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The Fields of Uniformly Accelerated Charges in de Sitter Spacetime
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The scalar and electromagnetic fields of charges uniformly accelerated in de Sitter spacetime are
constructed. They represent the generalization of the Born solutions describing fields of two particles
with hyperbolic motion in flat spacetime. In the limit L ! 0, the Born solutions are retrieved. Since in
the de Sitter universe the infinities I 6 are spacelike, the radiative properties of the fields depend on the
way in which a given point of I6 is approached. The fields must involve both retarded and advanced
effects: Purely retarded fields do not satisfy the constraints at the past infinity I2.
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The question of the electromagnetic field and associated
radiation from uniformly accelerated charges has been one
of the best known “perpetual problems” in classical physics
from the beginning of the past century. In the pioneering
work in 1909, Born gave the time-symmetric solution for
the field of two point particles with opposite charges, uni-
formly accelerated in opposite directions in Minkowski
space. In the 1920s, Sommerfeld, von Laue, Pauli, Schott,
and others discussed the properties of the field. The con-
troversial point that the field exhibits radiative features but
that the radiation reaction force vanishes for the hyperbolic
motion, and related questions, was discussed in many ar-
ticles from the 1960s onward. Even the December 2000
issue of Annals of Physics contains three papers [1] with
numerous references on “electrodynamics of hyperboli-
cally accelerated charges.”

In general relativity, solutions of Einstein’s equations,
representing “uniformly accelerated particles or black
holes,” are the only explicitly known exact radiative space-
times describing finite sources. They are asymptotically
flat at null infinity [2] (except for some special points) and
have been used in gravitational radiation theory, quan-
tum gravity, and numerical relativity (cf. review [3]). One
of the best known examples is the C-metric, describing
uniformly accelerated black holes. There exists also the
C-metric for a nonvanishing cosmological constant L.
However, no general framework is available to analyze
these spacetimes for L fi 0 as that given in Ref. [2] for
L � 0.

In this Letter, we present the generalization of the
Born solutions for scalar and electromagnetic fields to the
case of two charges uniformly accelerated in a de Sitter
universe, and explicitly show how in the limit L ! 0 the
Born solutions are retrieved. We also study the asymp-
totic expansions of the fields in the neighborhood of
future infinity I1. In de Sitter spacetime, conformal in-
finities, I6, are spacelike, which implies the presence of
particle and event horizons. It is known [4] that the radia-
tion field is “less invariantly” defined when I1 is spacelike
(it depends on the direction in which I1 is approached),
but no explicit model appears to be available thus far.
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Our solutions can serve as prototypes for studying these
issues.

In recent work [5], we analyzed fields of accelerated
sources to show the insufficiency of purely retarded fields
in de Sitter spacetime. Consider a point P near I2 whose
past null cone will not cross the particles’ world lines
(Fig. 1). The field at P should vanish if an incoming field
is absent. However, the “Coulomb-type” field of particles
cannot vanish there because of Gauss law [6]. The require-
ment that the field be purely retarded leads, in general, to
a bad behavior of the field along the “creation light cone”
of the “point” at which a source enters the universe (see
Ref. [5] for detailed discussion).

It is natural to use de Sitter space for studying radiat-
ing sources in spacetimes which are not asymptotically flat
and possess spacelike infinities: It is the space of con-
stant curvature, conformal to Minkowski space, and with
the Huygens principle satisfied for conformally invari-
ant fields. The de Sitter universe also plays an important
role in cosmology —not only in the context of inflation-
ary theories but also as the “asymptotic state” of standard
cosmological models with L . 0, which has been indeed
suggested by recent observations. In addition, the Born
fields generalized to de Sitter space should be relevant from
quantum perspectives: for example, for studying particle
production in strong fields, or accelerating detectors in the
presence of a cosmological horizon.

The de Sitter universe has topology S3 3 �. The metric
in standard “spherical” coordinates (note [7]) is

gdS � 2dt2 1 a2 cosh2�t�a� �dx2 1 sin2xdv2� ,
(1)

where dv2 � dq 2 1 sin2qdw2, t [ �, and a2 � 3�L.
Putting x � r̃, t � a log tan�t̃�2�, t̃ [ �0, p�, in Eq. (1),
the de Sitter metric can be written in the form

gdS � a2 sin22t̃�2dt̃2 1 dr̃2 1 sin2r̃dv2� . (2)

The lines r̃ � p and r̃ � 2p are identified, the spacelike
hypersurfaces t̃ � 0, p represent I2 and I1 (Fig. 1).

By employing conformal techniques, we recently stud-
ied [5] two particles moving with uniform acceleration
© 2002 The American Physical Society 211101-1
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FIG. 1. The conformal diagram of de Sitter spacetime. Uni-
formly accelerated particles move along world lines 1 and 10.
The shaded region is the domain of influence of 1, its boundary
H is the “creation light cone” of this particle “born” at t̃ � 0
at “point” O. Retarded fields of 1 and 10 cannot affect point P;
a Coulomb-type field, however, cannot vanish there.

(note [8]) in de Sitter space. Their world lines are plot-
ted in Fig. 1 as 1, 10 [for explicit formulas see Ref. [5],
Eq. (4.4); see also Eqs. (6) and (10) below]. Both particles
start at antipodes of the spatial section of de Sitter space at
I2 and move one towards the other until t̃ � p�2, the
moment of the maximal contraction of de Sitter space.
Then they move, in a time-symmetric manner, apart from
each other until they reach future infinity at the antipodes
from which they started. Their physical velocities, as mea-
sured in the “comoving” coordinates �t, x, q ,w�, have
simple forms yx �

p
gxx dx�dt � 7aoa tanh�t�a� 3

�1 1 a2
oa2 tanh2�t�a�	21�2, where jaoj is the magnitude

of their acceleration. In contrast to the flat space case,
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the particles do not approach the velocity of light in the
“natural” global coordinate system. They are causally dis-
connected (Fig. 1) as in the flat space case: No signal
from one particle can reach the other particle.

Two charges moving along the orbits of the boost Killing
vector in flat space are at rest in the Rindler coordinate sys-
tem and have a constant distance from the spacetime ori-
gin, as measured along the slices orthogonal to the Killing
vector. Similarly, the world lines 1 and 10 are the orbits
of the “static” Killing vector ≠�≠T of de Sitter space. In
static coordinates �T , R, q , w �, T � a

2 log��cosr̃ 2 cost̃��
�cosr̃ 1 cost̃�	, R � a sinr̃�sint̃, the particles 1, 10 are at
rest at R � 6Ro � 7aoa2�

p
1 1 a2

oa2, with four accel-
erations 2�Ro�a2�≠�≠R. The particle 1 �10� has, as mea-
sured at fixed T , a constant proper distance from the origin
t̃ � p�2, r̃ � 0 �r̃ � p�. As with Rindler coordinates in
Minkowski space, the static coordinates cover only a “half”
of de Sitter space; in the other half the Killing vector ≠�≠T
becomes spacelike.

By the conformal transformation of the boosted Cou-
lomb fields in Minkowski space, we constructed [5] test
scalar and electromagnetic fields produced by charges
moving along the world lines 1, 10 in de Sitter space. The
scalar field from two identical scalar charges s is given by

Fsym � �s�4p�Q21, (3)

Q � �a2�
p

1 1 a2
oa2 1 aoR cosq �2 2 a2 1 R2	1�2

(4)

[Ref. [5], Eq. (5.4)], whereas the electromagnetic field due
to opposite charges 1e and 2e is [Ref. [5], Eq. (5.7)]
Fsym � 2
e

4p

1
Q3

aoa4

sin3 t̃
�cost̃ sin2r̃ sinqdr̃ ^ dq 1 �a21

o

p
a2

o 1 a22 sinr̃ 1 sint̃ cosq �dt̃ ^ dr̃

2 sint̃ cosr̃ sinr̃ sinqdt̃ ^ dq 	 . (5)
We call these smooth (outside the sources) fields symmet-
ric because they can be written as a symmetric combination
of retarded and advanced effects from both charges.

Although Eqs. (3) and (5) represent fields due to uni-
formly accelerated charges in de Sitter space, their re-
lation to the Born solutions is not transparent because
the sources are not located symmetrically with respect
to r̃ � 0. Hence, we consider the world lines 2 and
20 (Fig. 2) which, due to homogeneity and isotropy of
de Sitter space, also represent uniformly accelerated par-
ticles. These world lines and the resulting fields can be
obtained from Eqs. (3)–(5) by a spatial rotation by p�2.
We find the world lines 2, 20 to be given by

cott̃ � 2 sinh�ldSa21
p

1 1 a2
oa2 ��

p
1 1 a2

oa2 ,

tanr̃ � 6 cosh�ldSa21
p

1 1 a2
oa2 ���aoa� ,

(6)

q � 0, w � 0. The scalar and electromagnetic fields are

FBdS � �s�4p� sint̃�sint̃ 1 cosr̃�21R21, (7)
FBdS � 2
e

4p

a3

R3

aoa sinq

�sint̃ 1 cosr̃�3 �sin2r̃ cost̃dr̃ ^ dq 2 �a21
o

p
a2

o 1 a22 cosr̃ 2 sint̃� cotqdt̃ ^ dr̃

1 �a21
o

p
a2

o 1 a22 2 cosr̃ sint̃� sinr̃dt̃ ^ dq 	 ,

R

a
�

��aoa sint̃ 2
p

1 1 a2
oa2 cosr̃�2 1 sin2r̃ sin2q 	1�2

sint̃ 1 cosr̃
.

(8)
In order to understand explicitly the relation of these
fields to the classical Born solutions, consider Minkowski
spacetime with spherical coordinates �t, r, q , w� with met-
ric gM � 2dt2 1 dr2 1 r2dv2. If we set
t � 2a cost̃��cosr̃ 1 sint̃� ,

r � a sinr̃��cosr̃ 1 sint̃� ,
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FIG. 2. The world lines 2, 20 of uniformly accelerated charges
symmetrically located with respect to the origins of both
de Sitter and conformally related Minkowski spacetimes.

with q , w unchanged, we find that this Minkowski
space is conformally related to de Sitter space as follows
(Fig. 2):

gdS � V2gM, V �
cosr̃ 1 sint̃

sint̃
�

2a2

a2 2 t2 1 r2
.

(9)

In coordinates �t, r,q , w �, which can also be used in
de Sitter space (note [9]), the world lines 2, 20, Eqs. (6),
acquire the simple form: q � 0, w � 0, and

t � bo sinh�lM�bo�, r � 6bo cosh�lM�bo� , (10)

where lM is the proper time as measured by gM, and
bo�a �

p
1 1 a2

oa2 2 aoa. The world lines (10) are
just two hyperbolas (Fig. 2), representing particles with
uniform acceleration 1�bo as measured in Minkowski
space.

Transforming the fields (7) and (8) into conformally flat
coordinates �t, r, q , w�, we obtain

FBdS � �s�4p�V21R21, (11)

FBdS � 2
e

4p

a3

2bo

sinq

R3

3 �r�b2
o 1 t2 1 r2�dt ^ dq 2 �b2

o 1 t2 2 r2�
3 cotqdt ^ dr 2 2tr2dr ^ dq 	 , (12)

the factor R now being given by

R � ��b2
o 1 t2 2 r2�2 1 4b2

or2 sin2q 	1�2��2bo� . (13)

Expressions (7), (8), (11), and (12) represent the gen-
eralized Born scalar and electromagnetic fields from the
sources moving with constant acceleration ao along the
world lines (6), respectively (10), in de Sitter universe.

To connect these fields with their counterparts in flat
space, note that they are conformally related by transfor-
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mation (9). Under the conformal transformation, the field
FBdS in (11) has to be multiplied by factor V, which
gives FBdS � �s�4p�R21, and FBdS in (12) remains un-
changed. The transformed fields then precisely coincide
with the classical Born fields; see, e.g., Refs. [1,2,10].

In order to see the limit for L ! 0, we parametrize
the sequence of de Sitter spaces by L, identifying them
in terms of coordinates �t,r, q , w�. As L � 3�a2 ! 0,
Eq. (9) implies VL ! 2, gdS L ! 4gM. After the trivial
rescaling of t, r by factor 2, the standard Minkowski metric
is obtained. The limit of the fields (11) and (12), in which
bo is kept constant [cf. ao � �1 2 b2

oa22���2bo�], leads
to the scalar and electromagnetic Born fields in flat space.
Because of the rescaling of coordinates by factor 2, we get
the physical acceleration 1�bo � 2ao, and the scalar field
rescaled by 1�2.

What is the character of the generalized Born fields?
Focusing on the electromagnetic case, we first decompose
the field (8) into the orthonormal tetrad �em� tied to coordi-
nates �t̃, r̃ , q , w�; for example, et̃ � �a21 sint̃�≠�≠t̃, etc.,
the dual tetrad et̃ � �a� sint̃�dt̃, etc. Splitting the field
into the electric and the magnetic parts, FBdS � E ^ et̃ 1

B ? er̃ ^ eq ^ ew, we get

E �
e

4p

a sin2t̃

R3�sint̃ 1 cosr̃�3

3 �2�
p

1 1 a2
oa2 cosr̃ 2 aoa sint̃� cosqer̃

1 �
p

1 1 a2
oa2 2 aoa sint̃ cosr̃� sinqeq 	 ,

B � 2
e

4p

aoa2 sin2 t̃
R3�sint̃ 1 cosr̃�3

cost̃ sinr̃ sinqew .
(14)

The fields exhibit some features typical for the classical
Born solution. The toroidal electric field, Ew, vanishes;
only Bw is nonvanishing. At t̃ � p�2, the moment of time
symmetry, Bw � 0. It vanishes also for q � 0— there is
no Poynting flux along the axis of symmetry.

The classical Born field decays rapidly (E 
 r24, B 

r25) at spatial infinity, but it is “radiative” �E, B 
 r21�
if we expand it along null geodesics t 2 r � const, ap-
proaching thus null infinity. In de Sitter spacetime with
standard slicing, the space is finite �S3�. However, we can
approach infinity along spacelike hypersurfaces if, for ex-
ample, we consider the “steady-state” half of the de Sitter
universe (cf. Fig. 1) with flat-space slices, i.e., if we take
the “conformally flat” time ť � const (note [9]). Intro-
ducing the orthogonal tetrad tied to conformally flat co-
ordinates �ť, ř , q , w�, the tetrad components of the fields
decay as ř22 at ť � const, ř ! `, so that the Poynting
flux falls off as ř24.

The fields decay very rapidly along timelike world lines
as I1 is approached. This is caused by the exponential ex-
pansion of slices t � const [cf. Eq. (1)]. As t ! `, the
electric field (14) becomes radial, Er̃ 
 exp�22t�a�, and
Bw 
 exp�22t�a�. The energy density, u � 1

2 �E2 1

B2�, decays as �expansion factor�24 —as energy density
in the radiation dominated standard cosmologies. The
211101-3
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FIG. 3. Space trajectories of null geodesics g, gs, and ḡs
indicated on the slice t̃ � const �w � 0�. Charges 1, 10 move
along q � 0 from poles O, O0 to points E, E0 and back. g, gs,
and ḡs start at N2 at t̃ � 0 and arrive at N1 (with coordinates
x1, q1) at t̃ � p . The direction of g at N1 is specified by
angles q�, w� (w� describes rotation around ex in the dimen-
sion not seen). gs crosses the world line of particle 1 at Eret; ḡs
reaches N1 from the opposite direction.
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density of the conserved energy uconf � �a� sint̃�u 

exp�23t�a� (determined by a timelike conformal Killing
vector ≠�≠t̃) gets rarified at the same rate that the volume
increases.

Will a slower decay occur if I1 is approached along
null geodesics? To study the asymptotic behavior of a
field along a null geodesic (see, e.g., Ref. [4]), we have to
(i) find a geodesic and parametrize it by an affine parame-
ter z , (ii) construct a tetrad parallelly propagated along the
geodesic, and (iii) study the asymptotic expansion of the
tetrad components of the field. We find that along null
geodesics lying in the axis q � 0 (thus crossing the par-
ticles’ world lines) the “radiation field,” i.e., the coefficient
of the leading term in 1�z , vanishes, as could have been
anticipated —particles do not radiate in the direction of
their acceleration. The radiation field also vanishes along
null geodesics reaching infinity along directions opposite
to those of geodesics emanating from the particles (see
Fig. 3). Along all other geodesics, the field has radiative
character. Along a null geodesic coming from a general
direction to a general point on I1, we find the electric
and magnetic fields (in a parallelly transported tetrad � fm�)
to be perpendicular one to the other, equal in magnitude,
and proportional to z21. The magnitude of Poynting flux,
jS� f�j � jE� f�j

2 � jB� f�j
2, is
jS� f�j �
e2

�4p�2

a2
o sin2q1 csc4x1

4�1 1 a2
oa2 cos2q1�3

�cos2q� sin2w� 1 �cosw� 1 a21
o

p
a2

o 1 a22 sinq� cscq1�2	z 22 (15)
(see Fig. 3 for the definition of angles x1, q1, q�, w�).
These results are typical for a radiative field. Most in-
terestingly, this radiative aspect depends on the specific
geodesic along which a given point on spacelike I1 is ap-
proached (cf. [4]). Moreover, the radiative character does
not disappear even for static sources but it does along null
geodesics emanating from such sources.

Since the field can be interpreted as the combination of
retarded and advanced effects, similarly to the flat space
case [2], the radiation reaction force also vanishes.

In summary, we have constructed the fields of uniformly
accelerated charges in a de Sitter universe which go over
to classical Born fields in the limit L ! 0. Aside from
some similarities found, the generalized fields provide the
models showing how a positive cosmological constant im-
plies essential differences from physics in flat spacetime:
Advanced effects occur inevitably, and the character of the
far fields depends substantially on the way in which future
(spacelike) infinity is approached. Since vacuum energy
seems to be dominant in the universe, it is of interest to
understand fundamental physics in the vacuum dominated
de Sitter spacetime.
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