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We study properties of a recently proposed new ansatz for separation of variables in the Maxwell
equations in four-dimensional Kerr-NUT-(A)dS spacetime. We demonstrate that a dual field, which is also
a solution of the source-free Maxwell equations, can be presented in a similar form. This result implies that
the corresponding separated equations possess a discrete symmetry under a special transform of the
separation parameters.
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I. INTRODUCTION

Solving wave equations in a curved spacetime is an
important problem. Practically all information available to
observers concerning the properties of massive compact
objects is obtained by studying electromagnetic radiation
from these objects or matter surrounding them. The
spacetime curvature becomes especially important for the
case of black holes. The Maxwell equations are a set of
linear partial differential equations in which the coefficients
depend on the spacetime metric. Separability of the
Maxwell equations in the Kerr spacetime, demonstrated
by Teukolsky [1,2], allows one to reduce a rather compli-
cated problem of studying electromagnetic field propaga-
tion in the black hole spacetime to studying solutions of a
set of the second order ordinary differential equations
(ODE). Moreover, Teukolsky demonstrated that a similar
property of separability is valid also for other massless field
equations with spin s ¼ 1

2
, 1 3

2
, 2 in general vacuum-type D

metrics. This method is widely used now and has produced
a number of remarkable results (quasi-normal modes of
black holes, black-hole stability, superradiance, Hawking
radiation etc.).
A natural question is: How far one can generalize the

results obtained in four dimensions to the case of higher-
dimensional black hole metrics? The separability of the
(neutral or charged) scalar field (Klein-Gordon) equation in

the most general Kerr-NUT-(a)dS metric describing sta-
tionary rotating black holes in any number of dimensions
was demonstrated in [3,4]. Later, it was shown that Dirac
equations can be also separated in higher dimensions [5–7].
A separation of variables in the higher-dimensional
Maxwell equations appeared to be a much more compli-
cated problem, although the related charged-particle prob-
lem is completely integrable and leads to a separable
Hamilton-Jacobi equation [4]. A remarkable breakthrough
was achieved only in 2017 by Lunin [8]. Instead of working
with special null tetrad components of the Maxwell tensor
F, as was done by Teukolsky, Lunin proposed a special
ansatz for the Maxwell potential A. Namely, he assumed
that A can be obtained by applying a special (polarization)
matrix function B to the gradient of some scalar function Z,
which allows the separation, A ¼ B · ∇Z. Lunin demon-
strated that the integrability conditions of the Maxwell
equations in the Myers-Perry metrics, which are third order
relations for Z, reduce to decoupled second order ODE for
functions of the independent variables, which enter as a
product in Z. Later, this construction was generalized to
any off-shell Kerr-NUT-(A)dS spacetime [9,10]. It was also
shown that the separability property of the Maxwell
equations is a direct consequence of the existence of the
principal tensor in these spacetimes [11]. Separability of the
higher-dimensional Proca equations was proved in [12].
In this paper, we study some interesting properties of

Lunin’s ansatz. For this purpose we restrict ourselves by
considering the Maxwell field in four dimensions. Since
Lunin’s ansatz contains a free separation parameter denoted
by μ, we refer to this separability property of the Maxwell
equations as μ separability.
The four-dimensional Maxwell equations are invariant

under Hodge duality transformation; therefore, the dual
strength field, which we denote by F̃, must have its own
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potential Ã. By direct calculations we demonstrate that for a
proper choice of the gauge this potential can be also written
in the form Ã ¼ B̃ · ∇Z̃. We also show that the dual
polarization tensor B̃ is uniquely constructed by using
the principal tensor. As a consequence of these results, we
shall demonstrate that the μ-separated equations admit
a discrete symmetry transformation which preserve their
form.

II. DUALITY TRANSFORMATION

We consider the Maxwell field in the background of a 4D
off-shell Kerr-NUT-(A)dS metric of the form

g¼−
Δr

Σ
ðdτþy2dψÞ2þΔy

Σ
ðdτ−r2dψÞ2þ Σ

Δr
dr2þ Σ

Δy
dy2:

ð1Þ

Here, Σ ¼ ffiffiffiffiffiffi−gp ¼ r2 þ y2, and Δr and Δy are arbitrary
functions of coordinates r and y, respectively. For a special
case, when these functions are quartic polynomials, this
metric is a solution of the Einstein equations with a
cosmological constant Λ describing rotating black hole
with NUT charges. The Kerr metric is reproduced when
Λ ¼ 0 and the NUT parameter vanishes. The coordinates τ,
y and ψ are related to the standard Boyer-Lindquist
coordinates as follows

τ ¼ t − aϕ; y ¼ a cos θ; ψ ¼ ϕ=a: ð2Þ

We do not need to specify the functions Δr and Δy in this
paper. This means that our results are valid for arbitrary
functions ΔrðrÞ and ΔyðyÞ.
The metric (1) possesses the principal tensor h, which is

a nondegenerate closed conformal Killing–Yano 2-form
obeying the equation

∇chab ¼ gcaξb − gcbξa; ξa ¼
1

3
∇bhba: ð3Þ

It has the form

h ¼ y dy ∧ ðdτ − r2dψÞ − rdr ∧ ðdτ þ y2dψÞ: ð4Þ

This tensor generates a number of explicit and hidden
symmetries, and determines many remarkable properties of
the geometry, see [11].
Let us denote the 1-form potential and the 2-form field

by A and F, respectively. The source-free Maxwell equa-
tions are of the form

dF ¼ 0; δF ¼ 0: ð5Þ

Here,

δα ¼ ð−1Þp � d � α ð6Þ

is a coderivative of a p-form α, and * is the Hodge duality
operator. It is defined in terms of the Levi-Civita tensor ε as

ð�αÞapþ1…aD ¼ 1

p!
αa1…apεa1…apapþ1…aD; ð7Þ

and in D-dimensional spacetime it satisfies

� � α ¼ ϵp α; ϵp ¼ ð−1ÞpðD−pÞ det g
j det gj : ð8Þ

In particular, for 2-forms in four-dimensional Lorentzian
spacetime, ϵ2 ¼ −1. It is well known that the coderivative
is, up to sign, a covariant divergence

δα ¼ −∇ · α: ð9Þ

The equations (5) imply that the dual field �F obeys the
same equations

d � F ¼ 0; δ � F ¼ 0: ð10Þ

In particular, this means that the dual field �F has a
potential Ā satisfying �F ¼ dĀ.
Let us denote

F� ¼ F ∓ i � F: ð11Þ

Then one has

�F� ¼ �iF�: ð12Þ

In other words, Fþ is self-dual and F− anti-self-dual.

III. μ ANSATZ FOR THE ELECTROMAGNETIC
FIELD

A. Field potential

In order to construct a vector potential A, we shall use a
special tensor B, which we call the polarization tensor. We
define it by the following relation:

ðgab þ iμhabÞBbc ¼ δca; ð13Þ

where μ is a (typically real1) parameter. In the index-free
notation, one has

1We believe that μ should be real in cases when separation
parameters ω and l defined next are real. However, when
studying, e.g., quasi-normal modes, both ω and μ can be, in
general, complex, cf. [12,13].

VALERI P. FROLOV and PAVEL KRTOUŠ PHYS. REV. D 99, 044044 (2019)

044044-2



B ¼ ðI þ iμhÞ−1: ð14Þ

Our μ-separable ansatz means that2

A ¼ B · ∇Z;

Z ¼ RðrÞYðyÞE; E ¼ expð−iωτ þ ilψÞ: ð15Þ
One can show [8–10] that, for this potential, the Lorenz

condition

δA ¼ 0 ð16Þ
and the Maxwell equations (5) are satisfied, provided the
mode functions RðrÞ and YðyÞ obey the following second-
order ODEs:

d
dr

�
ΔrR0

qr

�
¼ QrR; Qr ¼ −

σ

μ

2 − qr
q2r

−
π2r

qrΔr
;

d
dy

�
Δy

_Y

qy

�
¼ QyY; Qy ¼

σ

μ

2 − qy
q2y

þ π2y
qyΔy

: ð17Þ

Here and later, we denote by prime and dot the derivatives
with respect to r and y, correspondingly. qr, qy, πr, and πy
are the auxiliary functions

qr ¼ 1þ μ2r2; qy ¼ 1 − μ2y2; ð18Þ

πr ¼ l − ωr2; πy ¼ lþ ωy2; ð19Þ

and we have introduced a combination of separation
constants

σ ¼ ωþ μ2l: ð20Þ
The components Ac of the potential A ¼ Acdxc can be

separated as Ac ¼ acðr; yÞEðτ;ψÞ, where

ar ¼
1

qr

�
R0 þ μrπr

Δr
R

�
Y;

ay ¼
1

qy

�
_Y −

μyπy
Δy

Y

�
R;

aτ ¼
iμ
Σ

�
−
rΔr

qr
R0Y þ yΔy

qy
R _Y

�
−

iσ
qrqy

RY;

aψ ¼ −
iμr2y2

Σ

�
Δr

rqr
R0Y þ Δy

yqy
R _Y

�

þ i
qrqy

�
ωμ2r2y2 þ lð1þ μ2r2 − μ2y2Þ

�
RY: ð21Þ

One can check that this potential satisfies the Lorenz
condition

∇cAc ¼ 0; ð22Þ
provided the μ-separated equations (17) hold.

B. Field strength

It is straightforward but rather cumbersome to calculate
the components of the field strength F for the potential A. It
is easy to see that the components Fab contain second
derivatives of the mode functions R and Y, while Ja ¼
∇bFab contains their third derivatives. Validity of μ-
separated equations (17) then guarantees that the source-
free Maxwell equations are satisfied, i.e., J ¼ 0.
In what follows, we shall make our calculations on shell,

unless the opposite is explicitly stated. This means that we
shall use the relations (17) to exclude second derivatives of
R and Y whenever they appear. In order to stress that a
relation is valid only on shell, we shall use the following
notation for the equality ≗.
The on-shell components Fab of the field strength tensor

F ¼ Fab dxadxb can be also written in separated form
Fab ¼ fabðr; yÞEðτ;ψÞ, namely

fry ¼
μ2Σ
qrqy

R0 _Y −
μyπy
qyΔy

R0Y −
μrπr
qrΔr

R _Y;

fτψ ¼ −
μrπyΔr

qrΣ
R0Y þ μyπrΔy

qyΣ
R _Y −

μ2πrπy
qrqy

RY;

frτ ≗ i

�
μyΔy

qyΣ
R0 _Y þ

�
−
μ2πy
qrqy

þ μΔr

qrΣ2
ðr2 − y2Þ

�
R0Y −

2μryΔy

qyΣ2
R _Y −

r
qrΣ

�
σ
qy − 2

qy
−
μπrπy
Δr

�
RY

�
;

fyτ ≗ i

�
−μrΔr

qrΣ
R0 _Y −

�
μ2πr
qrqy

−
μΔy

qyΣ2
ðr2 − y2Þ

�
R _Y þ 2μryΔr

qrΣ2
R0Y −

y
qyΣ

�
σ
qr − 2

qr
−
μπrπy
Δy

�
RY

�
;

frψ ≗ i

�
−
μr2yΔy

qyΣ
R0 _Y þ

�
μ2r2πy
qrqy

þ μy2Δr

qrΣ2
ðr2 − y2Þ

�
R0Y −

2μry3Δy

qyΣ2
R _Y −

r
qrΣ

�
σy2

qy − 2

qy
þ μr2πrπy

Δr

�
RY

�
;

fyψ ≗ i

�
−
μry2Δr

qrΣ
R0 _Y −

�
μ2y2πr
qrqy

þ μr2Δy

qyΣ2
ðr2 − y2Þ

�
R _Y −

2μr3yΔr

qrΣ2
R0Y þ y

qyΣ

�
σr2

qr − 2

qr
þ μy2πrπy

Δy

�
RY

�
: ð23Þ

2For the Kerr metric in the Boyer-Lindquist coordinate, one has

E ¼ expð−iωtþ imϕÞ; m ¼ l=a − ω:
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Notice that the first two equalities hold even without using relations (17).

IV. HODGE DUALITY

Using the Hodge duality transformation one finds the dual field �F. Calculations give separated components �Fab ¼
�fabðr; yÞEðτ;ψÞ of this field as

�fry ¼
μrπy
qrΔy

R0Y −
μyπr
qyΔr

R _Y þ μ2πrπyΣ
qrqyΔrΔy

RY;

�fτψ ¼ μ2ΔrΔy

qrqy
R0 _Y −

μyπyΔr

qyΣ
R0Y −

μrπrΔy

qrΣ
R _Y;

�frτ ≗ i

�
−
μrΔy

qrΣ
R0 _Y þ 2μryΔr

qrΣ2
R0Y þ Δy

qy

�
μ

Σ2
ðr2 − y2Þ − μ2πr

qrΔr

�
R _Y −

y
qyΣ

�
σ
qr − 2

qr
−
μπrπy
Δr

�
RY

�
;

�fyτ ≗ i

�
−
μyΔr

qyΣ
R0 _Y þ 2μryΔy

qyΣ2
R _Y −

Δr

qr

�
μ

Σ2
ðr2 − y2Þ − μ2πy

qrΔy

�
R0Y þ r

qrΣ

�
σ
qy − 2

qy
−
μπrπy
Δy

�
RY

�
;

�frψ ≗ i

�
μr3Δy

qrΣ
R0 _Y þ 2μry3Δr

qrΣ2
R0Y þ Δy

qy

�
μy2

Σ2
ðr2 − y2Þ þ μ2r2πr

qrΔr

�
R _Y −

y
qyΣ

�
σy2

qr − 2

qr
þ μr2πrπy

Δr

�
RY

�
:

�fyψ ≗ i

�
−
μy3Δr

qyΣ
R0 _Y −

2μr3yΔy

qyΣ2
R _Y þ Δr

qr

�
μr2

Σ2
ðr2 − y2Þ þ μ2y2πy

qyΔy

�
R0Y −

r
qrΣ

�
σr2

qy − 2

qy
þ μy2πrπy

Δy

�
RY

�
: ð24Þ

The vector potential Ā for the dual field �F is related as

�Fab ¼ ∂aĀb − ∂bĀa: ð25Þ

Substituting expressions (24) gives a set of the first order
partial differential equations for Āa, the consistency of
which is guaranteed by the integrability condition (10).
Naturally, we assume that the τ and ψ dependence of this

potential can also be separated using Eðτ;ψÞ given in (15),

Āc ¼ ācðr; yÞEðτ;ψÞ: ð26Þ

Derivatives of Āc with respect to τ and ψ are thus trivial.
It is convenient to start the integration procedure by

solving the equation �Fry ¼ ∂rĀy − ∂yĀr. This equation is
satisfied for the following choice of the potential:

Ār ≗
μπr
σΔr

R

�
−
μΔy

qy
_Y þ σy

qy
Y

�
E; ð27Þ

Āy ≗
μπy
σΔy

Y

�
μΔr

qr
R0 þ σr

qr
R

�
E: ð28Þ

The equations ∂rĀτ ¼ −iωĀr þ �Frτ and ∂yĀτ ¼
−iωĀy þ �Fyτ can be integrated to give

Āτ ≗ iμ

�
μ3ΔrΔy

σqrqy
R0 _Y −

yΔr

qyΣ
R0Y −

rΔy

qrΣ
R _Y

�
E; ð29Þ

while the equation −iωĀψ ¼ ilĀτ þ �Fτψ gives

Āψ ≗ iμ
�
μΔrΔy

σqrqy
R0 _Y −

y3Δr

qyΣ
R0Y þ r3Δy

qrΣ
R _Y

�
E: ð30Þ

One can check that the other equations of the set (25) are
identically satisfied.
This means that we have found the potential Ā for the

dual field �F. However, a direct calculation shows that Ā
does not satisfy the Lorenz condition. Of course, it can be
improved by a suitable gauge transformation. But we will
construct the vector potential for the dual field satisfying
the Lorenz condition in different way first, and only then
we will present the proper gauge transformation connecting
both potentials.

V. DUALITY OF μ-SEPARATED EQUATIONS

Let us formulate the main result of this paper. We claim
that the Hodge dual �F of a field obtained from the
separation ansatz (15) can be presented also in the
separated form, however, associated with a different sep-
aration constant μ̃. First, we will define the μ-duality: an
operation for the separation functions, which give us the
duality for the vector potential, and which leads to the dual
field also satisfying the Maxwell equations. Next, we will
show that such generated field is actually the Hodge dual of
the original field.
For given ω and l, we define a dual transformation

changing the separation constant μ into a new separation
constant

VALERI P. FROLOV and PAVEL KRTOUŠ PHYS. REV. D 99, 044044 (2019)

044044-4



μ̃ ¼ −
ω

μl
: ð31Þ

Similarly, we define a dual of various quantities which
depend on μ,

q̃r ¼ 1þ μ̃2r2; q̃y ¼ 1 − μ̃2y2; ð32Þ
σ̃ ¼ ωþ μ̃2l: ð33Þ

Next, we define dual separation functions R̃ and Ỹ3

R̃ ¼ −
μffiffiffiffiffiffiffiffiffiffi
−ωl

p
�
Δr

qr
R0 þ σ

μ

r
qr

R

�
; ð34Þ

Ỹ ¼ μffiffiffiffiffiffiffiffiffiffi
−ωl

p
�
Δy

qy
_Y −

σ

μ

y
qy

Y

�
: ð35Þ

Using the separation equations (17), we easily find

R̃0 ≗ −
μffiffiffiffiffiffiffiffiffiffi
−ωl

p
�
σ

μ

r
qr

R0 −
π2r

qrΔr
R

�
; ð36Þ

_̃Y ≗ −
μffiffiffiffiffiffiffiffiffiffi
−ωl

p
�
σ

μ

y
qy

_Y −
π2y

qyΔy
Y

�
: ð37Þ

Finally, we define the dual vector potential Ã by the
separation ansatz (15), starting from the dual quantities,

Ã ¼ B̃ · ∇Z̃; ð38Þ
Z̃ ¼ R̃ Ỹ E; E ¼ expð−iωτ þ ilψÞ; ð39Þ

B̃ ¼ ðI þ iμ̃hÞ−1: ð40Þ

The field strength is given by the standard relation

F̃ ¼ dÃ: ð41Þ

We can observe that the μ-duality applied twice gives4

˜̃μ ¼ μ; ð42Þ

˜̃R ≗ −R; ˜̃Y ≗ Y ð43Þ

˜̃A ≗ −A; ˜̃F ≗ −F: ð44Þ

Therefore, we call this operation a duality.
A nontrivial observation is that the μ-duality is the

symmetry of the separation equations (17). Namely, given
functions R and Y that satisfy (17) with the separation
constant μ, the functions R̃ and Ỹ constructed by (34)
and (35) solve the same equations (17) with the separation
constant μ̃ given by (31). Let us denote by Rμωl and Yμωl

the solutions of (17) with the separation constants μ, ω and
l. Then we can write5

R ¼ Rμωl ⇔ R̃ ¼ �Rμ̃ωl;

Y ¼ Yμωl ⇔ Ỹ ¼ Y μ̃ωl: ð45Þ

This observation can be demonstrated by a direct sub-
stitution of (31)–(37) into “tilded” version of (17).
This means that the constant μ̃ and functions R̃, Ỹ

generate the vector potential Ã given by the “tilded” version
of (21) and the field strength F̃ given by the “tilded” form
of (23). Moreover, Ã satisfies the Lorenz condition, cf. (22).
The key property of this dual solution F̃ is that it is

equivalent to the Hodge dual of the original field F, i.e.,

F̃ ≗ �F: ð46Þ

Indeed, substituting (31)–(37) into the “tilded” version
of (23) gives (24). In other words, the Hodge dual of
a μ-separated field can thus be written again as the
μ̃-separated field.
The vector potential Ā, which we have obtained for the

Hodge dual field in the previous section in eqs. (27)–(30),
is related to the μ̃-separated potential Ã by the gauge
transformation

Ã ¼ Āþ ∇
�
ω

σ̃
R̃ Ỹ E

�
: ð47Þ

VI. SUMMARY

The separation of variables in the Maxwell equations in
the four-dimensional Kerr spacetime plays an important
role in the study of the propagation of electromagneric
waves in the vicinity of rotating black holes. The standard

3In order to write the expressions for R̃ and Ỹ in the symmetric
form, we include the factor

ffiffiffiffiffiffiffiffiffiffi
−ωl

p
in both of these expressions.

For positive −ωl these mode functions are real. For negative
value of −ωl one has “unpleasant” factor i in these relations,
making both of this quantities imaginary. However, in the
expression for a mode function Z̃, only the product of R̃ and
Ỹ enters and this product always remain real.

4Alternatively, we could include a factor i in the definition of R̃
to eliminate the minus sign arising for the double μ-duality. This
could be called the Euclidian convention since it would be natural
for the Euclidian version of the metric. In this case, the Wick
rotation is applied to radial coordinate r, namely the Euclidian
version x is given as x ¼ ir, cf., e.g., [11]. Then also the Hodge
duality on 2-forms would satisfy � � α ¼ α, since the Euclidian
Levi-Civita tensor would contain the dx term instead of dr.

5Since ˜̃R ¼ −R, we cannot eliminate the sign arising for R̃. But
the equations (17) are linear, and therefore the solutions Rμωl and
Yμωl are fixed only up to a normalization.
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method developed by Teukolski in 1972 [1,2] has been
widely used for this purpose. This method is closely related
to the algebraical structure of the background metric, and it
can be applied to the vacuum-type D solutions of the
Einstein equations. However, for a long time attempts to
generalize this approach to higher-dimensional black holes
were unsuccessful. Only in 2017 Lunin [8] was able to
solve this problem. He proposed a new method of the
separation of the Maxwell equations which works both for
four-dimensional black holes and their higher-dimensional
generalizations described by Myers-Perry metrics with a
cosmological constant. It was recently demonstrated that
this separability is directly connected with the existence of
a so-called principal tensor [11], and it can be extended to a
wide class of Kerr-NUT-(A)dS off-shell metrics [9,10]. The
modes of the electromagnetic field that arise as a result
of this approach contain a separation constant which is
traditionally denoted by μ. However, the physical meaning
of this separation parameter at the moment remains unclear.
It would be desirable to relate it with (explicit and hidden)
symmetries as happens with the separation constants in the
Teukolsky approach.
The original motivation of the work presented in this

paper was to analyze this problem in four dimensions where
the properties of the solutions of the Maxwell equations are
better understood. An important property of the 4D source-
free Maxwell equations is their invariance under the Hodge
duality transformation. This allows one for any solutionF of
the Maxwell equations to define its (anti-)self-dual versions
F� ¼ F ∓ i � F. The remarkable property is that during
their propagation in a stationary curved spacetime the
helicity of photons is conserved [14–19].
The main result of this paper is that a mode-solution of

the Maxwell equations, obtained by μ-separation of vari-
ables, under the Hodge-duality is transformed into another
mode with a different parameter μ̃. The relations between
these modes are given by formulas (31)–(35). In analogy
with the standard separation of variables, we can assume
that these two dual modes differ just in polarization, and we
may use a linear combination of these dual modes to obtain
a solution describing a fixed helicity.
The obtained result can be also viewed from an another

point of view. The formulas (31)–(35) describe a discrete

symmetry in the space of solutions of the μ-separated
equations. Certainly, the Maxwell equations in higher
dimensions does not possess the property of the Hodge-
duality. However, an interesting question is: Do μ-separated
equations in higher dimensions still have similar discrete
symmetries?
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APPENDIX: FIELD IN THE DARBOUX FRAME

Calculations of the vector potential and the field strength
is slightly more manageable in the Darboux frame in which
the metric is diagonal and the principal tensor is semi-
diagonal. The non-normalized Darboux frame of 1-forms is
defined as

ϵr ¼ dr; ϵ̂r ¼ dτ þ y2dψ ;

ϵy ¼ dy; ϵ̂y ¼ dτ − r2dψ : ðA1Þ

The metric and the principal tensor read

g ¼ −
Δr

Σ
ϵ̂rϵ̂r þ Δy

Σ
ϵ̂yϵ̂y þ Σ

Δr
ϵrϵr þ Σ

Δy
ϵyϵy; ðA2Þ

h ¼ −rϵr ∧ ϵ̂r þ yϵy ∧ ϵ̂y: ðA3Þ

The orientation of the Levi-Civita tensor ε can be chosen as

ε ¼ −ϵr ∧ ϵy ∧ ϵ̂r ∧ ϵ̂y: ðA4Þ

The μ-separated vector potential A takes the form

A ¼ 1

qr

�
R0 þ μrπr

Δr
R

�
YEϵr þ 1

qy

�
_Y −

μyπy
Δy

Y

�
REϵy

þ i
qrΣ

�
−μrΔrR0 þ πrR

�
YEϵ̂r þ i

qyΣ

�
μyΔy

_Y − πyY

�
REϵ̂y: ðA5Þ
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The field strength F reads

F ≗
�
μ2Σ
qrqy

R0 _Y −
μyπy
qyΔy

R0Y −
μrπr
qrΔr

R _Y

�
Eϵr ∧ ϵy þ 1

Σ

�
μrπyΔr

qrΣ
R0Y −

μyπrΔy

qyΣ
R _Y þ μ2πrπy

qrqy
RY

�
Eϵ̂r ∧ ϵ̂y

þ i
Σ

�
−
2μryΔy

qyΣ
R _Y þ μΔr

qrΣ
ðr2 − y2ÞR0Y þ σ

r
qr

2 − qy
qy

RY

�
Eϵr ∧ ϵ̂r

þ i
Σ

�
2μryΔr

qrΣ
R0Y þ μΔy

qyΣ
ðr2 − y2ÞR _Y þ σ

y
qy

2 − qr
qr

RY

�
Eϵy ∧ ϵ̂y

þ i
Σ

�
μyΔy

qy
R0 _Y −

μ2πyΣ
qrqy

R0Y þ μπrπyr

qrΔr
RY

�
Eϵr ∧ ϵ̂y

þ i
Σ

�
−
μrΔr

qr
R0 _Y −

μ2πrΣ
qrqy

R _Y þ μyπrπy
qyΔy

RY

�
Eϵy ∧ ϵ̂r; ðA6Þ

and the Hodge dual of the μ-separated field takes the form

�F ≗
�
−
μrπy
qrΔy

R0Y þ μyπr
qyΔr

R _Y −
μ2πrπyΣ
qrqyΔrΔy

RY

�
Eϵr ∧ ϵy þ 1

Σ

�
μ2ΔrΔy

qrqy
R0 _Y −

μyπyΔr

qyΣ
R0Y −

μrπrΔy

qrΣ
R _Y

�
Eϵ̂r ∧ ϵ̂y

−
i
Σ

�
2μryΔr

qrΣ
R0Y þ μΔy

qyΣ
ðr2 − y2ÞR _Y þ σ

y
qy

2 − qr
qr

RY

�
Eϵr ∧ ϵ̂r

−
i
Σ

�
2μryΔy

qyΣ
R _Y −

μΔr

qrΣ
ðr2 − y2ÞR0Y − σ

r
qr

2 − qy
qy

RY

�
Eϵy ∧ ϵ̂y

þ i
Σ

�
μrΔy

qr
R0 _Y þ μ2πrΣ

qrqy

Δy

Δr
R _Y −

μyπrπy
qyΔr

RY

�
Eϵr ∧ ϵ̂y

þ i
Σ

�
μyΔr

qy
R0 _Y −

μ2πyΣ
qrqy

Δr

Δy
R0Y þ μrπrπy

qrΔy
RY

�
Eϵy ∧ ϵ̂r: ðA7Þ
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