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Gravitational and electromagnetic fields near an anti–de Sitter–like infinity
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We analyze the asymptotic structure of general gravitational and electromagnetic fields near an anti–de
Sitter–like conformal infinity. The dependence of the radiative component of the fields on a null direction
along which the infinity is approached is obtained. The directional pattern of outgoing and ingoing radiation,
which supplements standard peeling property, is determined by the algebraic~Petrov! type of the fields and also
by the orientation of the principal null directions with respect to timelike infinity. The dependence on the
orientation is a new feature if compared to spacelike infinity.

DOI: 10.1103/PhysRevD.69.084023 PACS number~s!: 04.20.Ha, 04.40.Nr, 98.80.Jk
io
in

ss

ot
in

s

n

si

nc

o
ar
.
tio
to
p
em
ik
f
b

s

c-
of
n

k
ad
ea

ou
e
a

di
e

to

e-

nto

r

o-
ns-

t

In spacetimes which are asymptotically flat the behav
of radiative gravitational and electromagnetic fields near
finity has been rigorously analyzed by means of now cla
cal techniques, such as those in Refs.@1–3#. However, it still
remains an open problem to fully characterize the asympt
properties of more general exact solutions of the Einste
Maxwell equations. Even in spacetimes which admit
smooth infinity I the concept of radiation is not obviou
when the cosmological constantL is nonvanishing. If we
define theradiative component of a fieldas theh21 term of
the field with respect to a parallelly transported tetrad alo
a null geodesic~h being affine parameter!, then forLÞ0 the
radiation depends on the direction along which the geode
approach a given point atI @2,3#.

It is natural to analyze and describe such depende
Recently, we studied@4# this behavior of fields nearI in the
caseL.0 and demonstrated that the directional pattern
radiation close to de Sitter–like infinity has a universal ch
acter that is determined by the algebraic type of the fields
the present work we investigate the complementary situa
whenL,0. Interestingly, although the method is similar
the previous case, the results turn out to be more com
cated, and completely new phenomena occur. This st
from the fundamental difference that the anti–de Sitter–l
infinity I is timelike, and thus admits a ‘‘richer structure’’ o
radiative patterns. This fact was recently demonstrated
analyzing radiation generated by accelerating black hole
an anti–de Sitter~AdS! universe@5#: I is divided by the
Killing horizons into several domains with a different stru
ture of principal null directions, in which the patterns
radiation differ. Moreover, ingoing and outgoing radiatio
have to be treated separately. It is the purpose of our wor
generalize these results and to describe all the possible r
tive patterns for gravitational and electromagnetic fields n
an anti–de Sitter–like infinity.

A study of spacetimes withLÞ0 is motivated also by the
fact that they have now become commonly used in vari
branches of physical research, e.g., in inflationary mod
brane cosmologies, supergravity or string theories, in p
ticular due to the AdS conformal field theory~CFT! corre-
spondence. Although branes and strings are typically stu
in higher-dimensional spacetimes, four-dimensional mod
have also been considered~see, e.g., Refs.@6#, @7#!. Our con-
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tribution analyzes only standard 311 universes with
L,0; generalization to higher dimensions does not seem
be straightforward.

I. SPACETIME INFINITY, FIELDS, AND TETRADS

The conformal infinity I can be introduced@2,3# as a
boundary of physical spacetimeM with physical metricg,
when embedded into a larger conformal manifoldM̃ with
conformal metricg̃5v2g; the conformal factorv ~negative
in M! vanishes onI. Assumingg̃ is regular there, the metric
g is ‘‘infinite’’ on I, andI is thusinfinitely distant from the
interior of spacetimeM. We will be interested here in a
timelikeconformal infinity which is characterized by a spac
like gradientdv on I. The conformal metricg̃ near such an
anti–de Sitter–like infinity can always be decomposed i
Lorentzian three-metricIg̃ tangent toI, and a part orthogo-
nal to it,

g5v22~Ig̃1Ñ2dv2!. ~1!

The spacelike unit vectorn normal to the infinity is then

nm52v21Ñgmndnv. ~2!

We denote the vectors of anorthonormal tetrad as
t, q, r , s ~t timelike! and the associated null tetrad as

k5
1

&
~ t1q!, l5

1

&
~ t2q!,

m5
1

&
~r2 is!, m̄5

1

&
~r1 is!, ~3!

so thatk• l521, m•m̄51. In the null tetrad the Weyl tenso
Cabgd can be parametrized by five complex coefficientsC j ,
j 50,1,2,3,4, and the electromagnetic tensorFab by three
coefficientsF j , j 50,1,2; see Refs.@8#, @9#.

We wish to investigate the behavior of these field comp
nents in an appropriate interpretation tetrad parallelly tra
ported along future oriented null geodesicsz(h) which reach
a given pointP` at I. Such geodesics form two distinc
©2004 The American Physical Society23-1
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families which are distinguished by theirorientatione: geo-
desicsoutgoingto I which endat P` (e511) and geode-
sics ingoing from I which start at P` (e521). A geodesic
thus reaches the pointP` for the affine parameterh→e`.
The lapse-like functionÑ.0 and the conformal facto
v,0 can be expanded along the geodesic in powers ofh
as Ñ'Ñ`1¯ , v'ev* h211¯ . Here,Ñ`5ÑuP`

is the

same for all geodesics reachingP` . Moreover, we require
that the approach of all geodesics to the infinity is ‘‘comp
rable,’’ independent of theirdirection, so we assumev* to
be a ~negative! constant. It is equivalent to fixing the mo
mentumpo5p•n (p5Dz/dh being the four-momentum! at
a given small value ofv. This choice of the ‘‘comparable’
approach toI is the only one we can apply unless there a
additional geometrical structures~as, e.g., a Killing vector!
which would allow us to fix a different quantity~e.g., the
energy!. We will see that this choice has significant cons
quences for the character of the radiation pattern.

The interpretation tetradk i , l i , mi , m̄i also has to be
specified ‘‘comparably’’ for all geodesics having different d
rections. We require that~i! the null vectork i is proportional
to the tangent vector of the geodesic

k i5
1

&Ñ`

Dz

dh
, ~4!

the factor being independent of the direction, and~ii ! the null
vectorl i is fixed by normalizationk i• l i521 and the require-
ment that normal vectorn belongs tok i- l i plane @3#. The
remaining vectorsmi , m̄i cannot be specified canonicall
Below, these vectors will be chosen arbitrarily and we w
only study moduliuC4

i u and uF2
i u of the radiative field com-

ponents which are independent of such a choice.
As h→e`, the interpretation tetrad is ‘‘infinitely’’

boosted with respect to an observer with four-velocity ta
gent toI. To see this explicitly, we introduce an auxiliar
tetrad tb , qb , rb , sb adapted to the infinity,qb5en, with
timelike vectortb given by the projection ofk i to I,

tb}k i2~k i•n!n, ~5!

and the spatial vectorsrb , sb being identical tor i , si . Check-
ing thatk i•n'e(1/&)h21 we obtain

k i5Bikb5h21
1

&
~ tb1en!, mi5mb ,

l i5Bi
21lb5h

1

&
~ tb2en!, m̄i5m̄b , ~6!

Bi51/h being a boost parameter which approaches zero
I, i.e., it represents an ‘‘infinite’’ boost. Under this the field
transform asC j

i 5Bi
22 jC j

b , F j
i 5Bi

12 jF j
b . Considering the

behavior~10! in a tetrad adapted toI this implies standard
peeling-off property.
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II. DIRECTIONAL PATTERN OF RADIATION

Now we explicitly derive the dependence of the radiati
on the direction of a null geodesic along which the infinity
approached. First, we parametrize this direction with resp
to a suitablereference tetradto , qo , ro , so adapted to the
conformal infinity, namelyqo5n. The vectorsto , ro , so can
be fixed conveniently with the help of the particular geo
etry of the spacetime. The timelike vectortb is related to the
vector to by a boost~cf. Fig. 1!

tb5~coshc!to1~sinhc!rf , ~7!

with rf5(cosf)ro1(sinf)so @and sf5(2sinf)ro
1(cosf)so]. Because the vectortb is related to the projec-
tion of k i we can use the ‘‘Lorentzian angles’’c, f and the
orientatione to parameterize the direction of the null geod
sic. Instead of these parameters it is also convenient to
their Lorentzian stereographic representation R,

R5H tanh~c/2!exp~2 if! for e511,

coth~c/2!exp~2 if! for e521.
~8!

FIG. 1. Parametrization of a null directionk near timelike infin-
ity I. All null directions form three families:outgoing directions
(k•n.0, vectork(out) in the figure!, ingoing directions (k•n,0,
vectork(in)), and directions tangent toI. With respect to a reference
tetradto , qo , ro , so , a directionk can be parameterized by boostc,
anglef, and orientatione, or by parametersr, f, or by a complex
numberR. In the upper diagram, the vectorsto , qo , rf are depicted,
the remaining spatial directionsf is suppressed; in the bottom th
directionqo5n is omitted. The parametersc, f specify the normal-
ized orthogonal projectiontb of k into I @cf. Eqs.~5! and ~7!#. To
parametrizek uniquely, we have to specify also its orientatio
e5sgn(k•n) with respect toI. Vectorstb corresponding to all out-
going~or ingoing! null directions form a hyperbolic surfaceH. This
can be radially mapped onto a two-dimensional disk tangent to
hyperboloid atto , which can be parametrized by an anglef and a
radial coordinater5tanhc. In the exceptional casee50 the boost
c→`, andk}tb1rf is tangent toI. Finally, the parameterR is the
Lorentzian stereographic representation ofc, f, e @cf. Eq. ~8!#.
3-2



ge

th

-

er

ld
n
f

s

an

if

-
ill
the
that

esic
-
e-
o-
he

ia-

ng
tion

s

fer-

r
ty
.
etry
an
the

e

rn
et

-

GRAVITATIONAL AND ELECTROMAGNETIC FIELDS . . . PHYSICAL REVIEW D 69, 084023 ~2004!
We allow also the infinite valueR5` corresponding to
c50, e521, i.e.,k}(1/&)(to2qo).

Next, we express the field componentsC j
o ~andF j

o) with
respect to the reference tetrad using algebraically privile
principal null directions~PNDs!. The PNDs of the gravita-
tional ~or electromagnetic, respectively! field are the null di-
rectionsk such thatC050 ~or F050) in a null tetradk, l,
m, m̄ ~the choice ofl, m, m̄ being irrelevant!. If we param-
etrizek by the above stereographic parameterR, the condi-
tion on PND with respect to the reference tetrad takes
form @8,9#

R4C4
o14R3C3

o16R2C2
o14RC1

o1C0
o50,

R2F2
o12RF1

o1F0
o50, ~9!

respectively. There are thus four~or two! PNDs characterized
by the rootsR5Rn , n51, 2, 3, 4~or R5Rn

EM , n51,2). In
a generic situation we haveC4

oÞ0, and the remaining com
ponentsC j

o , j 50, 1, 2, 3, can be expressed in terms ofRn

~analogously forF j
o , j 50, 1!; see Ref.@4#.

Using the conditions~i! and ~ii ! above and Eqs.~6!–~8!,
we can now find the Lorentz transformation from the ref
ence tetrad to the interpretation tetrad~up to a nonunique
rotation in themi2m̄i plane!. We can thus express the fie
componentsC4

i ~or F2
i ) with respect to the interpretatio

tetrad in terms ofC j
o ~or F j

o), and consequently in terms o
the parametersRn of PNDs andC4

o ~or Rn
EM and F2

o); cf.
Ref. @4#. Taking into account a typical behavior of the field
in a tetrad adapted toI ~e.g., Ref.@3#!,

Cn
o'Cn*

o h23, Fn
o'Fn*

o h22, ~10!

we finally obtain thedirectional pattern of radiation—the
dependence of radiative components of gravitational
electromagnetic fields on the null direction~given by R!
along which the timelike infinity is approached:

uC4
i u'uC4*

o uh21z12uRu2z22

3U12
R1

Rm
UU12

R2

Rm
UU12

R3

Rm
UU12

R4

Rm
U, ~11!

uF2
i u'uF2*

o uh21z12uRu2z21U12
R1

EM

Rm
UU12

R2
EM

Rm
U. ~12!

Here, the complex numberRm,

Rm5R̄215cothe~c/2!exp~2 if!, ~13!

characterizes a direction obtained from the directionR by a
reflection with respect toI, i.e., themirrored direction with
cm5c, fm5f but opposite orientationem52e.

The expression~11! has been derived assumingC4
oÞ0,

i.e.,RnÞ`. However, to describe PND oriented alonglo it is
necessary to use a different componentC j

o as a normaliza-
tion factor. For example, withC0

o we obtain
08402
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uC4
i u'uC0*

o uh21z12uRmu2z22

3U12
R1m

R UU12
R2m

R UU12
R3m

R UU12
R4m

R U. ~14!

Interestingly, the radiation pattern thus has the same form
we reflect all PNDs,Rn→(Rn)m , and switch ingoing and
outgoing directions,R→Rm.

III. DISCUSSION

Expressions~11! and~12! characterize the asymptotic be
havior of the fields near anti–de Sitter–like infinity. We w
analyze here only the gravitational field, the discussion of
electromagnetic field being analogous. First, we observe
the radiation ‘‘blows up’’ for directions withuRu51 ~i.e.,
c→`). These are null directionstangentto the infinity I,
and thus they do not represent a direction of any geod
approaching the infinity from the ‘‘interior’’ of the space
time. The reason for this divergent behavior is purely kin
matic: when we required the ‘‘comparable’’ approach of ge
desics to the infinity we had fixed the component of t
four-momentump}k i normal toI. Clearly, such a condition
implies an ‘‘infinite’’ rescaling if k i is tangent toI, which
results in the divergence ofuC4

i u.
The divergence atuRu51 splits the radiation pattern

into two components—the pattern foroutgoing geodesics
(uRu,1,e511) and that for ingoing geodesics (uRu.1,
e521). These two different patterns are depicted in d
grams in Fig. 2 separately.

From Eq.~11! it is obvious that there are, in general,four
directions along which the radiationvanishes, namely PNDs
reflected with respect toI, given by R5(Rn)m . Outgoing
PNDs give rise to zeros in the radiation pattern for ingoi
geodesics, and vice versa. A qualitative shape of the radia
pattern thus depends on~i! orientationof PNDs with respect
to I ~i.e., the number of outgoing, ingoing, or tangent PND!,
and~ii ! degeneracyof PNDs~Petrov type of the spacetime!.
Depending on these factors, there are 51 qualitatively dif
ent shapes of the radiation patterns~3 for Petrov type N
spacetimes, 9 for type III, 6 for D, 18 for II, and 15 fo
type I spacetimes!; 21 pairs of them are related by the duali
of Eqs.~11! and~14!. The most typical are shown in Fig. 2

The reference tetrad can be chosen to capture a geom
of the spacetime. To simplify the radiation pattern we c
also adapt it to the algebraic structure, i.e., to correlate
tetrad with PNDs. For example, we can always orientto
along the orthogonal projection toI of the most degenerat
PND, sayk4 . For the outgoingk4 we then obtaink4}ko ,
R450 (c450,e4511); for the ingoingk4 we getk4} lo ,
R45` (c450,e4521) and we have to employ the patte
~14!. Thus, for spacetime of the Petrov type N we g
cn50, n51,2,3,4, and the directional dependence

uC4
i u}~coshc1e1e!2 ~15!

illustrated in Fig. 2~Na!. Similarly, the radiation pattern sim
plifies for other algebraically special spacetimes.
3-3
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FIG. 2. Directional patterns of radiation near a timelikeI. All 11
qualitatively different shapes of the pattern when PNDs are
tangent toI are shown~the remaining 9 are related by a simp
reflection with respect toI!. Patterns~Nb!, ~Dc!, ~Dd! are just a few
examples with PNDs tangent toI. Each diagram consists of pa
terns for ingoing~left! and outgoing geodesics~right!. uC4

i u is
drawn on the vertical axis, and the directions of the geodesics
represented on the horizontal disk by coordinatesr, f introduced in
Fig. 1. Reflected~degenerate! PNDs are indicated by~multiple! ar-
rows under the discs. For PNDs that are not tangent toI these are
directions of vanishing radiation. The Petrov type~N, III, D, II, I !
corresponding to the degeneracy of PNDs is indicated by the la
of diagrams; the number of ingoing and outgoing PNDs is a
displayed.
08402
At generic points the PNDs are not tangent toI. However,
they can be tangent on some lower-dimensional subsp
such as the intersection ofI with Killing horizons—cf. the
anti–de SitterC-metric @5#. These subspaces are importa
e.g., in the context of a lower-dimensional version of t
Randall-Sundrum model: a two-brane moving in aC-metric
reaches the infinity with PNDs tangent both to it and toI @6#.

In the case when the PNDk1 is tangentto I, the reference
tetrad has to be chosen differently, e.g., in such a way
R451. For the type N spacetime we then obtain the dir
tional dependence@see Fig. 2~Nb!#

uC4
i u}

u12Ru4

z12uRu2z2
5~coshc2sinhc cosf!2. ~16!

The only zero of this expression is forR51 (c→`,f50;
limit considered through directions withuRuÞ1) which does
not correspond to any outgoing or ingoing geodesic. For t
D spacetime (R15R2 ,R35R451) the directional depen
dence becomes@Figs. 2~Dc!, ~Dd!#

uC4
i u}

u12Ru2u12R1 /Rmu2

u12uRu2u2 . ~17!

This has zero atR5(R1)m ~if uR1uÞ1), and it doesnot
diverge forR51, with a directionally dependent limit there
If all PNDs are tangentto I, Rn5exp(2ifn), ~not necessary
degenerate! the pattern can be written

uC4
i u'uC4*

o uh21 )
n51,2,3,4

@coshc2sinhc cos~f2fn!#1/2.

~18!

There are no outgoing or ingoing directions along whi
radiation vanishes in this case—see, e.g., Fig. 2~Dd!.

To summarize, whenI is timelike the radiation fields de
pend on the direction along which the infinity is approach
Analogously to theL.0 case@4# the radiation pattern has
universal character determined by thealgebraic typeof the
fields. However, new features occur whenL,0: both out-
going and ingoing patterns have to be studied; their shap
depend also on theorientation of PNDswith respect to the
infinity, and an interesting possibility of PNDstangent toI
appears. Radiation vanishes only along directions which
reflections of PNDs with respect toI, in a genericdirection
it is nonvanishing. The absence ofh21 term thus cannot be
used to distinguish nonradiative sources: near an anti
Sitter–like infinity the radiative component reflects not on
properties of the sources but also their relation to the
server.
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@9# P. Krtoušand J. Podolsky´, Phys. Rev. D68, 024005~2003!.
3-5


