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Abstract
We analyse the directional properties of general gravitational, electromagnetic
and spin-s fields near conformal infinity I. The fields are evaluated in
normalized tetrads which are parallelly propagated along null geodesics which
approach a point P of I. The standard peeling-off property is recovered
and its meaning is discussed and refined. When the (local) character of
the conformal infinity is null, such as in asymptotically flat spacetimes, the
dominant term which is identified with radiation is unique. However, for
spacetimes with a non-vanishing cosmological constant the conformal infinity
is spacelike (for � > 0) or timelike (for � < 0), and the radiative component
of each field depends substantially on the null direction along which P is
approached.

The directional dependence of asymptotic fields near such de Sitter-like or
anti-de Sitter-like I is explicitly found and described. We demonstrate that the
corresponding directional structure of radiation has a universal character that is
determined by the algebraic (Petrov) type of the field. In particular, when � > 0
the radiation vanishes only along directions which are opposite to principal
null directions. For � < 0 the directional dependence is more complicated
because it is necessary to distinguish outgoing and ingoing radiation. Near such
anti-de Sitter-like conformal infinity the corresponding directional structures
differ, depending not only on the number and degeneracy of the principal
null directions at P but also on their specific orientation with respect
to I.

The directional structure of radiation near (anti-)de Sitter-like infinities
supplements the standard peeling-off property of spin-s fields. This
characterization offers a better understanding of the asymptotic behaviour
of the fields near conformal infinity under the presence of a cosmological
constant.
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1. Introduction

Many studies have been devoted to theoretical investigations of gravitational waves. The first—
by Einstein himself—appeared immediately after the formulation of general relativity [1, 2],
and was soon followed by other papers [3, 4]. Since then numerous works on gravitational
radiation have concentrated on specific approximate (analytic or numerical) analyses of various
spatially isolated gravitating sources, most recently binary systems, collision and merger of
black holes or neutron stars, supernova explosions and other possible astrophysical sources.

In rigorous treatments within the full Einstein theory, several interesting classes of exact
radiative solutions were found and investigated in the late 1950s and the early 1960s—for
example [5–11]. For reviews of these contributions to the theory of gravitational radiation see,
e.g., [12–19]. Although most of such spacetimes seem to be physically not very realistic, they
serve as useful explicit models and test beds for numerical relativity and other approximations.
Almost simultaneously, general frameworks which allow one to study asymptotic properties of
radiative fields were also developed and applied in now classical works [20–29] and elsewhere
(see, e.g., [30–35] for reviews and many references).
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Despite this long-standing effort, however, there still remain open fundamental problems
concerning the very concept of gravitational radiation in the context of the full nonlinear
Einstein theory. No rigorous statements are available which would relate the properties of
sufficiently general strong sources to the radiation fields produced. Also, the presence of a
non-vanishing cosmological constant � is not mathematically compatible with asymptotic
flatness that is naturally assumed in many of the existing analyses. Although important
results on the existence of vacuum solutions with � �= 0 have already been obtained [36], in
order to fully understand the properties of gravitational and electromagnetic radiation in such
‘de Sitter-type’ or ‘anti-de Sitter-type’ spacetimes, further studies are necessary.

As a particular contribution to this task we will here describe the asymptotic directional
behaviour of general fields in spacetimes which admit any value of the cosmological constant.

1.1. On studies of asymptotic behaviour of radiative fields in general relativity

First, we briefly summarize the main methods which have been developed to characterize
rigorously the asymptotic properties of fields in general relativity. It is not our intention to
present an exhaustive and thorough review of previous works. We only wish to set up a context
in which we could place our present analysis and results.

One fundamental technique for investigating radiative properties of gravitational and
electromagnetic fields at ‘large distance’ from a spatially bounded source is based on
introducing a suitable Bondi–Sachs coordinate system adapted to null hypersurfaces, and
expanding the metric functions in inverse powers of the luminosity distance r which plays
the role of an appropriate ‘radial’ coordinate parametrizing outgoing null geodesics [20, 21,
23, 37]. In the case of asymptotically flat spacetimes this framework allows one to introduce
the Bondi mass (the total mass of a system as measured at future null infinity I) and momentum,
and characterize the time evolution including radiation in terms of the news functions which
are the analogue of the radiative part of the Poynting vector in electrodynamics. Using
these concepts, it is possible to formulate a balance between the amount of energy radiated
by gravitational waves and the decrease of the Bondi mass of an isolated system. These
pioneering contributions were subsequently refined and generalized [24, 38, 39], and also
extended after the development of the complex null tetrad formalism and the associated spin
coefficient formalism [25, 26] which lead to great simplifications in the expressions, see, e.g.,
[13, 17, 18, 30, 32] for reviews. Nevertheless, in these works the analysis of radiative fields
assumed that spacetime is asymptotically flat. This ruled out, for instance, a non-vanishing
cosmological constant �. These methods generally are based on privileged coordinate systems
which are not automatically possible to generalize to the cases when � �= 0.

Alternatively, information about the character of radiation can be extracted from the
tetrad components of fields measured along a family of null geodesics approaching I. One
can consider only a bundle of such geodesics, as I need not exist globally. The rate of approach
to zero of the Weyl or Maxwell tensor is given by the celebrated peeling-off theorem [22, 23,
25, 29, 33, 40]. The component of a spin-s zero-rest-mass field (with respect to a parallelly
transported and suitably normalized interpretation tetrad) proportional to η−(j+1), where η is an
affine parameter along the null geodesics, j = 0, 1, . . . , 2s, appears to have in general 2s − j

coincident principal null directions. Consequently, the part of the field that falls off as η−1

exhibits 2s-degeneracy of principal null directions. It is thus considered as the radiation
field because its asymptotic algebraic ‘null’ structure [12, 33, 41–44] locally resembles
that of standard plane waves [5]. The gravitational or electromagnetic field thus represents
outgoing radiation if the dominant component of the Weyl or Maxwell tensor, conveniently
expressed in the Newman–Penrose formalism [25, 26, 45] as quantity �4 or �2, respectively, is
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non-vanishing. This component manifests itself through typical transverse effects on nearby
test particles [23, 46, 47]. Such a characterization of the radiative field remains valid also in
more general spacetimes because the peeling-off property holds even for a non-vanishing �

(the precise meaning of the peeling-off behaviour of fields will be discussed below in the main
text, see sections 5.2 and 6).

Another major step made by Penrose [27–29, 48] (see [33] for a comprehensive overview)
was his coordinate-independent (geometric) approach to the definition of radiation for massless
fields based on the conformal treatment of infinity. The Penrose technique enables one to
apply methods of local differential geometry near conformal infinity I (also referred to as
‘scri’) which is defined as the boundary � = 0 of the physical spacetime manifold (M, g) in
the conformally related ‘unphysical’ spacetime manifold (M̃, g̃), g̃ = �2g (see section 2).
Properties of radiation fields in M can thus be studied by analysing conformally (i.e.,
isotropically) rescaled fields on I in the compactified manifold M̃. For asymptotically flat
spacetimes, I is a smooth null hypersurface in M̃ generated by the endpoints of null geodesics.
In this case it is possible to define in a geometric way the Bondi mass, to derive the peeling-
off property, or to characterize the Bondi–Metzner–Sachs group of asymptotic symmetries
[21, 27, 37, 49, 50]. In particular, one can evaluate gravitational radiation propagating along a
given null geodesic which is described by the �4 component of the Weyl tensor projected on a
parallelly transported complex null tetrad. The crucial point is that such a tetrad is (essentially)
determined uniquely by the conformal geometry, see [33]. Moreover, the Penrose covariant
approach can be naturally applied also to spacetimes which include the cosmological constant
[28, 29, 33, 51]. This is quite remarkable, since there is no analogue of the news function in
the presence of � [52, 53] (for a comparison of the Bondi–Sachs and Penrose approaches,
see, e.g., [50, 54–59]).

The above mentioned analysis led Penrose to the elegant idea of (weakly) asymptotically
simple spacetimes—those having a smooth g̃ and � on I (see, e.g., [27, 29 , 33–35, 60–62] and
references therein for the precise definition). Because it entails a certain fall-off behaviour of
the physical metric near I, this is a fruitful rigorous concept for studying asymptotic radiation
properties of isolated systems in general relativity. It follows from the important recent works
[63–69], and also [70–80], that there indeed exist large classes of exact—though not given
in explicit forms—solutions to Einstein’s field equations which globally satisfy the required
regularity conditions on I (see [19, 36, 62, 81, 82] for a review). Let us emphasize that,
until now, the only explicitly known exact metrics satisfying Penrose’s asymptotic conditions
(although not globally since there are at least four ‘points’ at I which are singular) are boost-
rotation symmetric spacetimes representing uniformly accelerated ‘sources’ or black holes
[11, 13–15, 17, 18, 39, 83, 84]. Nevertheless, the original Penrose conjecture of asymptotic
simplicity may appear to be too restrictive in general. More recent studies have indicated
that generic Cauchy data fail to be smoothly extendable to the conformal boundary
[74, 75, 85, 86], see also [71, 80, 87–89]. More general spacetimes with polyhomogeneous
I were thus studied in [57, 90, 91] and in other works, for which the metric g̃ admits an
asymptotic expansion in terms of r−j logi r rather than r−j . This new setup naturally extends
the Bondi–Sachs–Penrose approach. For example, when � = 0 the Bondi mass still remains
well defined at polyhomogeneous I, and it is a non-increasing function of retarded time as
in [21, 23, 92]. For the class of polyhomogeneous vacuum metrics the asymptotic symmetry
group is the standard BMS group, and the peeling-off property of the curvature tensor is the
same as that for smooth metrics [23] up to the terms of order r−(2+ε), 0 � ε < 1, but the term
∼r−3 log r also appears. Further studies of polyhomogeneity for zero-rest-mass fields, such
as the existence of conserved quantities (NP constants) at I [33, 93–97], can be found, e.g.,
in [98, 99].
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Let us now concentrate on the main differences between the asymptotically flat spacetimes
and those with a non-vanishing cosmological constant �. Interestingly, specific new features
appear in the case of asymptotically ‘de Sitter-like’ (� > 0) or ‘anti-de Sitter-like’ (� < 0)

solutions for which the conformal infinity I is, respectively, spacelike or timelike. As Penrose
observed and repeatedly emphasized in his early works [28, 29, 100], the concept of radiation
for massless fields turns out to be ‘less invariant’ in cases when I does not have a null character,
see section 9.7 of [33]. Namely, it emerges as necessarily direction dependent since the choice
of the appropriate null tetrad, and thus the radiative component �4 of the field, may differ
for different null geodesics reaching the same point on I. This is, for example, demonstrated
by the fact that with a non-vanishing � even fields of ‘static’, non-accelerated sources have a
non-vanishing radiative component along a generic (‘non-radial’) direction, as was shown for
test charges in [101] or for Reissner–Nordström black holes in [102, 103] in a (anti-)de Sitter
universe.

For � �= 0, the non-null character of conformal infinity I also plays a fundamental role
in the formulation of the initial value problem. As mentioned above, quite surprisingly the
global existence has been established of asymptotically simple vacuum solutions (with a
smooth I) which differ on an arbitrary given Cauchy surface by a finite but sufficiently small
amount from de Sitter data [36, 64], while an analogous result for data close to Minkowski
(� = 0) is still under investigation (see [19, 36, 81] for more details). Thus, many vacuum
asymptotically simple spacetimes with de Sitter-like I do exist. However, a spacelike I as
occurs in this case implies the existence of cosmological and particle horizons for geodesic
observers, which results in insufficiency of purely retarded massless fields—advanced effects
must necessarily be present. For example, the electromagnetic field produced by sources
cannot be prescribed freely because the Gauss constraint has to be satisfied at I− (or I+). This
phenomenon has been demonstrated explicitly [104] by analysing test electromagnetic fields of
uniformly accelerated charges on a de Sitter background. On the other hand, it is well-known
that for a timelike I, which occurs when � < 0, the spacetimes are not globally hyperbolic,
and one is necessarily led to a kind of ‘mixed initial boundary value problem’, see, e.g.,
[68, 105–107]. The data need to be given on a spacetime slice extending to I and also on I
itself. The rigorous concept of gravitational and electromagnetic radiation is thus much less
clear in situations when � �= 0.

Here we will analyse mainly the directional structure of radiative fields. This structure
is significantly different for null and spacelike/timelike conformal infinities. In the case of
asymptotically flat spacetimes, the dominant radiative component of the field at any point P at
null infinity I is essentially unique. One can however approach a point P from infinitely many
different null directions, and if I has a spacelike or timelike character it is not a priori clear
how the radiation components of the fields in the corresponding interpretation tetrads depend
on a specific direction.

Such a directional dependence was explicitly found and described for the first time in the
context of the test electromagnetic field generated by a pair of uniformly accelerated point-like
charges in the de Sitter background [101, 108]. In particular, it was demonstrated that there
always exist two special directions—those opposite to the direction from the sources—along
which the radiation vanishes. For all other directions the radiation field is non-vanishing. This
is described by an explicit formula which completely characterizes its angular dependence
(see [101]).

Subsequently, we have carefully analysed the exact solution of the Einstein–Maxwell
equations which generalizes the classic C-metric (see, e.g., [7, 83, 109, 110] for reviews
and references) to admit a cosmological constant [111–115]. For � > 0 it represents
a pair of uniformly accelerated possibly charged black holes in a de Sitter-like universe.
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In [102] we demonstrated that the corresponding electromagnetic field exhibits exactly the
same asymptotic radiative behaviour at the spacelike conformal infinity I as for the test
fields [101] of accelerated charges. Moreover, we found and explicitly described the specific
analogous directional structure of the gravitational radiation field, and we proved that the
directional pattern of radiation is adapted to the principal null directions of this Petrov type D
spacetime.

Elsewhere [103] we investigated the asymptotic behaviour of fields corresponding to the
C-metric with � < 0, i.e. the directional dependence of radiation generated by accelerated
black holes in an anti-de Sitter universe. Some fundamental differences from the case � > 0
occur since the conformal infinity I now has a timelike character. In fact, the whole structure
of the spacetime is more complex and new phenomena also arise: I is divided by Killing
horizons into several domains with a different structure of principal null directions—in these
domains the directional structure of radiation is thus different. The radiative field vanishes
along directions which are mirror images of the principal null directions with respect to I.
Moreover, ingoing and outgoing radiation has to be treated separately.

These studies of particular exact radiative models with a non-vanishing � gave us a
sufficient insight necessary to understand the asymptotic behaviour of general fields near
spacelike or timelike conformal infinities. The directional dependence of gravitational and
electromagnetic radiation is given mainly by spacetime geometry, namely by the character of
I and by the specific orientation and degeneracy of principal null directions at infinity.

In [116] we demonstrated that the directional structure of radiation close to a de Sitter-like
infinity has a universal character that is determined by the algebraic type of the fields. For
example, the radiation completely vanishes along spatial directions on I which are antipodal
to principal null directions. In the following work [117] we investigated the complementary
situation when � < 0. Although the idea is similar to the previous case, the asymptotic
behaviour of fields turns out to be more complicated because I is timelike, and thus admits a
‘richer structure’ of possible radiative patterns.

1.2. Outline of the present work

It is the purpose of this review to present these results—concerning the asymptotic directional
structure of general fields near conformal infinity I of any type—in a synoptic, compact
and unified form. The paper is organized as follows. First, in section 2 we summarize
basic concepts of conformal geometry and their relation to quantities in a physical spacetime.
In particular, we introduce the conformal infinity I, correlate its character with the sign
of the cosmological constant � and investigate the correspondence between null geodesics
in physical and conformal spacetimes. Section 3 is devoted to careful analysis of various
orthonormal and null tetrads which are key ingredients in our subsequent study of the
asymptotic behaviour of fields. We define an interpretation tetrad which is parallelly
propagated along a null geodesic, and we demonstrate that—after performing a specific
boost—it becomes asymptotically adjusted to I (i.e., naturally normalized and adapted to
normal and tangent directions at a given point of conformal infinity). This fact becomes
crucial in section 4 in which we explicitly evaluate the components of general gravitational,
electromagnetic or any spin-s field in the interpretation tetrad near conformal infinity. For
zero-rest-mass fields the dominant component decays as η−1 (where η is the affine parameter
of a null geodesic) and thus represents radiation.

The complete expression (4.19) fully chracterizes the asymptotic behaviour of the field
near any I, including the directional structure, i.e. the dependence on the direction of the
geodesic along which a point P ∈ I is approached as η → ∞. The final section 5 contains
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a detailed discussion of the result. In asymptotically Minkowskian spacetimes with � = 0
for which I has a null character, the directional dependence completely vanishes. The
presence or absence of the η−1 component of the field can thus be used as an invariant
characterization of radiation. In this context we also elucidate the precise meaning of the
peeling-off behaviour. For � �= 0 the asymptotic structure of fields is more complicated
because the dominant component depends substantially on the direction of a null geodesic
along which P is approached. We introduce a convenient parametrization of such directions
near a spacelike or timelike I which occur in spacetimes with � > 0 or � < 0, respectively.
Finally, we describe in detail the asymptotic directional structure of radiative fields near such
de Sitter-like or anti-de Sitter-like conformal infinities. It is proved to be essentially determined
by the algebraic type of the field, namely by the number, degeneracy and specific orientation
of the principal null directions at point P ∈ I.

Two appendices are included. In appendix A we present expansions of the conformal
factor � and the conformal affine parameter η̃ in terms of the physical affine parameter η of
a null geodesic. We demonstrate their polyhomogeneous character. We also investigate the
conditions under which the two main vectors of the interpretation tetrad become coplanar with
the normal to I. Appendix B summarizes the description of spin-s fields, tetrads and their
Lorentz transformations in spinor formalism.

2. Conformal infinity and null geodesics

In this section we recall some basic concepts and properties concerning the geometry of a
physical spacetime and its conformally related counterpart which will be necessary for our
subsequent analysis. Many of these concepts can be found in standard literature, e.g., in
[12, 33, 61]. However, we summarize them for convenience and to introduce our notation.

2.1. Conformal geometry

We wish to study spacetimes which locally admit conformal infinity. According to the general
formalism [27, 29, 31, 33, 61], such an n-dimensional manifold M with physical metric g can
be embedded into a larger conformal manifold M̃ with conformal metric g̃ via a conformal
transformation

g̃ = �2g. (2.1)

Obviously, the spacetimes (M, g) and (M̃, g̃) have identical local causal structure (the same
light cones). The conformal factor � is assumed to be positive in M, and vanishes on the
boundary of M in M̃. Such a boundary � = 0 is called conformal infinity I. Let us note that
in the following it is not necessary to require global existence of I. However, we assume that
� is smooth near I, and we impose suitable regularity conditions for the conformal metric.
Specifically, we assume that the conformal factor is sufficiently smooth along null geodesics
approaching I in (M̃, g̃), cf equation (2.16) in this section.

To indicate explicitly which of the above metrics is used for raising indices, we introduce
gab as the inverse of gab and g̃ab as the inverse of g̃ab.

The derivative operator of g̃ is related to that of g. The relation between the derivative ∇̃
associated with g̃ and ∇ associated with g is (see, e.g., [61])

∇̃avc = ∇avc + γc
abvb, γc

ab = �−1
(
δc
adb� + δc

bda� − gabgcddd�
)
. (2.2)

This implies relations between the curvature associated with ∇̃, and the curvature associated
with ∇. By contracting the formula for the Riemann tensor we obtain relations between the
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conformal and physical Ricci tensors,

˜Ricab = Ricab − (n − 2)�−1∇adb� − �−1gab��

+ 2(n − 2)�−2da� db� − (n − 3)�−2gabgcddc� dd�, (2.3)

where � = gab∇a∇b, and the scalar curvatures,

R̃ = �−2R − 2(n − 1)�−3�� − (n − 1)(n − 4)�−4gabda� db�. (2.4)

The Weyl tensor is unchanged by a conformal transformation,

C̃ d
abc = C d

abc . (2.5)

2.2. Conformal infinity I and its character

The conformal infinity is localized by the condition � = 0. Its character is determined by the
gradient d� on I—it can be timelike, null or spacelike. We introduce a normalized vector ñ
which is normal to the conformal infinity I,

ña = Ñ g̃abdb�, g̃abñañb = σ, σ = −1, 0, +1. (2.6)

For σ = ±1 the conformal ‘lapse’ function Ñ > 0 is given by Ñ = |g̃abda� db�|−1/2, and
g̃ = σÑ

2
d�2 + I g̃, where I g̃ is a restriction of g̃ on I. For σ = 0 the ‘lapse’ Ñ is chosen

arbitrarily. The normalization factor σ determines the character of the conformal infinity,
namely

σ =



−1: I is spacelike,
0: I is null,
+1: I is timelike.

(2.7)

This is illustrated in figure 1.
In fact, we can explicitly evaluate the ‘lapse’ Ñ . Transforming � into �̃ = g̃ab∇̃a∇̃b in

(2.4) using relation (2.2), we obtain

g̃abda� db� = − R

n(n − 1)
+ �

(
2

n
�̃� +

�R̃

n(n − 1)

)
. (2.8)

By contracting the Einstein field equations

Ric − 1
2Rg + �g = 	T, (2.9)

we get R = 2
n−2 (n� − 	T ). Assuming a vanishing trace T of the energy–momentum tensor,

which is valid in vacuum, pure radiation or electrovacuum (n = 4) spacetimes, equation (2.8)
on I implies

σÑ |−2
I = g̃abda�db�|I = − 2�

(n − 1)(n − 2)
, i.e., σ = −sign �. (2.10)

The character of the conformal infinity is thus correlated with the sign of the cosmological
constant. For σ �= 0 we also obtain that the ‘lapse’ is constant on I, Ñ |I = 
 > 0, where 


is a typical length, which for spacetime dimension n = 4 is 
 = √|3/�|. For (anti-)de Sitter
spacetime, the scale 
 represents its characteristic radius. When σ = 0 (� = 0) we choose Ñ

to be an arbitrary constant on I. The normalized timelike/null/spacelike vector ñ given by
(2.6) which is normal to conformal infinity I is thus set uniquely.

Analogously we introduce a vector n normal to � = const in the physical spacetime
(M, g) such that

gabnanb = σ, (2.11)
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Figure 1. The local character of the conformal infinity I (situated on the boundary � = 0 of M
in M̃) is determined by the norm σ of vector ñ normal to I. For σ = −1, 0 or +1 the infinity I is
spacelike, null or timelike, respectively. When σ = −1 or σ = 0, the future conformal infinity I+

and the past conformal infinity I− can be distinguished; the corresponding diagrams are drawn in
the upper and lower parts of the figure. For σ = +1 the future and past infinities of null geodesics
are the same, and therefore the diagrams are identical.

which implies the relation

n = �ñ. (2.12)

Strictly speaking, it is not possible to introduce the vector n normalized in the physical
geometry (M, g) at I directly. The conformal infinity does not belong to the physical
spacetime, and even if we extend the manifold M into the conformal manifold M̃, the
physical metric g is not well defined on I: it is related to the conformal metric g̃ by the factor
�−2, see (2.1), which becomes infinite.

We could try to extend the definition of the physical metric (and other tensors related
to physical spacetime) up to the infinity I using some limiting procedure, e.g., using its
expansion along curves approaching I. However, the ‘infinite ratio’ between g and g̃ still
poses problems. Physically defined vectors transported in a natural way to I are rescaled to
zero when measured in conformal geometry and vectors from the conformal tangent space
at I have an infinite length if measured using the physical metric. The tangent space of the
conformal manifold at I is infinitely ‘blown up’ with respect to the tangent space of the physical
manifold defined at the conformal infinity by a suitable limiting procedure. Nevertheless, one
can deal with such infinite scaling using the conformal technique: its important feature is that
the conformal rescaling is isotropic—it rescales all directions in the same way. If the rescaling
enters expansions of physical tensor quantities only as a common factor which is some power
of �, it is ‘well controlled’: we can associate with any physical quantity a conformal quantity
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rescaled by a proper power of � which is correctly defined at conformal infinity, independent
of the direction along which I is approached.

The conformal geometry and the definition of the conformal infinity can thus be understood
as a convenient way to deal with tensors at infinity—any physical quantity can be ‘translated’
into its conformal counterpart which is well defined at I. However, it can be convenient
sometimes to speak directly about physical quantities at I and we will do so if the ‘translation’
to the conformal picture is clear. Exactly in this sense, we can speak about the physical normal
vector n at I, even if it is related to the well defined conformal normal ñ by relation (2.12)
which is degenerate on I. Similarly, in the next section we use a null tetrad adjusted to the
infinity I normalized in the physical geometry.

Let us note however that one has to be careful with asymptotic expansions if these are
not isotropic, i.e., if they rescale one direction by an ‘infinite amount’ as compared with
other directions. This will be the case of, for example, interpretation null tetrads parallelly
transported to I as discussed in section 3.4. Various components of physical tensors with
respect to the interpretation tetrad thus will not rescale in the same way and their behaviour
has to be studied more carefully, cf section 4.3.

2.3. Null geodesics

Now we consider geodesics in the physical spacetime (M, g) and we relate them to geodesics
in the conformal spacetime (M̃, g̃). It follows from (2.2) that null geodesics are conformally
invariant, i.e., null geodesics z(η) with respect to ∇ coincide with null geodesics z̃(η̃) with
respect to ∇̃. The affine parameter η̃ for geodesics in conformal spacetime is related to the
affine parameter η for geodesics in physical spacetime by

dη̃

dη
= �2, i.e.,

Dz

dη
= �2 Dz̃

dη̃
(2.13)

(we fix a trivial factor corresponding to constant rescaling of η̃ to unity).
Without loss of generality we take the affine parameter η̃ such that η̃ = 0 at conformal

infinity I. Therefore, as η̃ → 0 the null geodesic z̃(η̃) in conformal spacetime approaches a
specific point P ∈ I, i.e., z̃(0) = P . Such a geodesic can be either outgoing or ingoing with
respect to physical spacetime M:

Dz̃a

dη̃
da�

∣∣∣∣
I

≡ d�

dη̃

∣∣∣∣
I

= −ε, (2.14)

where

ε =
{

+1: for outgoing geodesics, η̃ < 0 in M,

−1: for ingoing geodesics, η̃ > 0 in M.
(2.15)

By this condition, the normalization of the affine parameter η̃ is fixed uniquely, including the
orientation of the null geodesic z̃(η̃). As we have already mentioned, we assume smoothness
of the conformal factor along z̃(η̃), hence we may expand � in powers of η̃ near I. Taking
into account that η̃|I = 0, and equation (2.14), we have

� = −εη̃ + �2η̃
2 + · · · , (2.16)

with �2 constant. Substituting into equation (2.13), straightforward integration leads to the
relation between the physical and conformal affine parameters

η = −1

η̃
(1 − 2ε�2η̃ ln|η̃| − η0η̃ + · · ·). (2.17)
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Here η0 is a constant of integration. Consequently, near I we obtain in the leading order that
η̃ ≈ −η−1 and � ≈ εη−1. The null geodesic z(η) thus reaches the point P ∈ I for an infinite
value of the affine parameter η, namely z(ε∞) = P .

The leading term in the expansions (2.16) and (2.17) is sufficient for all calculations
throughout this paper. However, for other purposes it can be useful to express these expansions
up to the next order. It is not simple to invert expansion (2.17) due to the presence of the
logarithmic term. In appendix A we demonstrate that (cf equation (A.6))

η̃ = −1

η
(1 − 2ε�2η

−1 ln|η| + η0η
−1 + · · ·), (2.18)

and (cf equation (A.7))

� = εη−1 + (−2�2 ln|η| + εη0 + �2)η
−2 + · · · . (2.19)

Nevertheless, the logarithmic terms in these expansions disappear provided Penrose’s
asymptotic Einstein condition (cf equation 9.6.21 of [33]),

∇̃bda� ≈ 1
4 g̃ab�̃�, (2.20)

is satisfied, cf equation (A.16).

3. Various null tetrads

We now wish to investigate the behaviour of fields near conformal infinity in standard
general relativity in four dimensions (n = 4). For this purpose we introduce the normalized
‘interpretation’ tetrad which is parallelly transported along null geodesics z(η) approaching I.
To achieve this we will employ several orthonormal and null tetrads which will be distinguished
by specific labels in subscripts.

3.1. Tetrads and their transformations

We denote the vectors of an orthonormal tetrad as t, q, r, s, where t is a unit timelike vector,
typically chosen to be future oriented, and the remaining three are spacelike unit vectors. With
this tetrad we associate a null tetrad of null vectors k, l, m, m̄, such that

k = 1√
2
(t + q), l = 1√

2
(t − q),

m = 1√
2
(r − is), m̄ = 1√

2
(r + is),

(3.1)

where the only non-vanishing scalar products are

gabkalb = −1, gabmam̄b = 1. (3.2)

Similarly, we introduce a conformal null tetrad k̃, l̃, m̃, ¯̃m in conformal spacetime M̃
normalized by the conformal metric g̃ as g̃abk̃a l̃b = −1, g̃abm̃a ¯̃mb = 1, which is associated
with conformal orthonormal tetrad t̃, q̃, r̃, s̃.

Transformations between orthonormal tetrads (and corresponding null tetrads) form
the Lorentz group. In the context of null tetrads it is convenient to consider four
simple transformations from which any Lorentz transformation can be generated [12]:
null rotation with k fixed, parametrized by L ∈ C,

k = ko, l = lo + L̄mo + Lm̄o + LL̄ko, m = mo + Lko, (3.3)

null rotation with l fixed, given by K ∈ C,

k = ko + K̄mo + Km̄o + KK̄lo, l = lo, m = mo + Klo, (3.4)
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Figure 2. Tetrads adjusted to conformal infinity I of various characters, determined by σ , cf
figure 1. If the vector k̃ is oriented along the tangent vector of the null geodesic z̃(η̃) it is either
outgoing (ε = +1) or ingoing (ε = −1).

boost in the k–l plane, B ∈ R, and a spatial rotation in the m–m̄ plane, φ ∈ R,

k = Bko, l = B−1lo, m = exp(iφ)mo. (3.5)

The transformations of the corresponding normalized spinor frames are listed in appendix B,
relations (B.4)–(B.6).

3.2. The tetrad adjusted to I

We say that a conformal null tetrad is adjusted to conformal infinity if the vectors k̃ and l̃ on
I are coplanar with ñ (the vector (2.6) normal to conformal infinity), and satisfy the relation

ñ = ε 1√
2
(−σ k̃ + l̃), (3.6)

where ε = ±1. As shown in figure 2, for a ‘de Sitter type’ spacelike infinity (σ = −1)

there is ñ = ε t̃ = ε(k̃ + l̃)/
√

2, for an ‘anti-de Sitter type’ timelike I (σ = +1) ñ = −εq̃ =
−ε(k̃ − l̃)/

√
2, and ñ = ε l̃/

√
2 for null ‘Minkowskian’ I (σ = 0). If the null vector k̃ is

chosen to be oriented along the tangent vector of the null geodesic z̃(η̃), the parameter ε then
identifies whether the geodesic is outgoing (ε = +1) or ingoing (ε = −1), see (2.15). Note
that the condition (3.6) also implies g̃abm̃añb = 0 = g̃ab

¯̃mañb, so that the vectors m̃, ¯̃m of the
tetrad adjusted to conformal infinity are always tangent to I.

Analogously we define a tetrad in the physical spacetime adjusted to conformal infinity
by the condition

n = ε 1√
2
(−σk + l), (3.7)
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where the vector n normal to I in (M, g) is normalized by (2.11) (cf discussion at the end of
section 2.2).

3.3. The interpretation tetrad

Let us introduce an interpretation null tetrad ki, li, mi, m̄i. It is any tetrad which is parallelly
transported along a null geodesic z(η) in the physical spacetime M, with ki tangent to z(η).
We thus require

ki = γ√
2


Dz

dη
, γ = constant, (3.8)

and

ka
i ∇akb

i = 0, ka
i ∇albi = 0, ka

i ∇amb
i = 0, ka

i ∇am̄b
i = 0. (3.9)

Here, 
 is a constant scale parameter introduced below equation (2.10). For a geodesic the
first equation in (3.9) is satisfied automatically. It only remains to investigate the remaining
three conditions for parallel transport of the vectors li, mi and m̄i.

The interpretation tetrad is not unique—there is a freedom in its particular initial or final
specification. It is possible to scale the vector ki by fixing the constant γ in (3.8). By such
a choice we fix the ‘physical wavelength’ of the associated null ray. The initial scale of the
vector ki can be fixed somewhere in the spacetime, e.g., with respect to a Killing vector or with
respect to worldlines of sources, etc. Unfortunately, on a general level, we do not know how to
specify privileged initial conditions for the interpretation tetrad. However, our goal here is to
compare the field measured in interpretation tetrads transported along different null geodesics
approaching the same point at I. It is thus natural to choose the final conditions for tetrads
in a ‘comparable’ way independently of the geodesics. Observing that the normalization of
the tangent vector Dz/dη was chosen naturally with respect to the asymptotic structure of
the spacetime by equations (2.13) and (2.14), we require that the vector ki is proportional to
Dz/dη by the same factor. Namely, we require that the constant γ in (3.8) is independent of
the choice of the geodesics. In the following we will set

γ = 1. (3.10)

This is equivalent to the condition that the component of the vector ki normal to the
conformal infinity is the same for all interpretation tetrads approaching a given point on I, cf
equation (3.16).

There is a remaining freedom in the choice of the interpretation tetrad which corresponds
to a null rotation with ki fixed, and to a spatial mi–m̄i rotation. However, we will find that the
asymptotic characterization of the field components derived in section 4.5 does not, in fact,
depend on such freedom. To demonstrate this property, we now analyse an explicit relation
between the interpretation tetrad and a conformal tetrad adjusted to I.

3.4. Asymptotic behaviour of the interpretation tetrad

We consider a particular null tetrad k̃a, l̃a, m̃a, ¯̃ma, where k̃a is tangent to a null geodesic z̃(η̃),

k̃a = 1√
2


Dz̃

dη̃
, (3.11)

l̃a is coplanar with k̃a and ñ on I, and such that the vectors of the tetrad are parallelly
transported along z̃(η̃) in conformal geometry,

k̃a
a ∇̃ak̃b

a = 0, k̃a
a ∇̃a l̃ba = 0, k̃a

a ∇̃am̃b
a = 0, k̃a

a ∇̃a
¯̃mb

a = 0. (3.12)
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Using expressions (3.11), (2.14), and (2.6) we immediately derive the relation −σ k̃a + l̃a =
ε
√

2ñ on conformal infinity, which demonstrates that the tetrad considered becomes adjusted
to I for η̃ = 0 at the point z̃(0) = P ∈ I.

On the other hand, from (3.8), (3.11), (2.13) we obtain

ki = �2k̃a, (3.13)

so that using (2.12), gabka
i nb = −ε 1√

2
�. The interpretation tetrad is thus not adjusted to I

since it does not satisfy equation (3.7).
To find an explicit relation between the tetrads ki, li, mi, m̄i and k̃a, l̃a, m̃a, ¯̃ma, we

first introduce an auxiliary null tetrad ka, la, ma, m̄a by conformal rescaling of the tetrad
k̃a, l̃a, m̃a, ¯̃ma,

ka = �k̃a, la = �l̃a, ma = �m̃a, m̄a = � ¯̃ma. (3.14)

The auxiliary tetrad is normalized with respect to the physical metric g, it is adjusted to I but
its vectors are no longer parellelly transported along the geodesics z(η) in M.

Secondly, we perform a specific boost of the interpretation tetrad such that the boost
parameter is given by the conformal factor, introducing thus the tetrad kb, lb, mb, m̄b,

kb = �−1ki, lb = �li, mb = mi, m̄b = m̄i. (3.15)

The vector kb is then normalized on I in the same way as ka, namely

gabka
bnb = −ε 1√

2
. (3.16)

Considering (3.13), the tetrad (3.15) has to be related to the auxiliary tetrad (3.14) by a
null rotation with fixed k and a possible spatial rotation in the m–m̄ plane,

kb = ka, lb = la + ¯̃Lma + L̃m̄a + L̃ ¯̃Lka, mb = exp(iφ)(ma + L̃ka), (3.17)

with parameters L̃ ∈ C, φ ∈ R, cf (3.3), (3.5). For the interpretation tetrad it implies

ki = �ka, li = �−1la + L̄ma + Lm̄a + LL̄�ka, mi = exp(iφ)(ma + L�ka),

(3.18)

with L = �−1L̃. Now, substituting these expressions into the conditions (3.9) for parallel
transport of the interpretation tetrad, and using (2.2), (3.12) and (3.13) we obtain

k̃a
a daφ = 0, k̃a

a daL = �−2m̃a
a da�. (3.19)

The first equation implies φ = φ0 = const, see equation (3.11). Assuming again the regularity
of conformal geometry near infinity, the term on the right-hand side of the second equation
can be expanded in powers of η̃. Moreover, for η̃ = 0 the vector m̃a is tangent to I, see the
text below equation (3.6), so that the expansion has the form

√
2
m̃a

a da� = M1η̃ + M2η̃
2 + · · · , (3.20)

where M1,M2 are constants which depend on derivatives of �. Using (2.16) we thus integrate
(3.19) to get

L = M1 ln|η̃| + L0 + · · · , i.e., L̃ = −εM1η̃ ln|η̃| − εL0η̃ + · · · , (3.21)

where L0 is a constant of integration. Using (2.18) we obtain the expansion in physical affine
parameter η,

φ = φ0,
(3.22)

L = −M1 ln|η| + L0 + · · · , i.e., L̃ = −εM1η
−1 ln|η| + εL0η

−1 + · · · .
Calculations to the next order in the affine parameter are presented in appendix A.
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We observe that L̃ approaches zero near I. Inspecting relations (3.17) we thus obtain
an important result: the tetrad kb, lb, mb, m̄b, associated with any interpretation tetrad by the
boost (3.15), becomes asymptotically adjusted to conformal infinity I. Asymptotically it may
differ from the chosen auxiliary tetrad ka, la, ma, m̄a only by a trivial rotation in the ma–m̄a

plane by a fixed angle φ0, and in this sense it is ‘essentially unique’.
Let us note that in general the vectors ki, li of the interpretation tetrad are not

asymptotically coplanar with the normal n to I. From equations (3.18) with L given by (3.21)
we see that the vector li has components in the ma–m̄a directions which are perpendicular to
n. Fortunately, these components grow only logarithmically and, as we shall see later, they do
not influence the leading term of the fields evaluated with respect to the interpretation tetrad.
Moreover, it is demonstrated in appendix A (see equation (A.17)) that

M1 ∼ (
η̃−1�a

01

)∣∣
η̃=0 ∼ (

η�a
01

)∣∣
η=ε∞, (3.23)

where �a
01 is the specific component of the energy–momentum tensor evaluated in the auxiliary

tetrad (3.14). This vanishes for a vacuum spacetime. It also disappears in non-vacuum cases
when the asymptotic Einstein condition (2.20) holds—it is satisfied provided that matter
fields decay faster then ∼η̃ near conformal infinity. For such spacetimes, the ln|η̃| term in
expansion (3.21) of the parameter L near I is absent, so that

L ≈ L0, i.e., L̃ ≈ −εL0η̃, (3.24)

and, by the proper choice L0 = 0, the vectors ki, li of the interpretation tetrad can be arranged
to become asymptotically coplanar with the normal n. This coplanarity was assumed
previously in [33] (see discussion concerning figure 9-20 therein), and in [116, 117].

Let us also discuss the geometrical meaning of the integration constants L0 and φ0. In the
above derivation we have represented the transformation (3.18) from the auxiliary tetrad to
the interpretation tetrad as an application of null rotation with fixed k given by the parameter
L̃ = L̃∗ + �L0 (L̃∗ independent of L0, cf equation (3.21)), spatial rotation with the parameter
φ = φ0, and finally boost with the parameter B = �. This can be rearranged as the sequence
of k-fixed null rotation given by the parameter L̃∗, boost with B = �, then k-fixed null
rotation given by the parameter L0, and finally spatial rotation with φ = φ0. The last two
transformations exactly correspond to the freedom in the choice of the interpretation tetrad—
the condition (3.8) determines the interpretation tetrad exactly up to such null rotation with k
fixed, and a spatial rotation in the m–m̄ plane. The parameters L0 and φ0 thus determine a
specific choice of the interpretation tetrad which is usually given by some physical prescription
in a finite domain of the spacetime.

It will be demonstrated below that the asymptotic directional behaviour of the fields
(see section 4.3) is independent of the parameter L0. It will depend on the parameter φ0

only through a phase of the complex component of the field, and such dependence can be
eliminated by considering just the magnitude of the field. We will return to the corresponding
question of the phase (‘polarization’) dependence of the fields in the discussion of the results.

3.5. The reference tetrad and parametrization of null directions

In the following, we will need to identify the direction ki of the null geodesic and orientation
of the associated interpretation tetrad near conformal infinity using suitable directional
parameters. For this purpose we set up a reference tetrad. The reference tetrad ko, lo, mo, m̄o

is any tetrad adjusted to I which satisfies the coplanarity and normalization condition (3.7),

n = εo
1√
2
(−σko + lo). (3.25)
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Otherwise, the reference tetrad can be chosen arbitrarily, ergo conveniently. It may thus either
respect the symmetry of the spacetime (by adapting the reference tetrad to the Killing vectors)
or its specific algebraic structure (in which case it can be oriented along the principal null
directions). The parameter εo = ±1 in (3.25) will be chosen in such a way that the vectors
ko and lo are future oriented. For σ = −1, 0 this means that εo = +1 on I+ and εo = −1 on
I−. For σ = +1 the parameter εo can be chosen either +1 or −1: it corresponds to ko oriented
outside or inside M, cf figure 2.

We use the given reference tetrad ko, lo, mo, m̄o as a fixed basis with respect to which it
is possible to define uniquely other directions, for example asymptotic directions along which
various null geodesics approach a point P at I, or the principal null directions, see section 4.2.
It is natural to characterize such a general null direction k by a complex parameter R in the
following way: the direction k is obtained (up to a rescaling) from ko by the null rotation (3.4)
with the parameter K = R,

k ∝ ko + R̄mo + Rm̄o + RR̄lo. (3.26)

The value R = ∞ is also permitted—this corresponds to k being oriented along lo.
Let us mention that the reference tetrad introduced above is not well defined in conformal

geometry—it is normalized using the physical metric. However, it could be rescaled
isotropically by the common factor �−1 to obtain the associated conformal reference tetrad
which is well defined in the conformal geometry. For convenience, in the following we will
use the physically normalized reference tetrad instead of the conformally normalized one—see
discussion at the end of section 2.2.

4. The fields and their asymptotic structure

Now we have all ‘prerequisites’ needed to analyse the asymptotic properties of the fields.
We are mainly interested in gravitational and electromagnetic fields. However, the principal
result—the asymptotic directional structure of the fields—can be derived for general fields of
spin s. In all these cases we will study the dominant (radiative) component of the field as one
approaches conformal infinity. For this purpose, it is useful to parametrize the fields using
complex tetrad components which have special transformation properties.

4.1. The field components and their transformation properties

Following the notation of [12], gravitational field is characterized by the Weyl tensor Cabcd

and can be parametrized by five complex coefficients

�0 = Cabcdkambkcmd ,

�1 = Cabcdkalbkcmd ,

�2 = Cabcdkambm̄cld,
(4.1)

�3 = Cabcd lakblcm̄d ,

�4 = Cabcd lam̄blcm̄d ,

whereas electromagnetic field is described by the tensor Fab which is parametrized by three
complex coefficients

�0 = Fabkamb,

�1 = 1
2 Fab(kalb − mam̄b), (4.2)

�2 = Fabm̄alb.
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By a field of spin s we understand field which transforms according to spin-s representation
of the Lorentz group. It can be characterized by (2s + 1) complex components

ϒj, j = 0, 1, . . . , 2s. (4.3)

A more detailed (spinor) description of such fields can be found in appendix B. The
gravitational field �j or electromagnetic field �j are special cases of (4.3) for s = 2, 1,
cf (B.8)–(B.10).

These field components transform in a well-known way under special Lorentz
transformations introduced above (see, e.g., [12] or appendix B). For a null rotation with
k fixed, cf equation (3.3), the field transforms as

ϒj = ϒo
j + jL̄ϒo

j−1 +

(
j

2

)
L̄2ϒo

j−2 +

(
j

3

)
L̄3ϒo

j−3 + · · · + L̄jϒo
0 . (4.4)

Under a null rotation with l fixed, see equation (3.4), the transformation reads

ϒj = ϒo
j + (2s − j)Kϒo

j+1 +

(
2s − j

2

)
K2ϒo

j+2 + · · · + K2s−jϒo
2s . (4.5)

Under a boost in the k–l plane, and a spatial rotation in the m–m̄ plane, given by equation (3.5),
the components ϒj transform as

ϒj = Bs−j exp(i(s − j)φ)ϒo
j . (4.6)

4.2. Principal null directions and algebraic classification

For gravitational, electromagnetic or any spin-s field there exist principal null directions
(PNDs) which are privileged null directions k such that ϒ0 = 0 in a null tetrad k, l, m, m̄
(a choice of l, m, m̄ is irrelevant). The PND k can be obtained from a reference tetrad
ko, lo, mo, m̄o by a null rotation (3.26) given by a directional parameter R ∈ C. We choose
the remaining vectors l, m, m̄ to be given by the same null rotation, i.e., by (3.4) with K = R.
The condition ϒ0 = 0 thus takes the form of an algebraic equation of the order 2s for the
directional parameter R, see equation (4.5),

R2sϒo
2s +

(
2s

2s − 1

)
R2s−1ϒo

2s−1 + · · · +

(
2s

1

)
Rϒo

1 + ϒo
0 = 0. (4.7)

In particular, for gravitational field it reduces to a quartic

R4�o
4 + 4R3�o

3 + 6R2�o
2 + 4R�o

1 + �o
0 = 0. (4.8)

The complex roots Rn, n = 1, 2, . . . , 2s, of equation (4.7) parametrize PNDs kn with respect
to the reference tetrad ko, lo, mo, m̄o. The situation when ϒo

2s = 0 formally corresponds to an
infinite value of one of the roots, say R1 = ∞, in which case k1 = lo. There are four principal
null directions for gravitational field, two for electromagnetic field, and 2s for spin-s field.
According to whether some of these PNDs coincide, the fields are algebraically special and
can be classified into various (Petrov) algebraic types [12, 33, 44].

In a generic situation ϒo
2s is non-vanishing and the polynomial on the left-hand side of

equation (4.7) can be decomposed as

R2sϒo
2s +

(
2s

1

)
R2s−1ϒo

2s−1 + · · · +

(
2s

2s − 1

)
Rϒo

1 + ϒo
0

= ϒo
2s(R − R1)(R − R2) · · · (R − R2s). (4.9)
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By comparing the coefficients of various powers of R it is possible to express all ϒo
j components

in terms of ϒo
2s and the algebraically privileged principal null directions characterized by Rn.

For example, the components of gravitational field can be written

�o
3 = − 1

4�o
4 (R1 + R2 + R3 + R4),

�o
2 = 1

6�o
4 (R1R2 + R1R3 + R1R4 + R2R3 + R2R4 + R3R4),

(4.10)
�o

1 = − 1
4�o

4 (R1R2R3 + R1R2R4 + R1R3R4 + R2R3R4),

�o
0 = �o

4R1R2R3R4.

Similar expressions apply to other fields; we write only the expression for the ϒo
0 component,

ϒo
0 = (−1)2sϒo

2s

2s∏
j=1

Rj . (4.11)

Finally, let us note that a rescaling of all field components by a common factor does not
change the algebraic structure, i.e., the PNDs remain unchanged. This observation is useful
when we study the algebraic structure of the fields near conformal infinity. As we will discuss in
section 4.4, the field components ϒo

j decay to zero near conformal infinity, see equation (4.18).
However, the leading term of the field still carries information about its algebraic structure. In
other words, asymptotically we define PNDs in terms of the leading order of the field.

4.3. Field components in the interpretation tetrad

Using the above quantities and relations we may now analyse the asymptotic behaviour of
a general gravitational, electromagnetic or any spin-s field with respect to the interpretation
tetrad near conformal infinity. To evaluate the field components ϒ i

j in the interpretation
tetrad ki, li, mi, m̄i we employ its relation to the tetrad kb, lb, mb, m̄b which is asymptotically
adjusted to I, then the relation between this tetrad and the auxiliary tetrad ka, la, ma, m̄a, and
finally we perform the transformation to the reference tetrad ko, lo, mo, m̄o. We thus express
ϒ i

j in terms of ϒo
j .

The tetrads ki, li, mi, m̄i and kb, lb, mb, m̄b are related by the boost (3.15), i.e.,
ki = �kb, li = �−1lb, where � = B ≈ εη−1, see equation (2.19). The next transformation
to the auxiliary tetrad is given by the l-fixed null rotation and spatial rotation (3.17), with the
parameters L̃ and φ given by (3.22). As we have already demonstrated above, with φ0 = 0
these two tetrads asymptotically coincide. Using (4.6) and (4.4) we thus obtain

ϒ i
j ≈ (εη)j−s exp(i(s − j)φ0)ϒ

a
j . (4.12)

We observe that the field components are asymptotically independent of the parameter L0 and
they depend on the parameter φ0 only through the phase. Because these parameters L0 and φ0

specify the choice of the interpretation tetrad, we have thus explicitly demonstrated that the
magnitude of the leading term of field components is independent of a particular choice of the
interpretation tetrad.

The specific phase behaviour of ϒ i
j under spatial rotations indicates that different field

components have different polarization properties. The polarization can carry important
physical data. However, to retrieve such information it would be necessary to fix the initial
conditions for the interpretation tetrad somewhere in a finite domain of the physical spacetime.
In the general situation which we study here, we are not able to fix the interpretation tetrad
in such a complete way, and thus the polarization information contained in the phase of the
field components is not accessible. Therefore, in the following we will concentrate on the
magnitude of the field components, and for simplicity we choose φ0 = 0.
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Considering that all ϒa
j for j = 0, 1, . . . , 2s are of the same order, cf equation (4.18), the

expression (4.12) demonstrates the well-known peeling-off property of the fields according to
which various tetrad components are proportional to different powers of the affine parameter
η as one approaches conformal infinity along a null geodesic. The dominant component is
j = 2s. Such a term ϒ i

2s represents the radiative part of the field. In particular, the dominant
component of the gravitational field is characterized by � i

4 ≈ η2�a
4, the electromagnetic field

by �i
2 ≈ εη�a

4, etc.
Finally, we express ϒa

2s in terms of components ϒo
j . Both the reference and the auxiliary

tetrads are adjusted to I and thus they only differ by a transformation which leaves the normal
vector n fixed. Such a transformation can be obtained, e.g., by the null rotation (3.3) of the
reference tetrad, followed by the null rotation (3.4), and the boost (3.5) with the parameters

L = σR, K = R

1 − σRR̄
, B = εεo(1 − σRR̄). (4.13)

(For a general transformation between two tetrads adjusted to I we should also admit a spatial
rotation but this only changes a phase of the field components which was discussed above.) It
has an explicit form

ka = εεo

1 − σRR̄
(ko + R̄mo + Rm̄o + RR̄lo),

la = εεo

1 − σRR̄
(σ 2RR̄ko + σR̄mo + σRm̄o + lo), (4.14)

ma = 1

1 − σRR̄
(σRko + mo + σR2m̄o + Rlo).

Using (3.14) and (3.25) we easily check that ε 1√
2
(−σ k̃a + l̃a) = ñ, which is the condition

(3.6). Moreover, the vector ka satisfies (3.26), and represents the direction along which the
null geodesic approaches conformal infinity: this direction is characterized by the complex
directional parameter R.

It only remains to perform the transformation of the leading field component
corresponding to (4.13). Using (4.4)–(4.6) we obtain

ϒa
2s = B−sL̄2s

[
L̄−2sϒo

2s +

(
2s

1

)
L̄−2s+1ϒo

2s−1 +

(
2s

2

)
L̄−2s+2ϒo

2s−2 + · · · + ϒo
0

]
. (4.15)

Applying now the identity (4.9), the expression in the bracket can be written as
ϒo

2s(L̄
−1 − R1)(L̄

−1 − R2) · · · (L̄−1 − R2s), so that

ϒa
2s = ϒo

2sB
−s(1 − R1L̄)(1 − R2L̄) · · · (1 − R2sL̄). (4.16)

Using (4.12), (4.13) we thus obtain explicitly

ϒ i
2s ≈ ϒo

2s

(
εoη

1 − σRR̄

)s

(1 − σR1R̄)(1 − σR2R̄) · · · (1 − σR2sR̄). (4.17)

4.4. Asymptotic behaviour of the field components in the reference tetrad

For a complete analysis of radiation it is important to identify the specific ‘fall-off’ of the
field. The correct asymptotic behaviour can only be obtained by a detailed study of the
field equations. There exists a wide spectrum of various results concerning this topic in
the literature. As mentioned in the introduction, the decay behaviour of the fields is well
understood in asymptotically flat spacetimes and there are some important results also in the
case of a non-vanishing cosmological constant.
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However, our goal in this work is to study the directional dependence of the leading
term of the fields, not its decay behaviour. We will thus only assume the fall-off typical
for zero-rest-mass fields, without engaging in a study of the field equations. Motivated by
discussion of behaviour of fields with a consistent field equation (s � 2) in asymptotically flat
spacetimes ([29, 33] or, e.g., [51, 62] for a gravitational field), we will assume

ϒo
j ≈ ϒo

j ∗
ηs+1

, ϒo
j ∗ = constant. (4.18)

For gravitational and electromagnetic fields this means that �o
j ≈ �o

j ∗η−3, �o
j ≈ �o

j ∗η−2.
Recalling the behaviour (2.19) of the conformal factor and the fact that the tensor
of an electromagnetic field and the Weyl tensor are conformally invariant, F̃ab = Fab,

C̃abc
d = Cabc

d , the fall-off (4.18) follows from the condition that the conformal quantities
F̃ab and dabc

d = �−1C̃abc
d are regular at infinity. For � �= 0 such behaviour of a gravitational

field can be obtained rigorously, see, e.g., [36, 51], and it is plausible also for asymptotically
flat spacetimes. Inspired by these observations, in the following we will assume the behaviour
(4.18) in a general situation.

Of course, some of the field components may decay faster even if the fall-off (4.18) is
valid for a generic component. This happens when the reference tetrad is aligned along PNDs,
as we will discuss in the next section. If at least one of the field components ϒo

j falls off as
in (4.18) (i.e., at least one ϒo

j ∗ is non-vanishing) it is always possible to change the reference
tetrad in such a way that all ϒo

j ∗ �= 0. When all field components ϒo
j decay faster than (4.18)

we call such a field asymptotically of type 0, i.e., the field with a trivial algebraic structure.
Let us however emphasize again that the assumption (4.18) is not crucial for the asymptotic

directional structure of the field. It influences the decay of the field, not its directional
dependence. Because we are mainly interested in the analysis of the directional structure we
will not study the behaviour (4.18) in more detail.

4.5. Asymptotic directional structure of radiation

Substituting (4.18) into equation (4.17) we finally obtain

ϒ i
2s ≈ 1

η
εs

oϒ
o
2s∗

(1 − σR1R̄)(1 − σR2R̄) · · · (1 − σR2sR̄)

(1 − σRR̄)s
. (4.19)

This expression fully characterizes the asymptotic behaviour on I of the dominant component
of any massless field of spin s in the normalized interpretation tetrad ki, li, mi, m̄i which is
parallelly propagated along a null geodesic z(η). Due to the remaining freedom corresponding
to a spatial rotation (3.5) in the transverse mi–m̄i plane, only the modulus

∣∣ϒ i
2s

∣∣ has an invariant
meaning, the phase of ϒ i

2s describes a polarization. The field decays as η−1, where η is the
affine parameter, so we call expression (4.19) the radiative part of the field.

The complex parameter R represents the direction of the null geodesic along which a
given point P ∈ I of conformal infinity is approached as η → ε∞. Let us recall that the
constants Rn characterize the principal null directions, i.e. the algebraic structure of the field
at P. The directional structure of radiation is thus completely determined by the algebraic
(Petrov) type of the field. However, the dependence of ϒ i

2s on the direction R along which
P ∈ I is approached occurs only if σ �= 0, i.e., at a ‘de Sitter-like’ or ‘anti-de Sitter-like’
conformal infinity. For I of ‘Minkowskian’ type which has a null character, σ = 0, this
directional dependence completely vanishes.

The directional pattern of radiation (4.19) has been derived assuming that the field
component ϒo

2s is non-vanishing, cf (4.9). More precisely, we assume that this component
does not vanish asymptotically faster than a typical field component, namely that ϒo

2s∗ �= 0,
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see (4.18). The vanishing coefficient ϒo
2s∗ indicates that the reference tetrad is asymptotically

aligned along some PND. Indeed, considering the fact that by interchanging ko with lo the
component ϒo

0 goes to ϒ̄o
2s , the condition ϒo

2s∗ = 0 implies that the vector lo of the reference
tetrad is the PND, say k1. In terms of the directional parameter this means that R1 = ∞. In
such a case we have to use a different normalization factor to express the field components.
With the help of relation (4.11), for ϒo

0 �= 0 we can write

ϒ i
2s ≈ 1

η
εs

oϒ
o
0 ∗

(
σR̄ − R−1

1

)(
σR̄ − R−1

2

) · · · (σR̄ − R−1
2s

)
(1 − σRR̄)s

. (4.20)

This expression describes the same directional dependence as expression (4.19), it is only
normalized using a different field component.

Expression (4.19) is useful if ϒo
2s∗ �= 0, expression (4.20) is applicable when ϒo

0 ∗ �= 0.
In situations when ϒo

0 ∗ = ϒo
2s∗ = 0, so that both the vectors ko and lo are PNDs, another

non-vanishing component ϒo
j ∗ has to be used for the normalization. A particular example of

normalization using a different field component for the gravitational Petrov type D field will
be discussed in section 5.4, see equation (5.23).

5. Discussion of the directional structure of radiation on I

In this section we will discuss the general expression (4.19) for different values of σ = −sign �

in detail. For practical purposes, we will restrict the description to gravitational and
electromagnetic fields; general spin-s field will be mentioned only for maximally degenerate
field of algebraic type N.

5.1. Radiation on null I

For ‘Minkowskian’ conformal infinity we have σ = 0, lo ∝ n, and the field thus has no
directional structure. In such a case the radiative parts of the gravitational and electromagnetic
fields (4.19) are uniquely given by

∣∣� i
4

∣∣ ≈
∣∣�o

4 ∗
∣∣

|η| ,
∣∣�i

2

∣∣ ≈
∣∣�o

2∗
∣∣

|η| , (5.1)

i.e., they are the same for all null geodesics approaching a given point P ∈ I. For (locally)
asymptotically flat spacetimes it is thus possible to distinguish between the radiative and
non-radiative fields. Radiation is absent at those points of null conformal infinity where the
constants �o

4 ∗ or �o
2∗ vanish. As we discussed, this occurs when the principal null direction

is oriented along the vector lo ∝ n. This can be viewed as an invariant characterization of the
absence of radiation near I.

In section 4.5 we suggested that for �o
4 ∗ = 0 we should use the alternative form of the

directional pattern of radiation (4.20). However, in the case σ = 0 it reduces to

∣∣� i
4

∣∣ ≈
∣∣�o

0 ∗
∣∣

|η| |R1R2R3R4|−1 (5.2)

with one of the Rn infinite. We thus again obtain � i
4 = 0 in the order η−1.

5.2. On the meaning of the peeling-off behaviour

Let us give here some general comments concerning the character of the fields near infinity
which apply also to spacelike and timelike I. Because for the Minkowskian infinity the
leading term of the field is independent of the direction along which the infinity is approached,
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one tends to attribute the invariant meaning to the components of the field with respect to
the interpretation tetrad, say, to the components � i

j of the gravitational field. The peeling-off
behaviour � i

j ∼ ηj−5 could thus be rephrased that the Weyl tensor becomes asymptotically
of type N—only the component � i

4 ‘survives’ when one is approaching infinity. However,
as pointed out in [33], such an interpretation can be misleading. The peeling-off property is
a consequence of a delicate interplay between the decay behaviour (4.18) of the field and of
the different asymptotic scaling of the vectors of the interpretation tetrad. Consequently, the
asymptotic type N characterization of the Weyl tensor is not invariant—the Weyl tensor of
type N should have one quadruply degenerate PND which should coincide with the vector
ki of the interpretation tetrad, i.e., with the vector tangent to the geodesic along which the
infinity is approached. But this vector obviously depends on our choice and cannot thus be an
invariant characterization of the Weyl tensor.

The invariant asymptotic algebraic characterization of the field (asymptotic PNDs of the
field) can be obtained by the conformal technique. As discussed already in section 4.2, PNDs
do not depend on isotropic rescaling of the field and they can thus be defined using the leading
term of the field tensor, i.e., using the field components with respect to the reference tetrad (or
any other tetrad) which is related by an isotropic rescaling to a tetrad well defined in the sense
of the conformal manifold M̃. Defining PNDs in this way, the field can be of a general type
up to infinity. The PNDs defined at infinity can be used to define canonical reference tetrads
as will be done in sections 5.4 and 5.5. For example, the C-metric spacetime is of Petrov type
D everywhere, including at infinity, and its double degenerate PNDs at I have been used to
define the reference tetrad in [102].

Because the interpretation tetrad is not of the type described above (the vectors ki and li
scale differently with respect to the conformal manifold), the field components in this tetrad
can exhibit apparent degeneracy typical for type N fields.

As we have found, the asymptotic algebraic structure of the field allows us to give a
clear unambiguous characterization of the field near Minkowskian (null) infinity. The leading
radiative term (along any null geodesic approaching I) disappears if a PND is tangent to
infinity. For spacelike and timelike infinities the leading term depends on a direction along
which I is approached, and it is absent only along some specific directions, given again by the
orientation of PNDs as described in detail in the following sections.

The invariant characterization of the absence of radiation using PNDs raises a question
of the relation between the algebraic structure of fields (orientation of PNDs on I) and the
structure of sources. For example, in the case of two accelerated black holes (the C-metric)
the two (double degenerate) PNDs play the role of ‘radial’ directions from the holes, cf [102,
109]. It would be interesting to discover a similar relation between PNDs and sources in a
more general situation. We will analyse this question in another work.

5.3. Parametrization of directions by (pseudo-)spherical angles

In order to characterize more lucidly the directions on spacelike or timelike I, it is convenient
to express the complex directional parameter R in terms of (pseudo-)spherical parameters.

At any point P ∈ I we have a reference null tetrad ko, lo, mo, m̄o which is adjusted to
conformal infinity. Such a tetrad is associated with an orthonormal adjusted tetrad to, qo, ro, so,
where to is a unit timelike vector and qo, ro, so are perpendicular spacelike unit vectors,

to = 1√
2
(ko + lo), qo = 1√

2
(ko − lo),

ro = 1√
2
(mo + m̄o), so = i√

2
(mo − m̄o),

(5.3)
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see (3.1). From the coplanarity and normalization condition (3.25) it follows that{
to = εon when I is spacelike (σ = −1),

qo = −εon when I is timelike (σ = +1),
(5.4)

where n is the normal to I, cf figure 2. We can now project a null vector k, whose direction
is represented by the parameter R by (3.26), onto the corresponding conformal infinity.

In spacetimes with � > 0, for which I is spacelike, we perform a normalized spatial
projection to a three-dimensional space orthogonal to to,

q = k + (k · to)to

|k · to| , (5.5)

where k · to = gabkatbo. The unit spatial direction q corresponding to k can be expressed in
terms of standard spherical angles θ, φ, with respect to the reference tetrad,

q = cos θ qo + sin θ(cos φ ro + sin φ so). (5.6)

Substituting (3.26) into (5.5), and comparing with (5.6) we obtain

R = tan
θ

2
exp(−iφ). (5.7)

Therefore, R is exactly the stereographic representation of the angles θ, φ. Additionally, for
σ = −1 the orientation of the null vector k with respect to I coincides with the orientation of
ko, ε = εo, cf figure 2.

Alternatively, in spacetimes with � < 0 for which I is timelike the normalized projection
of k onto I is

t = k − (k · qo)qo

|k · qo| . (5.8)

The resulting unit timelike vector t is tangent to the Lorentzian (1 + 2) conformal infinity. We
can analogously characterize t (and thus k) with respect to the reference tetrad as

t = cosh ψ to + sinh ψ(cos φ ro + sin φ so). (5.9)

The parameters ψ, φ are pseudo-spherical parameters, ψ ∈ (0,∞) corresponding to a boost,
and φ ∈ (−π, +π) being an angle. Their geometrical meaning is visualized in figure 3.
However, these parameters do not specify the null direction k uniquely—there always exist
one ingoing and one outgoing null direction with the same parameters ψ and φ, which are
distinguished by ε = ±1. Substituting equation (3.26) into (5.8), and comparing with equation
(5.9) we express ψ and φ in terms of R as

tanh ψ = 2 |R|
1 + |R|2 , φ = −arg R. (5.10)

Observing that sign(1 − |R|2) characterizes a difference in orientations of the vectors k and
ko with respect to infinity, ε = εo sign (1 − |R|2), we can write down the inverse relations,

R =




tanh
ψ

2
exp(−iφ) for ε = +εo,

coth
ψ

2
exp(−iφ) for ε = −εo.

(5.11)

We also allow an infinite value R = ∞ which corresponds to ψ = 0, ε = −εo, i.e.,
k ∝ (to − qo)/

√
2.

Of course such a parametrization can be applied to any null direction k. In particular, it
may characterize the direction ki of a null geodesic along which the infinity is approached, and
also describe the principal null directions. The PNDs on a ‘de Sitter-like’ I are thus given by
the spherical angles θn, φn related to Rn by equation (5.7), whereas on an ‘anti-de Sitter-like’
I by ψn, φn, εn which are given by (5.11).
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Figure 3. Parametrization of null directions k near timelike infinity I. All null directions form
three families: outgoing (ε = +1, vector k(out) in the figure), ingoing (ε = −1, vector k(in)) and
directions tangent to I. The direction k can be parametrized with respect to a reference tetrad
to, qo, ro, so by the boost ψ , angle φ and orientation ε, or by a complex number R, or by parameters
ρ, φ. In the left diagram, the vectors to, qo, rφ , where rφ = cos φ ro + sin φ so, are depicted; in the
right the direction qo = −εon is omitted. The parameters ψ, φ specify the normalized orthogonal
projection t of k into I, cf equations (5.8), (5.9). To parametrize k uniquely, we have to specify also
its orientation ε with respect to I. The parameter R is the Lorentzian stereographic representation
of ψ, φ, ε, cf equations (5.11). Vectors t corresponding to all outgoing (or ingoing) null directions
form a hyperbolic surface H . This can be radially mapped onto a two-dimensional disc tangent to
the hyperboloid at to, which can be parametrized by an angle φ and a radial coordinate ρ = tanh ψ .
In the exceptional case ρ = 1, i.e. ψ → ∞, the vector k ∝ t + rφ is tangent to I.

(This figure is in colour only in the electronic version)

5.4. Radiation on spacelike I

The asymptotic structure of gravitational and electromagnetic fields evaluated in the
interpretation tetrad near a de Sitter-like conformal infinity, σ = −1 with n = εoto, is given
by (4.19) for s = 2 and s = 1, respectively,

� i
4 ≈ �o

4 ∗
η

(1 + |R|2)−2

(
1 − R1

Ra

) (
1 − R2

Ra

) (
1 − R3

Ra

)(
1 − R4

Ra

)
, (5.12)

�i
2 ≈ ε0

�o
2∗
η

(1 + |R|2)−1

(
1 − R1

Ra

)(
1 − R2

Ra

)
, (5.13)

where, using (5.7),

(1 + |R|2)−1 = cos2

(
θ

2

)
, (5.14)

and the complex number Ra is

Ra = − 1

R̄
= −cot

(
θ

2

)
exp(−iφ). (5.15)
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It characterizes a spatial direction opposite to the direction given by R, i.e., the antipodal
direction with θa = π − θ and φa = φ + π . The remaining freedom in the choice of the
vectors mi, m̄i changes just a phase of the field components, so that only their modulus

∣∣� i
4

∣∣
or

∣∣�i
2

∣∣ has an invariant meaning.
In a general spacetime there exist four spatial directions at P ∈ I along which the

radiative component of the gravitational field (5.12) vanishes, namely the directions satisfying
Ra = Rn, n = 1, 2, 3, 4 (or two such directions for electromagnetic field (5.13)). These
privileged null directions k are given by (3.26) with R = (Rn)a. Spatial parts of them are thus
exactly opposite to the projections of the principal null directions onto I.

In algebraically special spacetimes some PNDs coincide, and expressions (5.12), (5.13)
simplify. Moreover, it is always possible to choose the canonical reference tetrad aligned to
the algebraic structure:

(i) the vector qo is oriented along the spatial projection of the degenerate (multiple) PND
onto I, say k4, i.e. ko = k4,

(ii) the qo–ro plane is oriented so that it contains the spatial projection of one of the remaining
PNDs, say k1 (for type N spacetimes this choice is arbitrary).

Using such a canonical reference tetrad, the degenerate PND k4 is parametrized by θ4 = 0,
i.e. R4 = 0, see equations (5.6) and (5.7). The PND k1 has φ1 = 0, i.e. R1 = tan(θ1/2) is a
real constant.

Consequently, for the Petrov type N spacetimes (which have a quadruply degenerate PND),
in the canonical reference tetrad there is R1 = R2 = R3 = R4 = 0, so that the asymptotic
behaviour of gravitational field (5.12) becomes∣∣� i

4

∣∣ ≈ ∣∣�o
4 ∗

∣∣|η|−1 cos4 θ

2
. (5.16)

The corresponding directional structure of radiation is illustrated in figure 4(N). It is
axisymmetric, with maximum value at θ = 0 along the spatial projection of the quadruple
PND onto I. Along the opposite direction, θ = π , the field vanishes. Analogously, for a
spin-s field of type N (with all PNDs coinciding) we obtain

∣∣ϒ i
2s

∣∣ ≈ ∣∣ϒo
2s∗

∣∣|η|−1

∣∣∣∣cos
θ

2

∣∣∣∣
2s

. (5.17)

In Petrov type III spacetimes, R1 = tan θ1
2 , R2 = R3 = R4 = 0, and (5.12) implies

∣∣� i
4

∣∣ ≈ ∣∣�o
4 ∗

∣∣|η|−1 cos4 θ

2

∣∣∣∣1 + tan
θ1

2
tan

θ

2
eiφ

∣∣∣∣ . (5.18)

This directional pattern is shown in figure 4(III). The field vanishes along θ = π and along
θ = π − θ1, φ = π which are spatial directions opposite to the PNDs.

The type D spacetimes admit two double degenerate PNDs, R1 = R2 = tan θ1
2 and

R3 = R4 = 0. The gravitational field near spacelike I thus takes the form

∣∣� i
4

∣∣ ≈ ∣∣�o
4 ∗

∣∣|η|−1 cos4 θ

2

∣∣∣∣1 + tan
θ1

2
tan

θ

2
eiφ

∣∣∣∣
2

, (5.19)

with two planes of symmetry, see figure 4(D). This directional dependence agrees with that
for the C-metric spacetime with � > 0 derived recently in [102].

For Petrov type II spacetimes, only two PNDs coincide so that R1 = tan θ1
2 ,

R2 = tan θ2
2 exp(−iφ2), R3 = R4 = 0. Asymptotic directional structure of the field,
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Figure 4. Specific directional structure of radiation for spacetimes of Petrov types N, III, D, II
and I. Directions in the diagrams are spatial directions tangent to a spacelike I. For each type, the
radiative component

∣∣� i
4

∣∣ along a null geodesic is depicted in the corresponding spatial direction q
parametrized by spherical angles θ, φ, see (5.6). [Degenerate] principal null directions (PNDs) are
indicated by [multiple] bold arrows. Thick lines represent spatial directions (opposite to PNDs)
along which the radiation vanishes.

∣∣� i
4

∣∣ ≈ ∣∣�o
4 ∗

∣∣|η|−1 cos4 θ

2

∣∣∣∣1 + tan
θ1

2
tan

θ

2
eiφ

∣∣∣∣
∣∣∣∣1 + tan

θ2

2
tan

θ

2
ei(φ−φ2)

∣∣∣∣ , (5.20)

is drawn in figure 4(II).
Finally, in the case of algebraically general type I spacetimes one needs five real parameters

θ1, θ2, φ2, θ3, φ3 to characterize the directional dependence

∣∣� i
4

∣∣ ≈ ∣∣�o
4 ∗

∣∣|η|−1 cos4 θ

2

∣∣∣∣1 + tan
θ1

2
tan

θ

2
eiφ

∣∣∣∣
×

∣∣∣∣1 + tan
θ2

2
tan

θ

2
ei(φ−φ2)

∣∣∣∣
∣∣∣∣1 + tan

θ3

2
tan

θ

2
ei(φ−φ3)

∣∣∣∣ , (5.21)

figure 4(I), of the gravitational field with respect to the canonical reference tetrad.
Of course, for any conformally flat spacetime the radiation vanishes entirely because

� i
j = 0 for all j . This is the case of, for example, the Friedman–Robertson–Walker solutions

which admit I.
There exist alternative choices of the reference tetrad, e.g., those which respect the

symmetry of the radiation pattern. For spacetimes of type D the directional structure indicated
in figure 4(D) admits two planes of symmetry. It is thus natural to choose the tetrad q′

o, r′
o, s′

o
adapted to them: we require that one (double degenerate) PND has inclination θs with respect
to q′

o, the second PND has the same inclination with respect to −q′
o (i.e. θs = (π − θ1)/2),

and that the vector s′
o is perpendicular to the plane spanned by these PNDs (see [118] for

more details). With respect to this reference tetrad the PNDs are parametrized by the
coefficients R1 = R2 = tan θs

2 and R3 = R4 = cot θs
2 . Moreover, for type D there exists a
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natural normalization of the field which is different from that discussed above. One can
evaluate the components �s

j in the algebraically special null tetrad with ks and ls given by the
degenerate PNDs—it follows from the definition of PNDs that only the component �s

2 would
be non-vanishing. This component is independent of a choice of the tetrad vectors orthogonal
to PNDs, and of the scaling of PNDs (assuming ks · ls = −1), cf (4.6) with s = 2. We may
thus use �s

2 to normalize the directional structure of radiation. Using the relation

�o′
4 = 3

2 tan2 θs�
s
2, (5.22)

see [118], the radiation pattern (5.12) parametrized by angles θ ′, φ′ with respect to the reference
tetrad t′o, q′

o, r′
o, s′

o reads

∣∣� i
4

∣∣ ≈ 1

|η|
3

2

∣∣�s
2∗

∣∣
cos2 θs

|sin θ ′ + sin θs cos φ′ − i sin θs cos θ ′ sin φ′|2. (5.23)

This coincides with the expression for the asymptotic directional structure of radiation in the
C-metric spacetime with � > 0, as previously presented in [102].

For a completely general choice of the reference tetrad near a de Sitter-like conformal
infinity, the dominant radiative term (5.12) of any gravitational field can asymptotically be
written in terms of spherical angles θ, φ as∣∣� i

4

∣∣ ≈
∣∣�o

4 ∗
∣∣

|η| cos4 θ

2

∏
n=1,2,3,4

∣∣∣∣1 + tan
θn

2
tan

θ

2
ei(φ−φn)

∣∣∣∣ , (5.24)

where θn, φn identify the principal null directions kn with respect to the reference tetrad. In a
similar way, when �o

4 ∗ = 0, �o
0 ∗ �= 0 we obtain from (4.20)

∣∣� i
4

∣∣ ≈
∣∣�o

0 ∗
∣∣

|η| |1 + |Ra|2 |−2

∣∣∣∣1 − R1a

R

∣∣∣∣
∣∣∣∣1 − R2a

R

∣∣∣∣
∣∣∣∣1 − R3a

R

∣∣∣∣
∣∣∣∣1 − R4a

R

∣∣∣∣
=

∣∣�o
0 ∗

∣∣
|η| sin4 θ

2

∏
n=1,2,3,4

∣∣∣∣1 + cot
θn

2
cot

θ

2
ei(φ−φn)

∣∣∣∣ . (5.25)

An analogous discussion also applies to electromagnetic field (5.13). Moreover, it
turns out that the square of �i

2 is the magnitude of the Poynting vector with respect to

the interpretation tetrad, |Si| ≈ 1
4π

∣∣�i
2

∣∣2
. If the two PNDs of the electromagnetic field

coincide (R1 = R2 = 0), the directional dependence of the Poynting vector at I with respect
to the canonical reference tetrad is the same as in equation (5.16), figure 4(N). If they differ
(R1 = tan θ1

2 , R2 = 0), the asymptotic directional structure of |Si| is given by equation (5.19),
illustrated in figure 4(D). The latter result was first obtained for the test field of uniformly
accelerated charges in de Sitter spacetime [101] and then recovered in the context of the
charged C-metric spacetime [102].

The above discussion and explicit forms of the radiative directional patterns apply both
to future conformal infinity I+ and past I−. In particular, it means that not only outgoing
radiation does not vanish in a generic direction, but also that the ingoing field has a radiative
(∼η−1) term along a generic null geodesic coming from the past infinity. This result can be
related to Penrose’s discussion of the nature of an incoming field near a spacelike infinity
[28, 100] which has been studied in more detail in [104] and identified as the insufficiency of
purely retarded fields.

5.5. Radiation on timelike I

Now we shall explicitly analyse the dependence of radiation on the direction of a null geodesic
near the ‘anti-de Sitter-like’, i.e. timelike, conformal infinity [117]. With respect to a suitable
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reference tetrad to, qo, ro, so these directions are parametrized by the complex parameter R,
or its ‘Lorentzian angles’ ψ, φ and the orientation ε, related to R by pseudo-stereographic
representation, see (5.11) and figure 3. The directional structure of radiation is given by
expression (4.19) for σ = +1,

� i
4 ≈ �o

4 ∗
η

(1 − |R|2)−2

(
1 − R1

Rm

) (
1 − R2

Rm

)(
1 − R3

Rm

) (
1 − R4

Rm

)
, (5.26)

�i
2 ≈ ε0

�o
2∗
η

(1 − |R|2)−1

(
1 − R1

Rm

) (
1 − R2

Rm

)
. (5.27)

Here, the complex number Rm is

Rm = R̄−1 = cothεεo

(
ψ

2

)
exp(−iφ), (5.28)

see (5.11). It characterizes a direction obtained from the direction R by a reflection with respect
to I, i.e., the mirrored direction with ψm = ψ, φm = φ but opposite orientation εm = −ε.
Near an anti-de Sitter-like conformal infinity, a generic gravitational field thus takes the
asymptotic form

∣∣� i
4

∣∣ ≈
∣∣�o

4 ∗
∣∣

|η|
(

cosh ψ + εεo

2

)2 ∏
n=1,2,3,4

∣∣∣∣1 − tanhεnεo

(
ψn

2

)
tanhεεo

(
ψ

2

)
ei(φ−φn)

∣∣∣∣ , (5.29)

where ψn, φn, εn identify the principal null directions kn, including their orientation with
respect to I.

Expression (5.26) has been derived assuming �o
4 �= 0, i.e., Rn �= ∞. However, to describe

the PND oriented along lo it is necessary to use a different component �o
j as a normalization

factor. With �o
0 = �o

4R1R2R3R4 we obtain

∣∣� i
4

∣∣ ≈
∣∣�o

0 ∗
∣∣

|η| |1 − |Rm|2 |−2

∣∣∣∣1 − R1m

R

∣∣∣∣
∣∣∣∣1 − R2m

R

∣∣∣∣
∣∣∣∣1 − R3m

R

∣∣∣∣
∣∣∣∣1 − R4m

R

∣∣∣∣
=

∣∣�o
0 ∗

∣∣
|η|

(
cosh ψ − εεo

2

)2 ∏
n=1,2,3,4

∣∣∣∣1 − cothεnεo

(
ψn

2

)
cothεεo

(
ψ

2

)
ei(φ−φn)

∣∣∣∣ . (5.30)

Interestingly, the radiation pattern has thus the same form if all PNDs are reflected,
Rn → (Rn)m, and ingoing and outgoing directions switched, R → Rm.

Both expressions (5.26) and (5.30) characterize the asymptotic behaviour of the fields
near anti-de Sitter-like infinity. First, we observe from (5.26) that the radiation ‘blows up’ for
directions with |R| = 1 (i.e., ψ → ∞). These are null directions tangent to I, and thus they
do not represent a direction of any geodesic approaching I from the ‘interior’ of spacetime.
The reason for this divergent behaviour is ‘kinematic’: when we required the ‘comparable’
approach of geodesics to infinity (see discussion nearby (3.10)), we had fixed the component
of ki normal to I, equation (3.16). Clearly, such a condition implies an ‘infinite’ rescaling if
ki is tangent to I which results in the divergence of

∣∣� i
4

∣∣.
The divergence at |R| = 1 splits the radiation pattern into two components—the pattern

for outgoing geodesics (ε = +1) and that for ingoing geodesics (ε = −1). These two different
patterns are separately depicted in figures 5 and 6.

From equation (5.26) it is obvious that there are, in general, four directions along which the
radiation vanishes, namely PNDs reflected with respect to I, given by R = (Rn)m. Outgoing
PNDs give rise to zeros in the radiation pattern for ingoing null geodesics, and vice versa. A
qualitative shape of the radiation pattern thus depends on
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Figure 5. Directional structure of radiation near a timelike I. All 11 qualitatively different shapes
of the pattern when PNDs are not tangent to I are shown (the remaining nine are related by a simple
reflection with respect to I). Each diagram consists of patterns for ingoing (left) and outgoing
geodesics (right).

∣∣� i
4

∣∣ is drawn on the vertical axis, directions of geodesics are represented on
the horizontal disc by coordinates ρ, φ introduced in figure 3. Reflected [degenerated] PNDs
are indicated by [multiple] arrows under the discs. For PNDs that are not tangent to I these are
directions of vanishing radiation. The Petrov types (N, III, D, II, I) corresponding to the degeneracy
of PNDs are indicated by labels of diagrams, the number of ingoing and outgoing PNDs is also
displayed using the notation of table 1.
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Table 1. All 51 qualitatively different directional structures of gravitational radiation near a timelike
conformal infinity. For various algebraic Petrov types, given by the degeneracy of principal null
directions, the specific structure is determined by the orientation of these PNDs with respect to
I. We denote outgoing, tangent and ingoing PNDs by the symbols o, t and i, respectively, and
their degeneracy by the corresponding power. The possibilities for each Petrov type which are
presented in the third line are obtained from those in the first line by the duality between outgoing
and ingoing directions, i.e. by interchanging o with i.

Type PND degeneracy Different possible orientations of PNDs

o4

N 4 t4

i4

o3o o3t o3i t3o

III 3 + 1 t3t

i3i i3t i3o t3i

o2o2 o2t2

D 2 + 2 o2i2 t2t2

i2i2 i2t2

o2oo o2ot o2oi o2ii o2it o2t t t2oo t2ot

II 2 + 1 + 1 t2oi t2t t

i2ii i2it i2io i2oo i2ot i2t t t2ii t2it

oooo ooot oooi ooit oott ott t

I 1 + 1 + 1 + 1 ooii oitt t t t t

iiii iiit iiio iiot iit t it t t

(i) degeneracy of the PNDs (Petrov type of the spacetime),

(ii) orientation of these PNDs with respect to I (the number of outgoing/tangent/ingoing
principal null directions).

Depending on these factors there are 51 qualitatively different shapes of the radiation patterns
(3 for Petrov type N spacetimes, 9 for type III, 6 for D, 18 for II and 15 for type I spacetimes);
21 pairs of them are related by the duality of equations (5.26) and (5.30). All the different
possibilities are summarized in table 1. The corresponding directional patterns with PNDs
not tangent to I are shown in figure 5, some examples of those with PNDs tangent to I can be
found in figure 6.

As we have said before, the reference tetrad can be chosen to capture the geometry of the
spacetime. To simplify the radiation pattern we can also adapt it to the algebraic structure, i.e.,
to correlate the tetrad with PNDs, as we did thoroughly for spacelike I in the previous section.
In the case of timelike conformal infinity, however, the choice of canonical reference tetrads
adjusted to PNDs is not very transparent—it splits to a lengthy discussion of separate cases
depending on orientation of the PNDs with respect to I. We do not include such a discussion
here. We will only mention the simplest case of type N fields, and investigate in some more
detail the cases of PNDs tangent to I, the presence of which is specific for spacetimes with
timelike infinity.

For type N fields with the quadruply degenerate PND, which is not tangent to I, we can
align the vector ko along this algebraically special direction, i.e., ko = k1(= k2 = k3 = k4).
The vector lo is fixed by the adjustment condition (3.25). (The spatial vectors mo, m̄o cannot
be fixed canonically by the algebraic structure—they have to be specified by other means.)
The PNDs are then given by Rn = 0, i.e., ψn = 0 with orientations εn = εo, n = 1, 2, 3, 4.
The directional dependence of radiation (5.29) thus reduces to
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Figure 6. Examples of directional structure of radiation near a timelike I when PNDs are tangent
to I. Only the patterns for types N and D are shown. The notation and meaning of the diagrams
are the same as in figure 5.

∣∣� i
4

∣∣ ≈
∣∣�o

4 ∗
∣∣

|η|
(

cosh ψ + εεo

2

)2

, (5.31)

illustrated in figure 5(N). Similarly, the radiative component of a general spin-s field of type
N would be ∣∣ϒ i

2s

∣∣ ≈
∣∣ϒo

2s∗
∣∣

|η|
(

cosh ψ + εεo

2

)s

. (5.32)

It is possible to introduce naturally the reference tetrads adjusted to the algebraic structure
for Petrov type D gravitational fields or, in general, for fields with two equivalent special
algebraic directions as, e.g., for a generic electromagnetic field. Such a tetrad is analogous to
that introduced above (5.23) near a spacelike I. A detailed discussion of these tetrads and of
the normalization of the field can be found in [118] (cf also (5.36)).

We now turn to a special situation specific for the fields near a timelike infinity I. Up
to now we have discussed principal null directions which are either incoming or outgoing
from the spacetime. However, PNDs can also be tangent to I, and in the following we will
discuss the consequences of such special orientation of PNDs for the radiation pattern. We
do not expect PNDs to be tangent to I at generic points. However, they can be tangent on
some lower-dimensional subspace such as the intersection of I with Killing horizons—cf the
anti-de Sitter C-metric [103]. These subspaces can be important, e.g., as in the context of the
Randall–Sundrum model: a brane constructed from the C-metric reaches infinity with PNDs
tangent both to it and to I [119].

In the case when all PNDs are tangent to the conformal infinity, Rn = exp(−iφn), the
directional pattern (4.19) for a general spin-s field reduces to

∣∣ϒ i
2s

∣∣ ≈ ∣∣ϒo
2s∗

∣∣ |η|−1
2s∏

n=1

(cosh ψ − sinh ψ cos(φ − φn))
1/2. (5.33)

The field has, in general, no directions of vanishing radiation. It can only vanish along
unphysical directions R = Rn (unphysical because they are tangent to I), provided the PND
kn is at least triple degenerate.

For type N fields, when all PNDs are the same, we can choose the reference tetrad in such
a way that Rn = 1, i.e., φn = 0, and we obtain∣∣ϒ i

2s

∣∣ ≈ ∣∣ϒo
2s∗

∣∣ |η|−1 (cosh ψ − sinh ψ cos φ)s. (5.34)

In particular, for a gravitational field∣∣� i
4

∣∣ ≈ ∣∣�o
4 ∗

∣∣ |η|−1 (cosh ψ − sinh ψ cos φ)2, (5.35)

see figure 6(N).
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For a gravitational field of Petrov type D with both double degenerate PNDs tangent to I
(figure 6(Da)), we can choose the reference tetrad such that R1 = R2 = 1 and R3 = R4 = −1.
The radiation pattern then becomes∣∣� i

4

∣∣ ≈ 3
2

∣∣�s
2∗

∣∣ |η|−1 (1 + sinh2 ψ sin2 φ), (5.36)

where for normalization we have used the only non-vanishing field component �s
2 in the

algebraically special tetrad aligned along both PNDs: this is related to the reference tetrad
field component by �o

4 = 3
2�s

2, see [118]. As we have said, there is no direction (even an
unphysical one) of vanishing radiation in this case. However, directionally dependent limits
R → R1 and R → R4, in general, do not diverge (cf figure 6(Da)). Finally, for a gravitational
field of type D with only one PND tangent to I, figure 6(Db), we can choose the reference
tetrad so that R1 = R2 = 1, R3 = R4 = 0,∣∣� i

4

∣∣ ≈ ∣∣�o
4 ∗

∣∣|η|−1 cosh ψ + εεo

2
(cosh ψ − sinh ψ cos φ). (5.37)

To summarize, when I is not null the radiation fields depend on the direction along which
the conformal infinity is approached. Analogously to the � > 0 case [116] the radiation
pattern for � < 0 has a universal character determined by the algebraic type of the fields
[117]. However, new features occur when � < 0: both outgoing and ingoing patterns have to
be studied, their shapes depend also on the orientation of the PNDs with respect to I, and an
interesting possibility of PNDs tangent to I appears. Radiation vanishes only along directions
which are reflections of PNDs with respect to I. In a generic direction it is non-vanishing.
The absence of η−1 terms thus cannot be used to distinguish nonradiative sources: near an
anti-de Sitter-like infinity the radiative component reflects not only properties of sources but
also their relation to the observer.

6. Conclusions

The investigation of the asymptotic structure of general fields in spacetimes with a non-
vanishing cosmological constant � is motivated, among others, by the fact that these
spacetimes have been commonly used in various branches of theoretical research, e.g.
in inflationary models, brane cosmologies, supergravity or string theories. Perhaps most
importantly, the possible presence of a positive � is also indicated by recent observations.

An understanding of the nature of radiation in spacetimes with a non-vanishing � is not
so developed as that in spacetimes with � = 0. Standard techniques used for asymptotically
flat spacetimes (such as the Bondi–Sachs approach) cannot be applied, and generalizations
of other methods lead to results which are ‘less unique’. In particular, we have documented
that for � �= 0 the field components with respect to a parallelly transported interpretation
tetrad depend on a null direction along which infinity is approached—the feature which is
absent in the � = 0 case. In Penrose’s words (cf discussion after equation (9.7.38) in [33]):
“on varying geodesic through P , the different components � i

j get mingled with each other”.
We derived this directional structure of radiation explicitly and we demonstrated that it is
determined by the algebraic structure of the field. The asymptotic behaviour near I of the
dominant component of any zero-rest-mass field of spin s is given by formula (4.19),

ϒ i
2s ∝ η−1(1 − σRR̄)−s

2s∏
n=1

(1 − σRnR̄), (6.1)

where η is the affine parameter. The coefficient σ = −1, 0, or + 1 denotes the spacelike, null
or timelike character of the conformal infinity; in (electro)vacuum spacetimes σ = −sign �.
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The complex parameter R represents the direction of the outgoing/ingoing null geodesic
along which a given point P ∈ I is approached as η → ±∞. The complex constants Rn

characterize the principal null directions, i.e. the algebraic structure of the field at P. Obviously,
for I of a ‘Minkowskian’ type (σ = 0) the directional dependence completely vanishes. The
specific dependence of ϒ i

2s on the direction R of the geodesic occurs if σ �= 0, i.e., near
‘(anti-)de Sitter-like’ conformal infinity. Interestingly, in all spacetimes which are not
conformally flat there are at most 2s directions along which the radiative part of the field
(6.1) vanishes. These are directions antipodal to the principal null directions in the case of
a spacelike I, and mirror reflections of the PNDs with respect to I when its character is
timelike. Along all other directions the radiation does not vanish, even if the field corresponds
to a ‘static’ source.

Our results supplement and refine the peeling-off behaviour of zero-rest-mass fields. The
‘peeling’ is a well-known property of the fields near conformal infinity, and therefore we will
emphasize again its relation to the above derived asymptotic directional structure of radiation.
For example, in classical works [23, 30] one can find its very suggestive formulation: the
curvature tensor expanded along null geodesics takes the form

� = Nη−1 + IIIη−2 + IIη−3 + Iη−4 + · · · , (6.2)

(see page 365 in [30] or equation (5.6) in [23]) where the terms N, III, II and I are algebraically
special with quadruple, triple, double and non-degenerate PNDs, respectively. On this basis it
is commonly stated that the radiative component (∼ η−1) becomes asymptotically of Petrov
type N with one quadruply degenerate PND. Our discussion above, however, demonstrates
that such an interpretation is misleading or, at least, not precise. The separation of the terms
having different algebraic structure into different orders of the asymptotic expansion in η is
not due to the inherent properties of the Weyl tensor itself, but rather due to the asymptotic
degeneracy of the tetrad with respect to which the Weyl tensor is evaluated. The coefficients
in (6.2) are calculated in the interpretation tetrad which is parallelly transported along the
null geodesic. We have seen that such a tetrad becomes infinitely boosted with respect to a
regular tetrad defined in terms of the conformal geometry (see, e.g., relations (3.18), (2.19)).
The Weyl tensor evaluated in the tetrad which is defined using the conformal techniques (i.e.,
the field calculated in the conformal geometry and then appropriately rescaled to obtain the
physical quantity) has a typical behaviour � ∼ η−3 (cf equation (4.18)) and it does not exhibit
any peeling-off behaviour. It is the transformation to the interpretation tetrad (by the infinite
boost, see equation (4.12)) which gives rise to peeling-off of the components with a different
algebraic structure.

The field thus becomes asymptotically of type N only when viewed from the parallelly
transported tetrad, with the algebraically special direction oriented along the tangent to the null
geodesic approaching infinity. Already this dependence of the algebraically special direction,
along which the field asymptotically aligns, on the direction of the geodesic, indicates that the
asymptotic algebraic degeneracy suggested by (6.2) is not an invariant property of the field
but an effect resulting from specific relation between the field and the observer.

As we said, near a null conformal infinity the magnitude of leading coefficient ∼η−1 in
the expansion (6.2) actually does not depend on the direction of the null geodesic (see (6.1)
for σ = 0), and can thus be assigned a more invariant meaning—we may speak about non-
radiative fields if this leading term is missing, and about radiative fields otherwise. However,
for a spacelike or timelike conformal infinity we have found that the magnitude of the leading
term does depend substantially on the direction R of the geodesic. Interestingly, such a
dependence can be explicitly described in terms of the principal null directions of the field,
see (6.1) and the discussion in sections 5.4 and 5.5.
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To summarize: the peeling-off behaviour of a field near a spacelike or timelike infinity is
not an invariant property of the field itself, but it is rather a statement about the behaviour of
the field components evaluated in suitable tetrads propagated parallelly along null geodesics.
For the full description of the components, the standard ‘peeling’ needs to be supplemented
by their directional dependence which was presented above. We hope that our results may
give some clues to the understanding of radiation in spacetimes which are not asymptotically
flat.

It is very difficult to obtain an explicit general relation between the matter distribution and
the corresponding distant gravitational field since the non-linearity of the Einstein equations
effectively allows gravitation to act as its own source. Therefore, it remains an open problem
to relate the structure of bounded sources to the principal null directions of the field at I which
essentially determines the radiation structure at spacelike or timelike conformal infinities.
Some insight in this direction could hopefully be obtained by investigating suitable exact
model spacetimes.
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Appendix A. Asymptotic polyhomogeneous expansions

In section 2.3 we integrated equation (2.13) for a physical affine parameter, and we obtained
its expansion (2.17) in terms of the conformal affine parameter η̃. This can easily be inverted
only in the leading order, η̃ = −1/η. Here we derive the expansion of the conformal affine
parameter η̃ in terms of η up to a higher order.

First, assuming smoothness of the conformal factor in the conformal affine parameter
near I, we have (cf equation (2.16))

� = −εη̃ + �2η̃
2 + �3η̃

3 + · · · , (A.1)

where �i are constants. Expanding �−2, the integration of (2.13) then leads to

η = −1

η̃
+

(
2ε�2 ln |η̃| + η0

)
+

(
3�2

2 + 2ε�3
)
η̃ + · · · (A.2)

(cf equation (2.17)), where η0 is a constant of integration. This expression contains the
logarithmic term ln |η̃| which means that the relation between η and η̃ is intrinsically non-
analytic and cannot thus be inverted as a standard power expansion. We have to look for an
inverse expansion in a broader class of functions, namely we admit functions which for small
ξ can be written as

f (ξ) =
∞∑

j=j∗

fj (ln
−1 |ξ |)ξ j , (A.3)

where j, j∗ ∈ Z, and the ‘coefficient’ fj (ln−1 |ξ |) in the power expansion is an (infinite)
polynomial of the reciprocal logarithm x = ln−1 |ξ |. More precisely, fj (x) is a function
which is analytic (with a possible pole of a finite order −k∗ if k∗ < 0) at x = 0,

fj (x) =
∞∑

k=k∗

fj,kx
k. (A.4)
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Inspired by [90], we may call such an expansion polyhomogeneous. The expansion (A.3) with
the leading coefficient fj∗(x) regular and non-vanishing at x = 0 can be substituted into another
polyhomogeneous expansion and the result remains again in the class of polyhomogeneous
expansions.

Expansion (A.2) is exactly of the form (A.3) for a small parameter η̃. We can seek the
inverse relation as a polyhomogeneous expansion in the small parameter ε = −η−1 (i.e., in
the reciprocal physical affine parameter; notice the difference between ε and ε):

η̃ = ε + η̃2(ln
−1 |ε|)ε2 + η̃3(ln

−1 |ε|)ε3 + · · · . (A.5)

Substituting into (A.2), expanding logarithmic terms, and requiring that the resulting expansion
should lead to the single term η = −ε−1, we find

η̃ = ε − (2ε�2 ln |ε| + η0)ε
2 +

(
4�2

2 ln2 |ε| + 4�2(εη0 + �2) ln |ε| + η2
0

+ 2εη0�2 − 3�2
2 − 2ε�3

)
ε3 + · · · . (A.6)

Thus, the conformal factor (A.1) is

� = −εε + (2�2 ln |ε| + εη0 + �2)ε
2 − ε

(
4�2

2 ln2 |ε| + 4�2
2(εη0 + 2�2) ln |ε|

+ η2
0 + 4εη0�2 − 3�2

2 − 3ε�3
)
ε3 + · · · . (A.7)

Integrating now equation (3.19) for parameter L, in which we expand � and the right-hand
side in parameter η̃, see equations (A.1) and (3.20), we obtain

L = M1 ln |η̃| + L0 + (M2 + 2εM1�2)η̃ + 1
2

(
M3 + 2εM2�2 + M1

(
3�2

2 + 2ε�3
))

η̃2 + · · · ,
(A.8)

and expressing this in terms of the reciprocal physical affine parameter using (A.6)

L = M1 ln |ε| + L0 + (−2εM1�2 ln |ε| + M2 − M1η0 + 2εM1�2)ε

+
(
2M1�

2
2 ln2 |ε| − 2ε(M2 − M1η0)�2 ln |ε|

+ 1
2

(
M3 − 2M2(η0 − ε�2) + M1

(
η2

0 − 3�2
2 − 2ε�3

)))
ε2 + · · · . (A.9)

Moreover, the coefficients �i,Mi in expansions (2.16) and (3.20) can be expressed in terms
of derivatives of � and m̄a

a da� with respect of η̃. Namely, �2 and M1 are given by

�2 = 1

2

d2�

dη̃2

∣∣∣∣
η̃=0

= 
2
(
k̃b

a k̃a
a ∇̃bda�

)∣∣
I , (A.10)

M1 =
√

2

d

dη̃

(
m̃a

a da�
)∣∣∣∣

η̃=0

= 2
2
(
k̃b

am̃a
a ∇̃bda�

)∣∣
I, (A.11)

where we used (3.11) and (3.12). Employing equations (2.3) and (2.8) we obtain

∇̃bda� = 1
4 g̃ab�̃� + 1

2�
[(

Ricab − 1
4Rgab

) − (
˜Ricab − 1

4 R̃g̃ab

)]
. (A.12)

Consequently,

�2 = 1
2
2

(
�k̃b

a k̃a
a

[(
Ricab − 1

4Rgab

) − (
˜Ricab − 1

4 R̃g̃ab

)])∣∣
I , (A.13)

M1 = 
2(�k̃b
am̃a

a

[(
Ricab − 1

4Rgab

) − (
˜Ricab − 1

4 R̃g̃ab

)])∣∣
I , (A.14)

We assume regularity of the conformal geometry near infinity so that the second terms in
brackets, �

(
˜Ricab − 1

4 R̃g̃ab

)
, vanish on I. The first terms can be expressed as the specific

tetrad components of the traceless Ricci tensor [12], namely

�a
00 = 1

2

(
Ricab − 1

4Rgab

)
kbka, �a

01 = 1
2

(
Ricab − 1

4Rgab

)
kbma, (A.15)
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which in view of Einstein equations (2.9) are proportional to the corresponding components
of the energy–momentum tensor. We thus obtain

�2 = 
2
(
�−1�a

00

)∣∣
I ∼ (

η̃−1�a
00

)∣∣
η̃=0, (A.16)

M1 = 2
2
(
�−1�a

01

)∣∣
I ∼ (

η̃−1�a
01

)∣∣
η̃=0, (A.17)

where �a
00 and �a

01 are evaluated with respect to the tetrad (3.14). These vanish identically for
vacuum spacetimes. Moreover, �2 and M1 are zero also in non-vacuum cases such that near
the conformal infinity the matter field decays faster than ∼ η̃. It corresponds to the situation
when Penrose’s asymptotic Einstein condition (equation (2.20), cf (9.6.21) of [33]) is satisfied.
With �2 = 0,M1 = 0 the logarithmic terms in expansions (A.6)–(A.9) disappear.

Appendix B. Tetrads and fields in spinor formalism

Following, e.g., [33], the field of any spin s = 0, 1
2 , 1, 3

2 , · · · can be represented using the
two-component symmetric spinor Υ with 2s lower indices. To fix conventions for various
signs and prefactors which alter in the literature we first summarize some general relations for
spinors and their relation to tangent vectors.

Two-component spinors at a point x form two mutually conjugated complex vector
spaces SxM and S̄xM of dimension two. We use capital Latin letters for indices of spinors
from SxM and letters with a bar for the conjugated spinors. Spinor spaces are equipped
with skew-symmetric metrics εAB and ε̄ĀB̄ respectively, and with their inverses εAB and ε̄ĀB̄

(such that, e.g., εAMεBM = δA
B). These metrics are used for lowering and raising indices:

ψA = εAMψM , ψA = ψMεMA. The space of real bi-spinors (i.e., spinors αAĀ such that
αAĀ = ᾱĀA) with metric −εAB ε̄ĀB̄ is isometric to the space of tangent vectors with metric
spacetime gab through the soldering form σa

AĀ. The relation of both metrics is

gab = −σa
AĀσb

BB̄εAB ε̄ĀB̄ , εAB ε̄ĀB̄ = −gabσ
a
AĀσb

BB̄ . (B.1)

A spinor frame o, ι is called normalized if it satisfies

εAB = oAιB − ιAoB, i.e., oAιBεAB = 1. (B.2)

We can associate a normalized spinor frame o, ι with any null tetrad k, l, m, m̄ in the following
way:

ka = σa
AĀoAōĀ, ma = σa

AĀoAῑĀ,

la = σa
AĀιAῑĀ, m̄a = σa

AĀιAōĀ.
(B.3)

Special Lorentz transformations (3.3), (3.4) and (3.5) correspond to transformations of
the normalized spinor frame which leave (B.2) unchanged. Namely, for null rotation with k
fixed we have

o = oo, k = ko, m = mo + Lko,

ι = ιo + L̄oo, l = lo + L̄mo + Lm + LL̄k, m̄ = m̄o + L̄ko,
(B.4)

and for null rotation with l fixed,

o = oo + Kιo, k = ko + K̄mo + Km + KK̄k, m = mo + Kko,

ι = ιo, l = lo, m̄ = m̄o + K̄ko.
(B.5)

Boost and rotation are

o = B
1
2 exp

(
iφ

2

)
oo, k = Bko, m = exp(iφ)mo,

ι = B− 1
2 exp

(−iφ

2

)
ιo, l = B−1lo, m̄ = exp(−iφ)m̄o.

(B.6)
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As we have said, the field of spin s can be represented by a spinor ΥA1···A2s
which is

symmetric in all indices. The space of such symmetric spinors forms a representation space
for the irreducible representation of type (0, s) of the SL(2C) group, or of its sl(2C) Lie
algebra which is isomorphic to Lie algebra so(1, 3) of the Lorenz group.

Field equations for the zero-rest-mass field of spin s are usually written in the form

εMN∇MĀΥNA2···A2s
= 0, with ∇AĀ = σa

AĀ∇a. (B.7)

It is well known [33] that such an equation is not consistent for s > 2 in a general curved
background, and there are restrictions on curvature to achieve consistency for s > 1. However,
the exact form of the field equations is not necessary for our discussion. We only assume that
we may obtain the field Υ from some unspecified theory which prescribes the behaviour of
the field.

The examples are spinors ΨABCD and ΦAB of spins 2 and 1 which represent the
gravitational and electromagnetic fields, respectively. These spinors are related to the Weyl
tensor Cabcd as

Cabcd = σa
AĀσb

BB̄σc
CC̄σd

DD̄(ΨABCD ε̄ĀB̄ ε̄C̄D̄ + Ψ̄ĀB̄C̄D̄εABεCD),
(B.8)

ΨABCD = 1
4σa

AĀσb
BB̄σc

CC̄σd
DD̄Cabcd ε̄

ĀB̄ ε̄C̄D̄,

and to the electromagnetic tensor Fab as

Fab = σa
AĀσb

BB̄(ΦAB ε̄ĀB̄ + Φ̄ĀB̄εAB),
(B.9)

ΦAB = 1
2σa

AĀσb
BB̄Fabε̄ĀB̄ .

The field Υ has 2s + 1 independent components. In the normalized spinor frame o, ι
these can be identified as

ϒj = ΥA1···Aj Aj+1···A2s
ιA1 · · · ιAj oAj+1 · · ·oA2s , j = 0, 1, . . . , 2s. (B.10)

Substituting the transformations (B.4), (B.5) and (B.6) of the spinor frames into (B.10) we
immediately obtain the transformation properties of the field components. Namely, we get

ϒj = ϒo
j +

(
j

1

)
L̄ϒo

j−1 +

(
j

2

)
L̄2ϒo

j−2 +

(
j

3

)
L̄3ϒo

j−3 + · · · + L̄jϒo
0 (B.11)

for the null rotation with k fixed, and

ϒj = ϒo
j +

(
2s − j

1

)
Kϒo

j+1 +

(
2s − j

2

)
K2ϒo

j+2 + · · · + K2s−jϒo
2s (B.12)

for the null rotation with l fixed. Finally, for the boost and the rotation we obtain

ϒj = Bs−j exp(i(s − j)φ)ϒo
j . (B.13)
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[103] Podolský J, Ortaggio M and Krtouš P 2003 Radiation from accelerated black holes in an anti-de Sitter universe

Phys. Rev. D 68 124004
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