγ̃

c
rγ̃

d
s = r̃pqrs−

(
k̃psk̃qr− k̃prk̃qs

)
, (6.6)

where r̃pqrs is the Riemann tensor of γ̃. Taking the γ̃-trace of (6.6), we obtain

γ̃qbγ̃
s
dR̃qs+ R̃pbrdñ

pñr = r̃bd− k̃2bd+ k̃k̃bd . (6.7)

Here r̃bd is the Ricci tensor of γ̃, k̃2bd = k̃bak̃ad and k̃= γ̃abk̃ab. The term R̃abcdñañc can be written
in terms of the electric part of the Weyl tensor Ẽbd := C̃abcdñañc as

R̃abcdñ
añc = Ẽbd−

1
2
γ̃qbγ̃

s
dR̃qs+

1
2
γ̃bdR̃acñ

añc+
R̃
6
γ̃bd. (6.8)

Now recall the well-known fact that the rescaled Weyl tensor ẽab =Ω−1Ẽab is a regular object
at I . In a nutshell, this can be understood as a consequence of the contracted Bianchi identity
for the Weyl tensor. In the absence of the source, i.e. Tab = 0, contracted Bianchi identity
reduces to

∇aC
a
bcd = 0. (6.9)

Therefore, from the properties of conformal rescaling, it follows that

∇̃a
(
Ω−1Cabcd

)
=Ω−1∇aC

a
bcd = 0. (6.10)

Equation ∇̃a(Ω
−1Cabcd) = 0 is part of the hyperbolic system of Friedrich’s conformal field

equations (see the review [29]) which is smoothly extendable to I . Thus, all components of
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Ω−1Cabcd regularly extend toI so we can assume regularity of ẽab =Ω−1Ẽab. In terms of this
new variable, equation (6.8) becomes

R̃abcdñ
añc =Ωẽbd−

1
2
γ̃qbγ̃

s
dR̃qs+

1
2
γ̃bdR̃acñ

añc+
R̃
6
γ̃bd. (6.11)

Inserting this back into (6.7), after some algebra, we get the following identity

γ̃qbγ̃
s
dR̃qs =−2Ωẽbd−

(
R̃acñ

añc+
R̃
3

)
γ̃bd+ 2

(
r̃bd− k̃2bd+ k̃k̃bd

)
. (6.12)

Now taking the normal projection of the conformal Einstein equation (6.5), we get

R̃abñ
añb+

R̃
3
=Ω−1

{
ñc∇̃cÑ

−1 − k̃

Ñ
+ ã
(
2ℓ−1 −Ωa

)}
. (6.13)

Similarly, taking the spatial projection of the conformal Einstein equation (6.5), we have

γ̃qbγ̃
s
dR̃qs =Ω−1

{
− 2

Ñ
k̃bd− γ̃bdñ

c∇̃cÑ
−1 − γ̃bd

Ñ
k̃+ 3ã

(
2ℓ−1 −Ωa

)
γ̃bd

}
. (6.14)

Putting equations (6.13), (6.14) back into (6.12) yields

Ωẽbd− r̃bd+ k̃2bd− k̃k̃bd =Ω−1

{
1

Ñ

(
k̃bd+ k̃γ̃bd

)
− 2ã

(
2ℓ−1 −Ωa

)
γ̃bd

}
. (6.15)

Thus, using (6.2), we obtain

Ωẽbd− r̃bd+ k̃2bd− k̃k̃bd =Ω−1ℓ−1
{
k̃bd+ k̃γ̃bd− 4ãγ̃bd

}
−
{
ã
(
k̃bd+ k̃γ̃bd

)
− 2ã2γ̃bd

}
. (6.16)

Let us denote by the superscript tf the trace-free part of 2-tensors X in spacelike slices,

Xtf
ab := Xab−

1
3
γ̃cdXcdγ̃ab. (6.17)

With this notation, the regularization of trace-free and trace parts of right hand side of the (6.15)
require the fall-off conditions for kab

k̃tfbd =Ωχ̃bd, (6.18)

ã=
k̃
3
+Ωb̃, (6.19)

where χ̃bd is an auxiliary trace-free tensor and b̃ an auxiliary scalar, both regular at Ω= 0.
Then, inserting (6.18) and (6.19) back into (6.16) yields, after canceling terms,

Ωẽbd− r̃bd+Ω2χ̃2
bd =

(
ℓ−1 − b̃Ω2

)
χ̃bd+ 2b̃

(
−2ℓ−1 + b̃Ω2

)
γ̃bd. (6.20)

From the trace-free and trace parts of (6.20) we obtain, respectively,

ℓ−1 χ̃bd =−r̃tfbd+Ω ẽbd+Ω2
(
bχ̃bd+ χ̃2 tf

bd

)
, (6.21)

4ℓ−1b̃=
r̃
3
+Ω2

(
2b̃2 − 1

3
χ̃acχ̃ac

)
. (6.22)
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In summary, inserting (6.18) into (6.21), as well as (6.22) into (6.19) and then the result
into (6.2), we obtain the following fall-off conditions for the fields

k̃tfbd =−ℓ̃r tf
bdΩ+ ℓẽbdΩ

2 +O
(
Ω3
)
, (6.23)

Ñ−1 = ℓ−1 − k̃
3
Ω− ℓ

r̃
12

Ω2 +O
(
Ω4
)
. (6.24)

We remark that it is possible to keep generating further terms in (6.23) and (6.24) by intro-
ducing additional auxiliary fields and evaluating the conformal Einstein equation. However,
for our purposes, it suffices with the orders appearing in (6.23) and (6.24). Additionally, note
that these are not Taylor series expansions of field variables. Each term multiplying a power
of Ω is not a coefficient of an expansion in Ω since they generally also depend on Ω. This
formulation is preferable for our purposes, as it allows for the exact cancellation of certain
terms that arise in the computation of the presymplectic potential. One could choose to carry
out the same analysis by generating a Taylor series expansion. However, it is convenient to
introduce auxiliary variables in a gauge-free approach, because a Taylor series expansion in
an arbitrary gauge has a rather involved form. Taylor series expansion of field variables in the
Fefferman–Graham gauge for asymptotically AdS and dS spacetimes can be found in [60] and
[61] respectively12.

Note that (6.23) provides insight into the structure of the asymptotic phase space.
Specifically, the lowest non-trivial order Ω is determined by the boundary metric, which cor-
responds to the initial configuration state, while ẽ appears at the subleading order in the expan-
sion, effectively acting as a normal derivative and thus representing a momentum-like quantity.
On the other hand, due to the gauge nature of Ñ, the sub-leading terms in (6.24) are gauge-
dependent quantities and do not essentially contribute to the dynamical evolution of the system.

7. Symplectic flux

In this section, we calculate the presymplectic potential and presymplectic current leading to
the formula of the symplectic flux. We will compute the presymplectic potential from the first
principle starting from the action. We define the following action terms

SEH : =
1

16πG

ˆ
M
|g|1/2

(
R− 6ℓ−2

)
, sGH :=− 1

16πG

ˆ
∂M

|γ|1/22k,

sct : =
1

16πG

ˆ
∂M

|γ|1/2
(
4ℓ−1 − ℓr

)
, (7.1)

respectively known as Einstein–Hilbert action and Gibbons–Hawking and counterterms. The
total action then reads

S= SEH + sGH + sct

=
1

16πG

(ˆ
M
|g|1/2

(
R− 6ℓ−2

)
−
ˆ
∂M

|γ|1/22k+
ˆ
∂M

|γ|1/2
(
4ℓ−1 − ℓr

))
. (7.2)

In order to calculate the boundary terms at I , we shall first consider integration within the
domain Dϵ with boundary ∂Dϵ = {Ω= ϵ > 0}. Later we shall take the limit ϵ→ 0 so that

12 Note that the ‘Dirichlet’ or ‘reflective’ boundary condition, used the [60, 61], contributes to the vanishing gravita-
tional flux across the boundary.
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limϵ→0Dϵ =M. For simplicity, we will first assume that ∂M, as well as ∂Dϵ, are compact,
without a boundary. However, for clarity, we keep track of all the boundary terms. Only at the
end of the computation, we will use the absence of the boundary of ∂Dϵ.

In the Gibbons–Hawking term, the sign depends on the convention chosen for k and the
causal character of ∂Dϵ. This, in turn, fixes a unique sign for the counterterm, since this is
meant to cancel divergences of the action. In our case this is fixed by ∂Dϵ being spacelike and
kab = γcaγ

d
b∇cnb constructed with na = Ngab∇bΩ, pointing outward at ∂Dϵ (see comment

below equation (7.9)). Our sign convention matches with that of [18], but other conventions
may be also used [14, 17, 62].

Now consider a linear variation of the metric g→ g+ δg. We keep Ω as an invariant foli-
ating function, namely δΩ= 0. Note that under this assumption

δna = δ (N∇aΩ) =
na
N
δN. (7.3)

From the 3+ 1 decomposition, we also note that

0= δ
(
nanbγab

)
= δnanbγab+ naδnbγab+ nanbδγab = nanbδγab, (7.4)

which in turn also implies

γcaγ
d
bδgcd = γcaγ

d
b (−δncnd− ncδnd+ δγcd) = γcaγ

d
bδγcd. (7.5)

We calculate the contribution to the presymplectic potential of SEH,sGH and sct separately
by obtaining variations of their respective Lagrangian densities LEH,LGH and Lct. Starting
with LEH

16πGδLEH = |g|1/2δRabgab+ |g|1/2Rabδgab+ δ|g|1/2
(
R− 6ℓ−2

)
, (7.6)

= |g|1/2δRabgab+ |g|1/2
(
Rab−

1
2
Rgab+ 3ℓ−2gab

)
δgab

= |g|1/2δRabgab, (7.7)

where the last equality holds on-shell. Taking into account that

δRab =−1
2
∇a∇bδg−

1
2
□δgab+∇c∇(aδgb)c, (7.8)

we obtain

|g|1/2δRabgab = |g|1/2∇ag
ac
(
∇bδgbc− gde∇aδgde

)
. (7.9)

Now observe that, in the unphysical picture, the unit vector ña is outward pointing at I ,
because ña∇aΩ= Ñ−1ñag̃abñb =−Ñ−1 < 0 and Ω grows inward from I . Similarly, because
Ω> 0 in M, the physical unit vector na =Ωña is the outward oriented at ∂Dϵ. Then, by the
Gauss theorem (cf appendix B),
ˆ
Dϵ

|g|1/2∇ag
ac
(
∇bδgbc− gde∇cδgde

)
=

ˆ
∂Dϵ

|γ|1/2 (−nc)
(
∇bδgbc− gde∇cδgde

)
= 16πG

ˆ
∂Dϵ

θEH, (7.10)

where θEH denotes the contribution of the Einstein–Hilbert term to the presymplectic potential

16πGθEH =−|γ|1/2na
(
∇bδgab− gcd∇aδgcd

)
. (7.11)
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Note that, following notation (1.10), k= γabkab = gabKab = K, where recall that both kab and
Kab are defined using the outward-oriented normal. Then we make the following observation

δk= δK= δgabKab+ gabδKab =−δgabK
ab+ gabδKab, (7.12)

where we can write

gabδKab = gab
(
∇aδnb−

nc

2
(∇aδgbc+∇bδgac−∇cδgab)

)
, (7.13)

= gab∇aδnb−
1
2
gab∇a (n

cδgbc)+
1
2
gabδgbc∇an

c− nc

2
gab (∇bδgac−∇cδgab) ,

(7.14)

= gab∇aδnb−
1
2
gab∇a (n

cδgbc)+
1
2
Kacδgac−

nc

2
gab (∇bδgac−∇cδgab) , (7.15)

and hence

δk=−1
2
δgabK

ab+ gab∇aδnb−
1
2
gab∇a (n

cδgbc)−
nc

2
gab (∇bδgac−∇cδgab) . (7.16)

Putting this back into (7.11) yields

16πGθEH = |γ|1/2
(
2δk+ δgabK

ab− 2gab∇aδnb+ gab∇a (n
cδgbc)

)
, (7.17)

which after noticing

ncδgbc = δnb− nbn
cδnc+ ncδγbc = 2δnb+ ncδγbc, (7.18)

we obtain

16πGθEH = |γ|1/2
(
2δk+ δgabK

ab+ gab∇a (n
cδγbc)

)
. (7.19)

Now, taking into account Kabnb = 0 and (7.3), we obtain,

Kabδgab = Kab (−δnanb− naδnb+ δγab) = Kabδγab = kabδγab− ncK
cbnaδγab. (7.20)

From (7.4), we also have

ncK
cbnaδγab = nc

(
∇cnb

)
naδγab =−ncnb (∇cn

aδγab) . (7.21)

Using (7.20), (7.21), we finally find

16πGθEH = |γ|1/2
(
2δk+ kabδγab+ γab∇a (n

cδγbc)
)
. (7.22)

Note that ncδγbc is a tangent vector of ∂Dϵ (cf (7.4)), thus γab∇a(ncδγbc) = γabDa(ncδγbc)
is a total derivative of ∂Dϵ and therefore it will not contribute to the integral (as long is ∂Dϵ

compact.) We however keep track of this term by defining ua := γabδγbcnc. Hence

16πGθEH = |γ|1/2
(
2δk+ kabδγab+Dau

a
)
. (7.23)
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The contribution of the Gibbons–Hawking and counter-terms is straightforwardly comput-
able, since they both are boundary integrals

16πGθGH =−2|γ|1/2δk− |γ|1/2kγabδγab, (7.24)

16πGθct = 2ℓ−1|γ|1/2γabδγab− ℓδ
(
|γ|1/2r

)
. (7.25)

Combining (7.22), (7.24) and (7.25) gives the following expression for the total presymplectic
potential

16πGθ = 16πG(θEH + θGH + θct) (7.26)

= |γ|1/2
(
kab− kγab

)
δγab+ 2ℓ−1|γ|1/2γabδγab− ℓδ

(
|γ|1/2r

)
+ |γ|1/2Dau

a. (7.27)

Note that the exact cancelation between δk term from θEH , and θGH guarantees a well-defined
variation principle [63, 64] and it is reason for introducing the Gibbons–Hawking term into
the action.

At this point, we can identify the de Sitter holographic stress tensor [14, 65] analogical to
that widely discussed in the anti-de Sitter case [64]. Neglecting the total derivative term Daua

and defining Tab := 2
|γ|1/2

δS
δγab

, from (7.27) we have

Tab =
1

8πG

(
kab− kγab+ 2ℓ−1γab+ ℓ

(
rab− 1

2
rγab

))
. (7.28)

This is also reminiscent of analogous boundary stress tensor in anti-de Sitter case (see equation
(10) of [64] for AdS4.)

It will be useful to write (7.27) in terms of infinitesimal variations of the contravariant metric
(γ−1)ab = γab. Abusing the notation we shall denote

δ
(
γ−1

)ab
= δγab, δ

(
g−1
)ab

= δgab, (7.29)

Beware, that in this convention δγab =−γakγblδγkl and similarly for gab. Thus, (7.27) can be
easily expressed in terms of δγab

16πGθ =−|γ|1/2 (kab− kγab)δγ
ab− 2ℓ−1|γ|1/2γabδγab− ℓδ

(
|γ|1/2r

)
+ |γ|1/2Dau

a.

(7.30)

We now transform the above expression to unphysical variables, i.e. those corresponding to
g̃ab =Ω2gab and γ̃ab =Ω2γab. Recall that the change of connection is given by the following
tensor

∇avb−∇̃avb =−Scabvc, Scab =− 1
Ω
(ν̃bδ

c
a+ ν̃aδ

c
b− ν̃cg̃ab) (7.31)

and the physical and unphysical unit normals na and ña satisfy

na =Ω−1ña.

Then we have the following relation between extrinsic curvatures

kab = γcaγ
d
b∇anb =

k̃ab
Ω

+
1
Ω2

γ̃ab

Ñ
=⇒ k= γabkab =Ωk̃+

3

Ñ
. (7.32)

To relate the mean intrinsic curvatures, observe that the Ricci tensors satisfy rab = r̃ab. This is
because they are respectively constructed out of the metrics γab and γ̃ab =Ω2γab. Since they
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are both intrinsic to hypersurfaces with Ω= const, we can consider Ω as a constant for the
calculation of rab and r̃ab. Then

r= γabrab =Ω2γ̃abr̃ab =Ω2r̃,

and therefore

δ
(
|γ|1/2r

)
=

1
Ω
δ
(
|γ̃|1/2r̃

)
=

|γ̃|1/2

Ω

(
r̃ab−

1
2
r̃γab

)
δγ̃ab+

|γ̃|1/2

Ω
D̃aṽ

a (7.33)

where

ṽa := γ̃adγ̃bc
(
D̃bδγ̃cd− D̃dδγ̃bc

)
,

and the second equality in (7.33) is a standard result (see [66]), parallel to the variation of the
spacetime curvature performed above.

Within the integral, the term |γ|1/2Daua is independent from the connection employed (see
appendix B, equation (B.4)), so defining

ũa =Ω−1ua , ũa =Ωua,

we may substitute

Da|γ|1/2ua → D̃a|γ̃|1/2ua =
|γ̃|1/2

Ω
D̃aũ

a.

With these definitions, inserting (7.32) and (7.33) into (7.30), we now have

16πGθ = 2
|γ̃|1/2

Ω3

(
−ℓ−1 + Ñ−1

)
γ̃abδγ̃

ab− |γ̃|1/2

Ω2

(
k̃ab− k̃γ̃ab

)
δγ̃ab

− |γ̃|1/2

Ω
ℓ

(
r̃ab−

r̃
2
γ̃ab

)
δγ̃ab+

|γ̃|1/2

Ω
D̃aũ

a− 1
Ω
|γ̃|1/2ℓD̃aṽ

a. (7.34)

We can gather the total derivative terms, which recall do not contribute to the integral, by
defining

β̃a := ũa− ℓṽa.

Then

16πGθ = 2
|γ̃|1/2

Ω3

(
−ℓ−1 + Ñ−1

)
γ̃abδγ̃

ab− |γ̃|1/2

Ω2

(
k̃ab− k̃γ̃ab

)
δγ̃ab

− |γ̃|1/2

Ω
ℓ

(
r̃ab−

r̃
2
γ̃ab

)
δγ̃ab+

|γ̃|1/2

Ω
D̃aβ̃

a. (7.35)

We now introduce (6.24) into (7.35) and find

16πGθ =−|γ̃|1/2

Ω2

(
k̃ab−

k̃
3
γ̃ab

)
δγ̃ab− |γ̃|1/2

Ω
ℓ

(
r̃ab−

r̃
3
γ̃ab

)
δγ̃ab+

1
Ω
|γ̃|1/2D̃aβ̃

a+O (Ω)

=−|γ̃|1/2

Ω2

(
k̃ab−

k̃
3
γ̃ab

)
δγ̃ab− |γ̃|1/2

Ω
ℓ

(
r̃ab−

r̃
3
γ̃ab

)
δγ̃ab+

1
Ω
|γ̃|1/2D̃aβ̃

a+O (Ω)

=−|γ̃|1/2

Ω2
k̃tfab δγ̃

ab− |γ̃|1/2

Ω
ℓ r̃ tf

ab δγ̃
ab+

1
Ω
|γ̃|1/2D̃aβ̃

a+O (Ω) .
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Introducing now (6.23), we are left with

16πGθ =−|γ̃|1/2ℓẽabδγ̃ab+
1
Ω
|γ̃|1/2D̃aβ̃

a+O (Ω) . (7.36)

In summary, we have shown that, on shell,

δS=
ˆ
∂Dϵ

θ =− ℓ

16πG

ˆ
∂Dϵ

|γ̃|1/2ℓẽabδγ̃ab+
ℓ

16πG
1
Ω

ˆ
∂Dϵ

|γ̃|1/2D̃aβ̃
a+O (Ω) . (7.37)

The boundary ∂Dϵ splits into two disconnected parts, ∂Dϵ = ∂D+
ϵ ∪ ∂D−

ϵ , one represent-
ing the past boundary and the other the future one. The symplectic potential and the symplectic
form is obtained by integrating over one of them, say the future one Σ+ = ∂D+

ϵ , and we are
especially interested in the limit Ω→ 0 when Σ+ → I +.

Typically, Σ+ is compact without boundary (diffeomorphic to S3 in the de Sitter-like con-
text). Under this assumption, the total derivative term D̃aβ̃

a in (7.37) does not contribute to
the symplectic potential,

Θ
[
Σ+
]
=

ˆ
Σ+

θ =− ℓ

16πG

ˆ
Σ+

|γ̃|1/2ℓẽabδγ̃ab+O (Ω) , (7.38)

so we can take the limit Ω→ 0

Θ
[
I +

]
=− ℓ

16πG

ˆ
I +

|γ̃|1/2ẽabδγ̃ab. (7.39)

One might wish to study behavior of the symplectic potential Θ[Σ] on an arbitrary sub-
domain Σ of the future boundary ∂D+

ϵ
13. Observe, however, that allowing non-empty ∂Σ

is not straightforward. One would have to study the fall-off behavior of the boundary terms
1
Ω

´
∂Σ

β̃aea|h̃|1/2 arising from D̃aβ̃
a, which leads to a non-trivial discussion going beyond the

scope of this paper. This is an interesting question that we shall address elsewhere.
We emphasize that the presence of the counterterms in the action and the fall-off conditions

of the field in the conformal Einstein equation play an important role tomake the presymplectic
potential finite at the boundary. Additionally, note that this result matches standard calculations
available in the literature of the symplectic potential that are carried out in the Fefferman
Graham gauge.

Finally, we compute the presymplectic current, given by,

ω (δ1γ̃, δ2γ̃) = δ1θ (δ2γ̃)− δ2θ (δ2γ̃) . (7.40)

Assuming the variations δ1, δ2 commute with each other, we have

ω (δ1γ̃, δ2γ̃) =
ℓ

16πG

(
δ1

(
|γ̃|1/2ẽab

)
δ2γ̃ab− δ2

(
|γ̃|1/2ẽab

)
δ1γ̃ab

)
. (7.41)

Note that from the regularization of the linearized conformal Einstein equation, we have
δg̃ab = δγ̃ab =O(1). Therefore, the presymplectic current is non-vanishing on the boundary.
Physically, this is attributed to the non-zero gravitational radiation on the boundary I + [9,
19]. It is also well known that in leaky boundary condition, namely where the variation of the
field does not vanish, the energy flux is given by the presymplectic potential on the I +.

13 This may be useful when approaching the future de Sitter infinity using spatially flat or hyperbolic cosmological
models..
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In the context of linearized theory, presymplectic potential represents flux formula for
isometries of de Sitter background. Note that background Kiling vectors become conformal
Killing vector of the background metric on I +, and ξ is the conformal Killing vector of the
de Sitter background boundary. The expression of the flux in linearized case becomes

Fξ =

ˆ
I +

θ
(
δγ̃ab,Lξ̃δγ̃ab

)
=

ℓ

16πG

ˆ
I +

|γ̃|1/2δẽabLξ̃δγ̃ab, (7.42)

where δẽab linearized rescaled electric part of theWeyl tensor. This formula has been employed
in several literature [37, 43, 44, 67] to compute energy flux of linearized fields around de
Sitter background. We note that under the conformal transformation γ̃ab =Ω2γab, ẽab →
Ω−5eab, ξ̃a → ξa, therefore, the flux formula in equation (7.42) is conformally invariant, i.e. we
can express the flux formula in terms of physical variables. It is well-known that linearized field
is defined upto a gauge transformation, δgab → δgab+Lξḡab, where ḡab, in our case de Sitter
background metric. One can show that linearized Weyl tensor is gauge invariant on de Sitter
background [68, 69]. Since the flux expression is conformally invariant and linearized Weyl
tensor is gauge invariant on background de Sitter space-time, the flux is therefore insensitive
to linearized diffeomorphism. This confirms the gauge invariant nature of the flux formula.

8. Conclusion

We analyze conformal Einstein equations to extract fall-off conditions of the gravitational
fields. These fall-off condition are consistent to reproduce gravitational flux at the future infin-
ity of de Sitter. We obtain presymplectic structure at the boundary in terms of rescaled electric
part of the Weyl tensor. Though this result is well-known in the context of Fefferman-Graham
gauge in de Sitter, our approach is unique, in particular, we did not impose any gauge condition
to extract the presymplectic current at I +. This highlights the gauge covariant nature of the
quantity, enhancing its relevance as a candidate for describing gravitational energy flux. Our
result also emphasizes that a gauge covariant conformal extension of holographic stress tensor
on the compact boundary naturally selects electric part of the Weyl tensor in the presymplectic
potential computation.

We have found important differences in regularization of the linearized conformal Einstein
equation in comparison with asymptotically flat case. The presence of cosmological constant
introduces a higher order divergence term in the linearized equation. The leading order term
in the metric perturbation does not vanish at I +, rather the non vanishing perturbation pro-
duces non-zero symplectic flux. The non-vanishing nature of the perturbation at I + is also
qualitatively consistent with the analysis of gravitational waves in Bondi gauge [17, 21, 41,
42] or generalized harmonic gauge [34, 37, 38]. Our result is also consistent with the linear
displacement memory effect in de Sitter space-times. Note that the displacement memory in de
Sitter space-times depends on the difference between the final and initial non-vanishing fields
at the boundary [34]. It will also be interesting to explore the gravitational memory effect in
terms of the perturbed electric part of the Weyl tensor [70] with the choice of our ‘minimal’
fall-off behavior of the linearized fields. To us, the constraint in equation (2.18) is interesting
and non-trivial for non-zero cosmological constant setting. Our results do not rigorously show
that the field variables we have introduced in the linearized conformal Einstein equation form
a hyperbolic PDE system. We wish to return to this problem in future.
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Appendix A. Well-posedness of symmetric-hyperbolic quasilinear PDEs

In this appendix we summarize existence, uniqueness and stability results for quasilinear,
symmetric-hyperbolic systems of PDEs. This is based on the results in chapter 12 of [31], in
turn based on Kato [71] and Friedrich’s [28] theorems for existence of solutions of quasilinear
hyperbolic systems.

Consider a domain D with topology R×Σ and coordinates {Ω,xi } adapted to a foliation
withDΩ := {Ω= const.} leaves, each one of which is homeomorphic to Σ. Let U :D −→ Rn

be anRn-valued field and for each fixed value ofΩ define uΩ := U(Ω, ·) as a field uΩ :DΩ −→
Rn. We introduce the Sobolev norm

||uΩ||DΩ,m =

 m∑
k=0

3∑
α1,··· ,αk=0

ˆ
DΩ

|∂xαk · · ·∂xα1uΩ|2
1/2

(A.1)

where |uΩ|2 = 〈uΩ,uΩ〉 stands for the usual Rn norm. The Sobolev space Hm(DΩ,Rn) is the
Banach space of Rn-valued fields of DΩ with finite norm || · ||DΩ,m completed with the limit
points of its Cauchy sequences. Recall that it is well-known (see e.g [72]) that Hm(DΩ,Rn)⊂
Cm−2(DΩ,Rn).

Now consider the quasilinear system of PDEs

AΩ (Ω,x;U)∂ΩU+Ai (Ω,x;U)∂iU+B(Ω,x;U) = 0, (A.2)

where AΩ(Ω,x;U), Ai(Ω,x;U) are matrices and B(Ω,x;U) is a vector. Their entries may
depend nonlinearly on the coordinates and the field U, but not on its derivatives. We assume
that (A.2) is symmetric, i.e. A, Ai are symmetric matrices, and hyperbolic, i.e. that we can find
scalars (σΩ,σi) such that the combination AΩσΩ +Aiσi is a positive definite matrix. We aim
to establish existence of the Cauchy problem of (A.2) with initial data

uΩ0 = u0
(
xi
)
∈ Hm (DΩ0 ,Rn) (A.3)

at some initial surface DΩ0 = {Ω= Ω0}. We assume that detAΩ(Ω0,x;uΩ0) 6= 0, so that all
transversal derivatives ∂ΩU |Ω0 can be obtained from the initial data via (A.2). This implies
that no constraint equations need to be imposed on the initial data. This assumption can be
removed if suitable constraints are introduced.

The existence and uniqueness result is as follows. Consider the Cauchy problem (A.2)
and (A.3) with m⩾ 4. Assume that AΩ(Ω0,x;uΩ0) is bounded away from zero for some δ > 0,
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namely, there exists a δ > 0 such that
〈
Z,AΩ(Ω0,x;uΩ0)Z

〉
> δ 〈Z,Z〉 for all Z ∈ Rn. Then

there exists some Ω1 ∈ R and unique solution U(Ω,xi) to the Cauchy problem (A.2) and (A.3)
such that U ∈ Cm−2([Ω0,Ω1]×Σ,Rn). Moreover, AΩ(Ω,xi,U) remains bounded away from
zero in [Ω0,Ω1]×Σ.

To state the stability results, denote Br(uΩ0) to the ball of Hm(DΩ0 ,Rn) centered at uΩ0

with radius r wrt to the norm || · ||DΩ0 ,m
, intersected with the subspace of functions uΩ0 ∈

Hm(DΩ0 ,Rn) for which AΩ(Ω0,x;uΩ0) is bounded away from zero by some δ > 0. Then

1. There exists some r> 0 such that Ω1 ∈ R can be chosen so that all solutions with initial
conditions in Br(uΩ0) exist for the same ‘time’ interval [Ω0,Ω1]⊂ R.

2. For any Cauchy sequence {unΩ0
} ⊂ Br(uΩ0) converging to uΩ0 on DΩ0 , the correspond-

ing solutions Un satisfy that unΩ = Un(Ω, ·) converge uniformly to uΩ = U(Ω, ·) on each
Cauchy slice DΩ for all Ω ∈ [Ω0,Ω1].

3. Given a solution U that exists for some interval [Ω0,Ω1]⊂ R, then for r> 0 sufficiently
small, all solutions with initial data on Br(uΩ0) exist on [Ω0,Ω1].

A.1. Hyperbolicity of (5.8) and (5.9)

We can now apply the existence and uniqueness results stated above to the PDE system (5.8)
and (5.9). First, we note that a particular type of quasilinear PDE (A.2) is the linear case,
namely,

AΩ (Ω,x)∂ΩU+Ai (Ω,x)∂iU+B(Ω,x)U+C(Ω,x) = 0, (A.4)

where AΩ(Ω,x), Ai(Ω,x) and B(Ω,x) are matrices and C(Ω,x) is a vector. Their entries in this
case do not depend onU, but theymay depend smoothly on the coordinates. Recall that we have
selected our foliation to have zero shift vector, so that in the adapted coordinates {Ω,xi } we
have ña =−Ñ−1(∂Ω)

a and γ̃ab = δij(∂xi)
a(dxj)b. This simplifies the analysis because it makes

the fields ζ i to be a linear combination of the fields ζ i, not involving ζ⊥. Comparing (A.4)
and (5.8), (5.9), we find that the latter is a PDE system like the former for the fieldU= (ζ⊥, ζ̃

i)
and the matrices

AΩ = Ñ−1diag(1,1,1,1) , Ai = diag(Ω,0,0,0) , (A.5)

where a global sign has been omitted and the matrix B and vector C are not specified because
neither of them affect the hyperbolicity properties. The system is symmetric because (AΩ,Ai)
are symmetric matrices. Moreover, it is hyperbolic because for sufficiently small Ω we can
find scalars (σΩ,σi) such that the combination AΩσΩ +Aiσi is a positive definite matrix.

Now consider a prescribed initial field configuration uΩ0 at some {Ω= Ω0 = const} initial
slice. There is obviously not constraint equations on the initial data because detAΩ0 6= 0. The
condition of AΩ0 being bounded away from zero is equivalent to finding some δ > 0 such that
Ñ−1 > δ. This holds for sufficiently small Ω, because by (6.24) we have Ñ−1 = ℓ−1 +O(Ω),
thus it suffices choosing δ = ℓ−1/2 as a lower bound for Ñ−1.

A.2. Stability of Friedrich equations

Friedrich’s strategy to prove that his conformal equations form a well-posed system consists in
showing that they can be reduced to a symmetric hyperbolic quasilinear system of PDEs (see
[28]). This in turn entails a stability result like the one we have discussed at the beginning of
this appendix, which Friedrich applies to solutions close to de Sitter (see theorem 3.3 of [28]).
We note that the paper states that same stability holds for all (weakly) asymptotically simple
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(i.e. admitting a conformal extension) solutions with positive Λ (see remark 3.4 (ii) of [28]).
The initial data on the initial surfaceDΩ0 =Σ are required to beHm(Σ,Rn)withm⩾ 4, which
implies regularity of the data at least Cm−2(Σ,Rn) and solutions Cm−2([Ω0,Ω1]×Σ,Rn).

Given a solution g̃0 of Friedrich’s equations, stability holds all over the unphysical manifold
M̃, up to and includingI . Thus, let us consider g̃0 such that it extends from some initial Cauchy
slice DΩ0 to I + = {Ω= 0}. Let u0 be the initial data of g̃0 at DΩ0 . Then there is a ball Br(u0)
(as defined above in this appendix) of sufficiently small radius r such that all metrics with
initial data in Br(u0) also extend to I + = {Ω= 0}. Consider a family of data {uϵ} ⊂ Br(u0)
depending smoothly on a parameter ϵ and converging to u0 for ϵ= 0. Then, the corresponding
family of solutions g̃ϵ converges to g̃0 and extends to I +. From this fact it follows that the
linear fields δg̃= dg̃ϵ

dϵ |ϵ=0, which are solutions of the linearized equations with background
field g̃0, must also extend to I +.

Appendix B. Gauss theorem

In this appendix wemake explicit the Gauss theorem in the context we are working at. Namely,

ˆ
D
|g|1/2∇av

a =

ˆ
∂D

|γ|1/2nouta va, (B.1)

where nouta is outward pointing one-form normal to the boundary ∂D of a domain D.
In our specific case, we consider domainDϵ defined byΩ> ϵ, where ϵ is a sufficiently small

positive constant. The domain of integration is endowed with a metric gab. The boundary man-
ifold ∂Dϵ, given byΩ= ϵ surface, has an induced spacelike metric γab. Therefore, na = N∇aΩ
is the unit timelike normal, which is outward pointing (see comment below equation (7.9)) and
−na =−N∇aΩ is outward pointing normal one-form. Then we get the Gauss theorem in the
form ˆ

Dϵ

|g|1/2∇av
a =−

ˆ
∂Dϵ

|γ|1/2nava. (B.2)

Furthermore, recall that the Gauss theorem is a topological result, thus independent from
the metric. Indeed, the LHS of (B.2) is a total derivative and can be written in terms of the
unphysical metric g̃ab and connection ∇̃ simply asˆ

Dϵ

|g|1/2∇av
a =

ˆ
Dϵ

|g̃|1/2∇̃av
a. (B.3)

This is a general identity for integrals of total derivatives, so in particular, it also holds in the
boundary manifold thatˆ

∂Dϵ

|γ|1/2Dau
a =

ˆ
∂Dϵ

|γ̃|1/2D̃au
a, (B.4)

for tangent vectors ua to ∂Dϵ.
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