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Gravitational and electromagnetic fields near an ant-de Sitter—like infinity
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We analyze the asymptotic structure of general gravitational and electromagnetic fields near an anti—de
Sitter—like conformal infinity. The dependence of the radiative component of the fields on a null direction
along which the infinity is approached is obtained. The directional pattern of outgoing and ingoing radiation,
which supplements standard peeling property, is determined by the algé®e#ioy type of the fields and also
by the orientation of the principal null directions with respect to timelike infinity. The dependence on the
orientation is a new feature if compared to spacelike infinity.
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In spacetimes which are asymptotically flat the behaviottribution analyzes only standard +3L universes with
of radiative gravitational and electromagnetic fields near in-A <0; generalization to higher dimensions does not seem to
finity has been rigorously analyzed by means of now classibe straightforward.
cal techniques, such as those in R¢ts-3]. However, it still
remains an open problem to fully characterize the asymptotic |. SPACETIME INFINITY, FIELDS, AND TETRADS
properties of more general exact solutions of the Einstein- o )

Maxwell equations. Even in spacetimes which admit a 1he conformal infinity 7 can be introduced2,3] as a
smooth infinity Z the concept of radiation is not obvious Poundary of physical spacetimet with physical metricg,
when the cosmological constant is nonvanishing. If we when embedded into a larger conformal manifold with
define theradiative component of a fields they ! term of ~ conformal metricj= w?g; the conformal factorw (negative
the field with respect to a parallelly transported tetrad alondn M) vanishes orf. Assumingg is regular there, the metric
a null geodesic» being affine parametgrthen forA#0 the g is “infinite” on Z, andZ is thusinfinitely distant from the
radiation depends on the direction along which the geodesidsterior of spacetimeM. We will be interested here in a
approach a given point &t[2,3]. timelikeconformal infinity which is characterized by a space-

It is natural to analyze and describe such dependencdike gradientdw onZ. The conformal metri@ near such an
Recently, we studief#4] this behavior of fields nedf in the  anti—de Sitter—like infinity can always be decomposed into
caseA>0 and demonstrated that the directional pattern ofLorentzian three-metridg tangent taZ, and a part orthogo-
radiation close to de Sitter—like infinity has a universal char-al to it,
acter that is determined by the algebraic type of the fields. In
the present work we investigate the complementary situation 9= 2(Tg+ N?dw?). (1)
when A <0. Interestingly, although the method is similar to
the previous case, the results turn out to be more compliThe spacelike unit vectar normal to the infinity is then
cated, and completely new phenomena occur. This stems ~
from the fundamental difference that the anti—de Sitter—like n“=-o 'Ng*'d,0. (2
infinity Z is timelike and thus admits a “richer structure” of
radiative patterns. This fact was recently demonstrated by We denote the vectors of anrthonormal tetrad as
analyzing radiation generated by accelerating black holes if d. I', s (t timelike) and the associated null tetrad as
an anti—de Sitte(AdS) universe[5]: Z is divided by the
Killing horizons into several domains with a different struc- _ 1
ture of principal null directions, in which the patterns of k‘E(Hq)’ I—%(t—q),
radiation differ. Moreover, ingoing and outgoing radiation
have to be treated separately. It is the purpose of our work to

generalize these results and to describe all the possible radia- m= i(r— is), m= i(rﬂs), (3)
tive patterns for gravitational and electromagnetic fields near V2 2
an anti—de Sitter—like infinity.

A study of spacetimes with # 0 is motivated also by the so thatk-1=—1, m-m=1. In the null tetrad the Weyl tensor

fact that they have now become commonly used in variou€,z,s can be parametrized by five complex coefficietts,
branches of physical research, e.g., in inflationary model$=0,1,2,3,4, and the electromagnetic ten§qy; by three
brane cosmologies, supergravity or string theories, in pareoefficients®;, j=0,1,2; see Refd8], [9].

ticular due to the AdS conformal field theof€FT) corre- We wish to investigate the behavior of these field compo-
spondence. Although branes and strings are typically studiedents in an appropriate interpretation tetrad parallelly trans-
in higher-dimensional spacetimes, four-dimensional modelported along future oriented null geodesi€¢s;) which reach
have also been consideréske, e.g., Ref$6], [7]). Our con- a given pointP., at Z. Such geodesics form two distinct
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families which are distinguished by theairientation e: geo-
desicsoutgoingto Z which endat P,, (e=+1) and geode- Kl
sicsingoing from Z which startat P., (e= —1). A geodesic
thus reaches the poift,, for the affine parametefy— ex.

The lapse-like functionN>0 and the conformal factor T
<0 can be expanded along the geodesic in powers »f 1/
asN~N,+-, o~ew, n '+---. Here,N..=N|p_is the
same for all geodesics reachiiy,. Moreover, we require —
that the approach of all geodesics to the infinity is “compa-
rable,” independent of theidirection, so we assume, to
be a(negative constant. It is equivalent to fixing the mo-
mentump,=p-n (p=Dz/d» being the four-momentujrat
a given small value ofv. This choice of the “comparable” ¥
approach tdZ is the only one we can apply unless there are to
additional geometrical structurdas, e.g., a Killing vector P
which would allow us to fix a different quantite.g., the
energy. We will see that this choice has significant conse-
guences for the character of the radiation pattern. o g, So

The interpretation tetradk;, I;, m;, m; also has to be
specified “comparably” for all geodesics having different di- FIG. 1. Parametrization of a null directidnnear timelike infin-
rections. We require that) the null vectork; is proportional ity Z. All null directions form three familiesoutgoing directions

to the tangent vector of the geodesic (k-n>0, vectork(®" in the figure, ingoing directions k-n<0,
vectork(), and directions tangent fh With respect to a reference

1 D tetradt,, q,, o, S, @ directionk can be parameterized by boast
K = _Z (4) angle ¢, and orientatiorg, or by parameterp, ¢, or by a complex
ﬂmw d 77' numberR. In the upper diagram, the vectdys q,, r , are depicted,

the remaining spatial directiosy, is suppressed; in the bottom the

N . . .. directiong,=n is omitted. The parameters ¢ specify the normal-
the factor being independent of the direction, &ndthe null 4 orthogonal projectiot, of k into Z [cf. Egs.(5) and (7)]. To

vectorl; is fixed by normalizatiork;-l;=—1 and the require-  5rametrizek uniquely, we have to specify also its orientation
ment that normal vecton belongs tok;-I; plane[3]. The .~ gsgnk.n) with respect tdZ. Vectorst, corresponding to all out-
remaining vectorsm;, m; cannot be SpeCIerd canonically. going (or ingoing null directions form a hyperbolic surfaté. This
Below, these vectors will be chosen arbitrarily and we will can be radially mapped onto a two-dimensional disk tangent to the
only study moduli|¥},| and|®}| of the radiative field com- hyperboloid at,, which can be parametrized by an anglend a
ponents which are independent of such a choice. radial coordinatep=tanhi. In the exceptional case=0 the boost

As 7n—ex, the interpretation tetrad is “infinitely” #—, andkety+r, is tangent tdZ. Finally, the parameteR is the
boosted with respect to an observer with four-velocity tan-Lorentzian stereographic representation/of, e [cf. Eq. (8)].
gent toZ. To see this explicitly, we introduce an auxiliary
tetradty, . ry, S, adapted to the infinitygu= en, with Il. DIRECTIONAL PATTERN OF RADIATION

timelike vectort,, given by the projection ok; to 7, Now we explicitly derive the dependence of the radiation

on the direction of a null geodesic along which the infinity is
tpocki— (ki-nn, (5 approached. First, we parametrize this direction with respect

to a suitablereference tetrad,, q,, r,, S adapted to the

and the spatial vectors, s, being identical ta;, 5. Check-  conformal infinity, namelyg,=n. The vectord,, r,, S, can

ing thatk;-n~e(1~/2) 5~ we obtain be fixed conveniently with the help of the particular geom-

etry of the spacetime. The timelike vectgris related to the

vectort, by a boost(cf. Fig. 1)

t,= (coshy)ty+ (sinhy)r 4, 7

1
ki=Bikp= 77_15('&# en), my=my,

1 with  1,=(cos@)r,+ (sing)s, [and Sp=(—sin ¢)fo
=B, = 77_(tb en), m=my, (6) t(cosg)s)]. Because the vectds, is related to the projec-
tion of k; we can use the “Lorentzian angle®, ¢ and the
orientatione to parameterize the direction of the null geode-
B;= 1/ being a boost parameter which approaches zero ofiC. Instead of these parameters it is also convenient to use
7, i.e., it represents an “infinite” boost. Under this the fields their Lorentzian stereographic representation R
transform aS\I'; B WD, &, =B} J®P. Considering the ,
behavior(10) in a tetrad adapted to thls implies standard _ anf(y/2)exp(—i¢) for e=+1, ®)
peeling-off property. coth(4/2)exp(—i¢) for e=—1.
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We allow also the infinite valueR=«~ corresponding to

=0, e=—1, i.e., ke(IV2)(t,—0o).
Next, we express the field componeﬂt$ (and®

respect to the reference tetrad using algebraically privileged

principal null directions(PND9. The PNDs of the

tional (or electromagnetic, respectivelfreld are the null di-
rectionsk such that¥ (=0 (or ®,=0) in a null tetradk, I,

m, m (the choice ofl, m, m being irrelevant If we
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) with

gravita-

Interestingly, the radiation pattern thus has the same form if
we reflect all PNDsR,—(R,)n, and switch ingoing and

param- - gtgoing directionsR— Ry,.

etrizek by the above stereographic paramed®ethe condi-
tion on PND with respect to the reference tetrad takes the

form [8,9]
R+ 4R+ 6R?WS+ 4RV +WE=0,

R2®5+2RD I+ dJ=0,

respectively. There are thus folar two) PNDs characterized
by the rootsR=R,, n=1, 2, 3, 4(or R=RE™, n=1,2). In

a generic situation we haw$+ 0, and the remain

ponents¥?

(analogously foKD}’, j=0, 1); see Ref[4].

Using the conditiongi) and (ii) above and Eqs6)—(8),

, 1=0, 1, 2, 3, can be expressed in termsRpf

Ill. DISCUSSION

Expressiong11) and(12) characterize the asymptotic be-
havior of the fields near anti—de Sitter—like infinity. We will
analyze here only the gravitational field, the discussion of the
electromagnetic field being analogous. First, we observe that
the radiation “blows up” for directions withR|=1 (i.e.,
y—»). These are null directionngentto the infinity Z,
and thus they do not represent a direction of any geodesic
approaching the infinity from the “interior” of the space-
time. The reason for this divergent behavior is purely kine-
matic: when we required the “comparable” approach of geo-
desics to the infinity we had fixed the component of the

9

ing com-

we can now find the Lorentz transformation from the refer-four-momentunpe=k; normal toZ. Clearly, such a condition

ence tetrad to the interpretation tetragb to a nonunique

implies an “infinite” rescaling ifk; is tangent toZ, which

rotation in them;—m; plang. We can thus express the field results in the divergence o).

components?, (or <I>i2) with respect to the interpretation
tetrad in terms oflff (or CDJ"), and consequently in terms of
the parameter®, of PNDs and¥§ (or REM and ®9); cf.

The divergence afR|=1 splits the radiation pattern
into two components—the pattern fautgoing geodesics
(JR|<1,e=+1) and that foringoing geodesics |R|>1,

Ref. [4]. Taking into account a typical behavior of the fields €= —1). These two different patterns are depicted in dia-

in a tetrad adapted @ (e.g., Ref[3]),

\Pg%wﬁ* 7]731 (I)g%q)g* 77721

we finally obtain thedirectional pattern of radiation-the
dependence of radiative components of gravitational an
electromagnetic fields on the null directidgiven by R)

along which the timelike infinity is approached:

[Wol~ el 71— R

Rl el Rl R

Rm Rm Rm Rm|’
) REM REM
|~ o] —17 _ 21-1/4 1 . 2

Here, the complex numbé&®,,,

Rn,=R 1= coth(y4/2)exp(—i ),

characterizes a direction obtained from the directibhy a
reflection with respect td, i.e., themirrored direction with

Um=, = ¢ but opposite orientatiora,,= — €.

The expressior{11) has been derived assuminigg+ 0,

grams in Fig. 2 separately.

From Eq.(11) it is obvious that there are, in generfdur
directions along which the radiatioranishesnamely PNDs
reflected with respect t@, given by R=(R,),,. Outgoing
PNDs give rise to zeros in the radiation pattern for ingoing
geodesics, and vice versa. A qualitative shape of the radiation
pattern thus depends @) orientationof PNDs with respect
to 7 (i.e., the number of outgoing, ingoing, or tangent PINDs
and(ii) degeneracyf PNDs (Petrov type of the spacetime
Depending on these factors, there are 51 qualitatively differ-
ent shapes of the radiation patter(® for Petrov type N
spacetimes, 9 for type Ill, 6 for D, 18 for Il, and 15 for
type | spacetimes21 pairs of them are related by the duality
of Egs.(11) and(14). The most typical are shown in Fig. 2.

The reference tetrad can be chosen to capture a geometry
of the spacetime. To simplify the radiation pattern we can
also adapt it to the algebraic structure, i.e., to correlate the
tetrad with PNDs. For example, we can always orient
along the orthogonal projection b of the most degenerate
PND, sayk,. For the outgoing, we then obtairk,ock,,
R,=0 (¢4,=0,e,=+1); for the ingoingk, we getk,ol,,
R,=« (¢4,=0,e,=—1) and we have to employ the pattern
(14). Thus, for spacetime of the Petrov type N we get
¥,=0,n=1,2,3,4, and the directional dependence

(10

(11)

. (12
(13

| W] o< (coshy+ e;€)? (15)

i.e.,R,# . However, to describe PND oriented aldgdt is

necessary to use a different componm’ﬂ as a no
tion factor. For example, with’§ we obtain

rmaliza- illustrated in Fig. 2Na). Similarly, the radiation pattern sim-

plifies for other algebraically special spacetimes.

084023-3



PAVEL KRTOUSAND JIRI PODOLSKY PHYSICAL REVIEW D 69, 084023 (2004
At generic points the PNDs are not tangenftdlowever,
they can be tangent on some lower-dimensional subspace
such as the intersection @fwith Killing horizons—cf. the
‘ anti—de SitterC-metric [5]. These subspaces are important,
e.g., in the context of a lower-dimensional version of the
(Na)

f ) f (Nb) Randall-Sundrum model: a two-brane moving i€anetric
ouigotng tangent reaches the infinity with PNDs tangent both to it and {@&].
In the case when the PNE) is tangento Z, the reference
tetrad has to be chosen differently, e.g., in such a way that
R,=1. For the type N spacetime we then obtain the direc-
] tional dependencksee Fig. 2(Nb)]
(L11a) (I1b)
4 outgoing 3 outgoing, 1 ingoi‘ng |1_ R|4
’ | : |W}|oc ————>=(coshy—sinhycosg)®.  (16)
” 11-IRJ
, 7 | The only zero of this expression is f&=1 (¢y—o,$=0;
t Y0 (Db) limit considered through directions witlR|# 1) which does

4 outgoing 2 outgoing, 2 ingoing not correspond to any outgoing or ingoing geodesic. For type

g 5 D spacetime R;=R,,R;=R,=1) the directional depen-
(D9

dence becomég=igs. 2(Dc), (Dd)]
2 outgoing, 2 tangent

(Ha)g

4 outgoing 3 outgoing, 1 ingoing
_ . o

) |[1-R|?|1-R;/Ry|?
oC
) 1[R[

Dd) 17
4 tangent

‘, This has zero aR=(R;),, (if |Ry|#1), and it doesnot
‘ diverge forR=1, with a directionally dependent limit there.
' If all PNDs are tangento Z, R,=exp(—ig,), (not necessary
(ITb)

degeneratethe pattern can be written

(Wal~1Wln™ 11 [coshy—sinhycosd— )"
o (18)

(Ilc) (Ia) There are no outgoing or ingoing directions along which
2 outgoing, 2 ingoing 4 outgoing radiation vanishes in this case—see, e.g., FigD@).
1 To summarize, wheff is timelike the radiation fields de-
pend on the direction along which the infinity is approached.
Analogously to theA >0 casg 4] the radiation pattern has a
universal character determined by thkgebraic typeof the
(1) (1) fields. However, new features occur whar<0: both out-
3 outgoing, 1 ingoing 2 outgoing, 2 ingoing going and ingoing patterns have to be studied; their shapes
depend also on therientation of PNDswith respect to the
FIG. 2. Directional patterns of radiation near a timelikeAll 11 infinity, and an interesting possibility of PNOangent toZ
qualitatively different shapes of the pattern when PNDs are nogppears. Radiation vanishes only along directions which are
tangent toZ are shown(the remaining 9 are related by a simple reflections of PNDs with respect ff in a genericdirection
reflection with respect t@). PatterngNb), (Dc), (Dd) are justafew i jg nonvanishing The absence of~ ! term thus cannot be
examples with PNDs tangent b Each diagram consists of pat- ysed to distinguish nonradiative sources: near an anti—de
terns for ingoing(left) and outgoing geodesiclight). [Wi| is  sitter—like infinity the radiative component reflects not only

drawn on the vertical axis, and the directions of the geodesics aBroperties of the sources but also their relation to the ob-
represented on the horizontal disk by coordingtes introduced in server

Fig. 1. ReflecteddegeneratePNDs are indicated bymultiple) ar-

rows under the discs. For PNDs that are not tangeft tfoese are

directions of vanishing radiation. The Petrov tyid¢ Ill, D, II, I) ACKNOWLEDGMENTS

corresponding to the degeneracy of PNDs is indicated by the labels .
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