
Killing-Yano forms and Killing tensors on a warped space

Pavel Krtouš,1,* David Kubizňák,2,† and Ivan Kolář1,‡
1Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University,

V Holešovičkách 2, Prague 18000, Czech Republic
2Perimeter Institute, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada

(Received 20 October 2015; published 29 January 2016)

We formulate several criteria under which the symmetries associated with the Killing and Killing-Yano
tensors on the base space can be lifted to the symmetries of the full warped geometry. The procedure is
explicitly illustrated on several examples, providing new prototypes of spacetimes admitting such tensors.
In particular, we study a warped product of two Kerr-NUT-(A)dS spacetimes and show that it gives rise to a
new class of highly symmetric vacuum (with a cosmological constant) black hole solutions that inherit
many of the properties of the Kerr-NUT-(A)dS geometry.
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I. INTRODUCTION

Introduced into physics by Penrose et al. in the early
1970s [1–3], the totally symmetric Killing tensors and the
skew symmetric Killing-Yano forms have played an
important role for the developments of gravitational
and mathematical physics ever since then. For example,
they find a wide variety of applications in classical and
quantum physics [4], play an important role for studying
various integrability properties of (higher-dimensional)
black holes [5,6], are related to special manifolds [7], or
naturally appear in the context of string theory [8,9].
Since, contrary to Killing vectors, Killing and Killing-
Yano tensors do not have clear geometrical meaning—
they no longer describe continuous symmetries of the
geometry but can rather be considered as “symmetries of
the phase space”—they are sometimes called dynamical,
or hidden, symmetries.
The existence of hidden symmetries imposes strict

restrictions on the background geometry, e.g. [10–15].
Consequently, not every manifold admits such sym-
metries. Even if the symmetries are present, finding their
form explicitly by solving the corresponding differential
equations is a formidable task. For this reason, it is of
extreme value to seek alternative ways for finding such
symmetries.
In this paper we proceed in this direction. Namely, we

study hidden symmetries on warped spaces, formulating
various criteria under which the Killing-Yano and Killing
tensors on the base space can be lifted to symmetries
of the full warped geometry. (For a different type of lift,
see e.g. [16].) This decomposes a task of finding such
symmetries to a smaller problem (that of finding hidden
symmetries for a smaller seed metric) and opens a way

towards extending the applicability of hidden symmetries
to more complicated spacetimes. The procedure is
illustrated on several examples of physical interest,
including rotating black strings, higher-dimensional sin-
gly spinning Kerr–anti–de Sitter (Kerr-AdS) metrics, and
the five-dimensional Eguchi-Hanson soliton. We shall
also consider a warped product of two Kerr-NUT-(A)dS
geometries, constructing thus a new class of highly
symmetric vacuum black hole solutions admitting towers
of hidden symmetries lifted from the seed metrics.
Our paper is organized as follows. In the next section

we review the basic definitions of Killing and Killing-
Yano tensors. In Sec. III four theorems for lifting the seed
symmetry to the full warped geometry are formulated.
A concrete application of these theorems is illustrated
for several examples in Secs. IV and V. The results are
summarized in Sec. VI. The appendixes contain supple-
mentary material: Appendix A is devoted to the proofs of
the theorems, Appendix B contains additional material
about the Kerr-NUT-(A)dS spaces and their warped
product.

II. KILLING-YANO AND KILLING TENSORS

A. Notations

Let us briefly explain our notations. In what follows
we try to avoid writing explicitly the tensor indices,
highlighting the tensor character of objects by boldface.
At the same time, we adopt a standard convention and
do not distinguish tensors with covariant and contra-
variant indices—indices are automatically lowered or
raised using the metric g or the inverse metric g−1,
respectively. A simple dot between two objects represents
a (one index) contraction. For example, the divergence
∇ · h is given by ð∇ · hÞa1…ap ¼ ∇nhna1…ap.
We shall also employ the symmetric and multiple

contraction products. Namely, operation ∨ stands for the
normalized symmetric tensor product,
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ðA ∨ BÞa1…arb1…bs ¼
�
rþ s
r

�
Aða1…arBb1…bsÞ: ð2:1Þ

The multiple contraction, •
r
, denotes the partial contraction

of two antisymmetric forms in the first r indices divided
by r!,

ðα •
r
βÞa…b… ¼ 1

r!
αn1…nra…βn1…nr

b…: ð2:2Þ

If no index r is indicated, the full contraction in all indices
is assumed. In terms of this operation we can also write
down the Hodge dual as

�α ¼ α • ε; ð2:3Þ
where ε stands for the Levi-Civita tensor.

B. Review of definitions

The p-form f is a Killing-Yano (KY) form [17] if there
exists a (pþ 1)-form φ such that

∇a f ¼ a · φ ð2:4Þ
for any vector a. The “strength” φ of the KY form is then
uniquely determined as

φ ¼ 1

pþ 1
df : ð2:5Þ

The q-form h is a closed conformal Killing-Yano (CCKY)
form if there exists a (q − 1)-form ξ so that

∇ah ¼ a ∧ ξ ð2:6Þ
holds for an arbitrary vector a. The strength ξ is then
given by

ξ ¼ 1

D − qþ 1
∇ · h; ð2:7Þ

where D stands for the number of spacetime dimensions.
Note that the notions of KY and CCKY forms are Hodge
dual: the Hodge dual h ¼ �f of a KY form f with the
strength φ is a CCKY form with the strength ξ ¼ − � φ,
and vice versa.
The Killing tensor k of rank r is a totally symmetric

tensor satisfying

∇ ∨ k ¼ 0: ð2:8Þ
The totally symmetric tensor q is a conformal Killing tensor
(CKT) of rank r if there exists a symmetric tensor σ of rank
r − 1 such that

∇ ∨ q ¼ g ∨ σ; ð2:9Þ

where the strength σ can be expressed in terms of the metric
traces of ∇ ∨ q. For example, for a rank 2 CKT it reads

σ ¼ 1

Dþ 2
ð2∇ · qþ ∇qÞ; q ¼ qnn: ð2:10Þ

If σ is exact, σ ¼ dA, the CKT q defines a Killing tensor k
according to [1,2]

kþ q ¼ Ag−1: ð2:11Þ

Partially contracted squares of KY and CCKY forms
generate Killing tensors and CKTs of rank 2, respectively.1

Namely, a KY form f of rank p defines a second rank
Killing tensor

k ¼ f •
p−1

f : ð2:12Þ

Similarly, a rank p CCKY form h defines a CKT

q ¼ h •
p−1

h: ð2:13Þ

For the Hodge dual forms f ¼ �h these tensors are related
by (2.11), where

A ¼ f • f ¼ h • h: ð2:14Þ

III. LIFTING THE HIDDEN SYMMETRY

A. Warped spaces

The warped space M can be realized as a direct product
M ¼ ~M × M̄ of two manifolds of arbitrary dimensions ~D
and D̄, with the metric

g ¼ ~gþ ~w2ḡ: ð3:1Þ

Metrics ~g and ḡ are called the base (seed) metrics and ~w is
the warp factor. The Levi-Civita tensor has the form

ε ¼ ~wD̄ ~ε ∧ ε̄: ð3:2Þ

If not said otherwise, we assume that tilded objects ~A are
nontrivial only in “tilded directions” and, similarly, barred
objects Ā only in “barred directions.” The orthogonal
splitting of the tangent tensor spaces TM ¼ T ~M ⊕ TM̄
is well defined thanks to the diagonal character of the
metric (3.1). Also, if not said otherwise, the tilded and
barred objects will depend only on a position in ~M or M̄,
respectively.

1Note that the converse is not true: not every (conformal)
Killing tensor can be written as a square of a (conformal) KY
tensor.
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The curvature tensor of a warped space can be recon-
structed in terms of the curvatures of the seed metrics and
the so-called Hessian tensor ~H [18]. For the Ricci tensor
and the scalar curvature one gets

Ric ¼ ~Ricþ R̄ic −
D̄
~w
~H −

�
1

~w
~Hþ ðD̄ − 1Þ~λ2

�
~w2ḡ;

R ¼ ~Rþ 1

~w2
R̄ −

2D̄
~w

~H − D̄ðD̄ − 1Þ~λ2; ð3:3Þ

where

~H ¼ ~∇ ~∇ ~w; ~H ¼ ~Hmn ~gmn;

~λ ¼ 1

~w
d ~w; ~λ2 ¼ ~gab ~λa ~λb: ð3:4Þ

As shown in the next subsection, the logarithmic gradient ~λ
of the warp factor ~w plays an important role for the lift of
hidden symmetries.

B. Lifting theorems

In this section we formulate several “symmetry lifting
constructions,” where a symmetry of the base space is lifted
to a symmetry of the full warped geometry. While the
results of Theorems 1 and 2 are already partially known in
the literature, see e.g. [19,20], Theorems 3 and 4 are, we
believe, entirely new. The proof of each theorem can be
found in Appendix A.
Let us first concentrate on the seed metric ḡ.
Theorem 1.—Let the seed metric ḡ of the warped

geometry (3.1) admit a KY p-form f̄ or a CCKY q-form h̄.
Then the following forms,

f ¼ ~wpþ1 f̄ ; ð3:5Þ

h ¼ ~wqþ1 ~ε ∧ h̄; ð3:6Þ

are the KY p-form or the CCKY ( ~Dþ q)-form of the full
warped geometry (3.1).
Theorem 2.—If k̄ is a rank r Killing tensor of the metric

ḡ, then

ka1…ar ¼ k̄a1…ar ð3:7Þ

is a Killing tensor of the full warped geometry g.
A similar construction can be formulated for the sym-

metries of metric ~g. However, in this case additional
conditions on the warp factor ~w have to be satisfied.
Theorem 3.—Let ~f be a KY p-form of the seed metric ~g

of the warped geometry (3.1) and let the warped factor ~w
satisfy

~dð ~w−ðpþ1Þ ~f Þ ¼ 0: ð3:8Þ

Then the following (D̄þ p)-form,

f ¼ ~wD̄ ~f ∧ ε̄; ð3:9Þ

is a KY form of the full metric (3.1). Similarly, let ~h be a
CCKY q-form of ~g and the warp factor satisfies

~∇ · ð ~w−ð ~Dþqþ1Þ ~hÞ ¼ 0: ð3:10Þ

Then the following q-form,

h ¼ ~h; ð3:11Þ

is a CCKY form of the metric (3.1).
The conditions (3.8) and (3.10) can be written in a

different form. Using the Leibnitz rule, we find

~d ~f ¼ ðpþ 1Þ~λ ∧ ~f ; ð3:12Þ

~∇ · ~h ¼ ð ~D − qþ 1Þ~λ · ~h; ð3:13Þ

where the closed 1-form ~λ is defined in (3.4). Employing
the KY and CCKY strengths (2.5) and (2.7), respectively,
one obtains

~φ ¼ ~λ ∧ ~f ; ~ξ ¼ ~λ · ~h: ð3:14Þ

The conditions are equivalent under the Hodge duality
~h ¼ ~� ~f with q ¼ ~D − p.
Theorem 4.—Let ~q be a rank 2 CKTof the metric ~g with

its symmetric derivative given by vector ~σ, (2.10), and the
logarithmic gradient ~λ ¼ ~w−1 ~d ~w of the warp factor satisfies

~σ ¼ 2~q · ~λ: ð3:15Þ

Then

qab ¼ ~qab ð3:16Þ

is a CKT of the warped metric g and its symmetric
derivative is given by vector σa ¼ ~σa.
Theorems 1 and 2 are related in the sense of (2.12).

Similarly, Theorems 3 and 4 are compatible with the
relation (2.13): if a CCKY form ~h satisfies the condition
(3.10), its square ~q, (2.13), satisfies the condition (3.15)
and the CKT q on the warped space is a square of CCKY
form h. However, the theorems in these pairs are not
equivalent or the latter is not a corollary of the former,
since the existence of a Killing tensor (or a CKT) does not
necessarily require the existence of its KY (CCKY)
“square root.”
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IV. THREE SIMPLE EXAMPLES

As a first simple example, let us consider a rotating black
string in five dimensions. The metric takes the form (3.1),
with a trivial warp factor ~w ¼ 1, ~g ¼ dz2, and ḡ given by
the Kerr geometry,

ḡ ¼ −
Δ
ρ2

½dt − asin2θdϕ�2 þ ρ2

Δ
dr2 þ ρ2dθ2

þ sin2θ
ρ2

½adt − ðr2 þ a2Þdϕ�2; ð4:1Þ

where

Δ ¼ r2 þ a2 − 2mr; ρ2 ¼ r2 þ a2cos2θ: ð4:2Þ

The Kerr metric (4.1) admits a nontrivial KY 2-form [3]

f̄ ¼ a cos θdr ∧ ðdt − asin2θdϕÞ
− r sin θdθ ∧ ðadt − ðr2 þ a2ÞdϕÞ: ð4:3Þ

ApplyingTheorem1, this immediately lifts to theKY2-form
f ¼ f̄ of the black string in five dimensions.
As a second nontrivial example, let us consider the singly

spinning Kerr-AdS metric in d number of dimensions [21].
This metric can be written in the form (3.1), where

~g ¼ −
Δ
ρ2

�
dt −

a
Ξ
sin2θdϕ

�
2

þ ρ2

Δ
dr2 þ ρ2

Σ
dθ2

þ Σsin2θ
ρ2

�
adt −

r2 þ a2

Ξ
dϕ

�
2

; ð4:4Þ

ḡ ¼ dΩ2
d−4; ~w2 ¼ r2cos2θ; ð4:5Þ

dΩ2
d−4 is the round metric on Sd−4, and

Δ ¼ ðr2 þ a2Þ
�
1þ r2

l2

�
− 2mr5−d; Σ ¼ 1 −

a2

l2
cos2θ;

Ξ ¼ 1 −
a2

l2
; ρ2 ¼ r2 þ a2cos2θ: ð4:6Þ

It is known, e.g. [22], that ~g admits a nontrivial CCKY
2-form, given by ~h ¼ db, where

2b ¼ ðr2 þ a2sin2θÞdt − a
Ξ
sin2θða2 þ r2Þdϕ: ð4:7Þ

One can easily verify the validity of condition (3.10).
Theorem 3 then implies that h ¼ ~h is a CCKY 2-form of
the full d-dimensional Kerr-AdS geometry. In fact, the
above h is a special case of the CCKY 2-form of general
rotating Kerr-AdS spacetimes, obtained first in [23].
Finally, consider the five-dimensional Eguchi-Hanson

soliton [24]. The metric writes as (3.1), with

~g ¼ −Δ½dtþ 2n cos θdϕ�2 þ dr2

Δ
þ ðr2 þ n2ÞdΩ2

2; ð4:8Þ

ḡ ¼ dz2; ~w2 ¼ r2; Δ ¼ 4ml2 − 2n2r2 − r4

l2ðr2 þ n2Þ ;

ð4:9Þ

and n2 ¼ l2=4. The metric ~g admits a nontrivial CCKY
2-form, given by ~h ¼ db, where [22]

2b ¼ r2dtþ 2nðr2 þ n2Þ cos θdϕ: ð4:10Þ

Again, one can easily check the condition (3.10).
Theorem 3 then implies that h ¼ ~h is a CCKY 2-form
of the full five-dimensional Eguchi-Hanson soliton.

V. WARPING KERR-NUT-(A)DS

A prominent example of a geometry with more than one
hidden symmetry is the general Kerr-NUT-(A)dS spacetime
[25]. In an even dimension,D ¼ 2N,2 the metric, written in
the Carter-like coordinates xμ, μ ¼ 1;…; N and ψ i,
i ¼ 0;…; N − 1, reads

g ¼
X
μ

�
Uμ

Xμ
dx2μ þ

Xμ

Uμ

�X
k

AðkÞ
μ dψk

�
2
�
; ð5:1Þ

where

AðkÞ
μ ¼

X
ν1 ;…;νk
ν1<…<νk

νi≠μ

x2ν1…x2νk ; Uμ ¼
Y

ν
ν≠μ

ðx2ν − x2μÞ;

AðkÞ ¼
X
ν1 ;…;νk
ν1<…<νk

x2ν1…x2νk : ð5:2Þ

The metric is on shell, that is, it obeys the vacuum
Einstein equations with the cosmological constant
Λ¼ð2N−1ÞðN−1ÞcN , provided the metric functions Xμ

take the following special polynomial form:

Xμ ¼
XN
k¼0

ckð−x2μÞk − 2bμxμ: ð5:3Þ

In particular, for a black hole solution (provided proper
ranges and Wick rotations of coordinates are chosen and
some relations between parameters are satisfied), param-
eters cj, j ¼ 0;…; N − 1 are related to rotations, while
parameters bμ are related to mass, NUT, and twist charges,
see [26] for a more detailed discussion.

2We concentrate on even dimensions for simplicity of illus-
tration. The same construction applies to odd dimensions as well,
with additional “odd terms” present.
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Interestingly, irrespective of the metric signature or field
equations, for any metric functions of the form

Xμ ¼ XμðxμÞ; ð5:4Þ

the so-called off-shell metric (5.1) admits a rich structure of
hidden symmetries. These symmetries can be generated
from the principal CCKY tensor h, given by [23]

h ¼ 1

2

X
k

dAðkþ1Þ ∧ dψk: ð5:5Þ

In particular, we find the towers of symmetries summarized
in Table I, Ref. [27]: Forms and tensors in this tower are
defined for j ¼ 0;…; N, however, for some values of j,

they are trivial. Namely, hð0Þ ¼ 1, hðNÞ ¼
ffiffiffiffiffiffiffiffiffi
AðNÞp

ε, f ð0Þ ¼ ε,

f ðNÞ ¼
ffiffiffiffiffiffiffiffiffi
AðNÞp

, kð0Þ ¼g−1, kðNÞ ¼0, qð0Þ ¼0, qðNÞ ¼AðNÞg−1.
Note also that the Killing tensors are related to the CKTs
by [27]

kðjÞ þ qðjÞ ¼ AðjÞg−1; ð5:6Þ

reflecting the fact that the strengths of the CKTs are
given by

σðjÞ ¼ g−1 · dAðjÞ: ð5:7Þ

Let us now construct an example of a new warped
geometry (3.1) where the two bases ~g and ḡ are the off-shell
Kerr-NUT-(A)dS geometries (5.1) of dimension ~D ¼ 2 ~N
and D̄ ¼ 2N̄, respectively, while we choose the following
warp factor:

~w2 ¼ ~Að ~NÞ ¼ ~x21…~x2~N: ð5:8Þ

Obviously, such a warped space is not an off-shell Kerr-
NUT-(A)dS geometry (5.1). However, as we shall see, it
shares some important properties with the Kerr-NUT-(A)dS
geometry. Namely, it possesses the tower of hidden
symmetries, which can be obtained by lifting the sym-
metries of the two seed metrics using Theorems 1–4.
Moreover, as shown in Appendix B 4 the warped

geometry solves the vacuum Einstein equations with the
cosmological constant Λ, provided we set

~X ~μ ¼
X~N

~k¼0

~c~kð−~x2~μÞ~k −
2~b ~μ

~x2N̄−1
~μ

; ð5:9Þ

X̄μ̄ ¼
XN̄
k̄¼0

c̄k̄ð−x̄2μ̄Þk̄ − 2b̄μ̄x̄μ̄; ð5:10Þ

with

~c ~N ¼ Λ

ð2 ~N − 1Þð ~N − 1Þ ; ~c0 ¼ c̄N̄ : ð5:11Þ

We note that the barred metric itself is an on-shell Kerr-
NUT-(A)dS geometry. However, the tilded metric has
modified metric functions, with the exponent of ~x~μ in

the ~b ~μ term depending on the dimension of the barred part.
In particular, we observe that for a two-dimensional
Lorentzian metric ~g and vanishing parameters b̄μ̄ ¼ 0 the
warped space reduces to the spherical Schwarzschild-
Tangherlini black hole in the dimension D ¼ 2þ D̄.
Let us now turn to the lift of the hidden symmetries. As

always, the results are valid for the off-shell warped metric,
for arbitrary ~X ~μ ¼ ~X ~μð~x~μÞ and X̄μ̄ ¼ X̄μ̄ðx̄μ̄Þ.
We start from the metric ~g. To implement the lifting

construction given by Theorems 3 and 4, we need to

demonstrate that the warp factor (5.8) and the forms ~f ð
~kÞ,

~hð
~kÞ, and the CKTs ~qð~jÞ satisfy the conditions (3.8), (3.10),

and (3.15), respectively. We do so in Appendix B 3. The
theorems then imply that the warp geometry (3.1) inherits
the following KY forms, CCKY forms, and CKTs:

f ð~jÞ ¼ ~w2 ~N ~f ð
~jÞ ∧ ε; ð5:12Þ

hð~jÞ ¼ ~hð
~jÞ; ð5:13Þ

qð~jÞ ¼ ~qð~jÞ; ~j ¼ 0;…; ~N: ð5:14Þ

Note that CKTs (5.14) could be obtained as a square of
(5.13), according to (2.13). Similarly, taking square (2.12)
of (5.12) we can define Killing tensors kð~jÞ. With the help of
(3.1) and (5.6) they read

kð~jÞ ¼ ~kð~jÞ þ ~Að~jÞ ~w−2ḡ−1: ð5:15Þ

The Killing tensors (5.15) and CKTs (5.14) satisfy (5.6)
with

Að~jÞ ¼ f ð~jÞ • f ð~jÞ ¼ hð~jÞ • hð~jÞ; ð5:16Þ

which, in this case, reads

TABLE I. Hidden symmetries of Kerr-NUT-(A)dS.

CCKY forms hðjÞ ¼ 1
j! h

∧j

KY forms f ðjÞ ¼ �hðjÞ
Killing tensors kðjÞ ¼ f ðjÞ •

2N−2j−1
f ðjÞ

CKTs qðjÞ ¼ hðjÞ •
2j−1

hðjÞ
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Að~jÞ ¼ ~Að~jÞ: ð5:17Þ

Turning next to the metric ḡ, Theorem 1 immediately
implies that the warped space (3.1) inherits the following
rank 2ðN̄ − j̄Þ KY forms f ð ~Nþj̄Þ and rank 2ð ~N þ j̄Þ CCKY
forms h̄ðj̄Þ:

f ð ~Nþj̄Þ ¼ ~w2ðN̄−j̄Þþ1 f̄ ðj̄Þ; ð5:18Þ

hð ~Nþj̄Þ ¼ ~w2j̄þ1 ~ε ∧ h̄ðj̄Þ; ð5:19Þ

while Theorem 2 guarantees the following Killing tensors:

kð ~Nþj̄Þ ¼ k̄ðj̄Þ; ð5:20Þ

which could be also obtained by taking the square (2.12) of
f ð ~Nþj̄Þ. Similarly, by squaring hð ~Nþj̄Þ, (5.19), according to
(2.13), we can construct the following CKTs:

qð ~Nþj̄Þ ¼ ~w2Āðj̄Þ ~gþ q̄ðj̄Þ: ð5:21Þ

Killing tensors (5.20) and CKTs (5.21) are related by (5.6),
with Að ~Nþj̄Þ defined by (2.14),

Að ~Nþj̄Þ ¼ f ð ~Nþj̄Þ • f ð ~Nþj̄Þ ¼ hð ~Nþj̄Þ • hð ~Nþj̄Þ: ð5:22Þ

However, since the warped space is not the Kerr-NUT-(A)
dS geometry, instead of (5.2) we have,

Að ~Nþj̄Þ ¼ ~w2Āðj̄Þ: ð5:23Þ

This concludes the lift of all hidden symmetries of the
two Kerr-NUT-(A)dS spaces. We thus constructed the full
symmetry tower for the warped space (3.1) given by the
product of two Kerr-NUT-(A)dS metrics (5.1) with the
warped factor (5.8), cf. the symmetry tower of Kerr-NUT-
(A)dS in D ¼ 2ðN̄ þ ~NÞ dimensions (5.6). Namely, we
have obtained KY and CCKY forms f ðjÞ and hðjÞ, Killing
tensors kðjÞ, and CKTs qðjÞ for j ¼ 0;…; N, N ¼ ~N þ N̄.3

Since the warped space does not directly belong to the
Kerr-NUT-(A)dS class, the same degree of symmetry may
be surprising. The reason for this is discussed in [26],
where the warped spaces are obtained as a particular limit
of the Kerr-NUT-(A)dS geometry.

VI. SUMMARY

Hidden symmetries associated with the Killing-Yano and
Killing tensors play an important role in modern gravita-
tional and mathematical physics. For example, such sym-
metries provide a powerful tool for studying various
integrability properties of higher-dimensional black holes.
However, to show their presence or, even more importantly,
to find such symmetries explicitly for a given metric is not a
straightforward task.
In this paper we have studied a “warping construction”

that will allow one to generate hidden symmetries of
complicated spacetimes, starting from the symmetries of
more simple ones. Namely, we have formulated four
theorems discussing the conditions under which a hidden
symmetry of the base space can be lifted to the symmetry of
the full warped geometry. We have illustrated the procedure
through several examples, providing new prototypes of
spacetimes admitting hidden symmetries. In particular, we
have constructed a new class of vacuum black hole solutions
that admit the “same” tower of hidden symmetries as the
general Kerr-NUT-(A)dS spacetime. A generalization to a
wider class of metrics is under investigation [28]. Further
generalizations of this construction as well as its applications
to finding new examples of physically interesting spacetimes
with hidden symmetries are left for future studies.
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APPENDIX A: PROOFS OF THEOREMS

When working on a warped space with the metric

g ¼ ~gþ ~w2ḡ; ðA1Þ
it is natural to use adjusted coordinates ~y~μ and ȳμ̄, which
depend only on the positions in ~M and M̄, respectively.
Since the metric ~g depends only on ~y ~μ and ḡ only on ȳμ̄, the
Christoffel coefficients with respect to the adjusted coor-
dinates split as

Γc
ab ¼ ~Γc

ab þ Γ̄c
ab þ Λc

ab; ðA2Þ

where ~Γc
ab and Γ̄c

ab are Christoffel coefficients of the metrics
~g and ḡ, respectively, and

3Let us point out that the lift of tilded objects with ~j ¼ ~N and
barred objects with j̄ ¼ 0 gives the same Killing objects on the
warped space with j ¼ ~N. Therefore, N þ 1 values of index j is
consistent with ~N þ 1 values of index ~j and N̄ þ 1 values of
index j̄.
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Λc
ab ¼ ~λaδ̄

c
b þ δ̄ca ~λb − ~gce ~λe ~w2ḡab; ðA3Þ

where 1-form ~λ is defined in (3.4).

Theorem 1

We want to prove that f ¼ ~wpþ1 f̄ is a KY form of the
metric g, assuming that f̄ is a KY form of ḡ. Substituting
(2.5) into (2.4), we want to show that

ðpþ 1Þ∇a f ¼ a · df : ðA4Þ

Let us start evaluating the right-hand side:

a · dð ~wpþ1f̄ Þ
¼ ~wpþ1ðā · f̄ þ ðpþ 1Þ~a · ~λ f̄ −ðpþ 1Þ~λ ∧ ðā · f̄ ÞÞ
¼ ðpþ 1Þ ~wpþ1ð∇̄ā f̄ þ ~a · ~λ f̄ − ~λ ∧ ðā · f̄ ÞÞ; ðA5Þ

where we have split the vector a ¼ ~aþ ā into tilded and
barred directions and in the second equality have used the
fact that f̄ is a KY form of ḡ. To express the left-hand side
of (A4), we need to evaluate the covariant derivative ∇a f̄
employing (A2). With the help of (A3), ~δ · f̄ ¼ 0, and using
the standard action of Christoffel coefficients on a p-form,
the contribution from the Λc

ab term gives

−p~a · ~λ f̄ −~λ ∧ ðā · f̄ Þ: ðA6Þ

The left-hand side of (A4) thus reads

∇að ~wpþ1f̄ Þ
¼ ~wpþ1ð∇̄ā f̄ þ ðpþ 1Þ~a · ~λ f̄ −p~a · ~λ f̄ − ~λ ∧ ðā · f̄ ÞÞ
¼ ~wpþ1ð∇̄ā f̄ þ ~a · ~λ f̄ −~λ ∧ ðā · f̄ ÞÞ; ðA7Þ

where again we have split a ¼ ~aþ ā, used (3.4), and used
the fact that f̄ and ~w depend only on barred and tilded
directions, respectively. Comparing (A5) with (A7) we
obtain (A4).
The Hodge dual of a KY form is a CCKY form and vice

versa. To prove the symmetry lift (3.6) for a CCKY q-form
h̄, we just have to evaluate �ð ~wpþ1f̄ Þ, where h̄ ¼ �̄ f̄ and
p ¼ D̄ − q. Employing (3.2), and the properties of con-
tractions and of the wedge product, we get

�ð ~wpþ1 f̄ Þ ¼ ~w2 ~D−qþ1f̄ • ð~ε ∧ ε̄Þ
¼ ð−1Þ ~Dð ~D−qÞ ~w2 ~D−qþ1 ~w−2ð ~D−qÞ ~ε ∧ ðf̄ •̄ ε̄Þ
¼ ð−1Þ ~Dð ~D−qÞ ~wqþ1 ~ε ∧ ð�̄ f̄ Þ; ðA8Þ

proving that (3.6) is a CCKY form.

Theorem 2

Let us proceed to the lift of a Killing tensor (3.7).
Employing (A2), (A3), ~∇ k̄ ¼ 0, and the symmetry of k,
we get

∇a0 k̄
a1…ar ¼ ∇̄a0 k̄

a1…ar þ r~λa0 k̄
a1…ar

− r ~w2ḡa0b
~λa ~gaða1 k̄a2…arÞb: ðA9Þ

Raising index a0 with the metric (A1) and taking the
symmetrization in all indices, we prove (2.8):

∇ða0 k̄a1…arÞ ¼ ∇̄ða0 k̄a1…arÞ þ r~λa ~gaða0 k̄a1…arÞ

− r~λa ~gaða0 k̄a1…arÞ ¼ 0: ðA10Þ

Theorem 3

We want to prove (2.6) for a CCKY form ~h of the metric
~g with the warp factor satisfying (3.10) or equivalently
(3.13). Splitting the Christoffel coefficients according to
(A2) when acting on a q-form ~h, using (A3) and ∇̄ ~h ¼ 0,
we find

∇a ~h ¼ ~∇ ~a
~hþ ᾱ ∧ ð~λ · ~hÞ: ðA11Þ

Here, α ¼ ~αþ ᾱ with ~α ¼ ~g · ~a and ᾱ ¼ ~w2ḡ · ā, cf. (A1).
Now we substitute the tilded version of (2.6) and the
assumption (3.13) into the first term to get

∇a ~h ¼ ~α ∧ ð~λ · ~hÞ þ ᾱ ∧ ð~λ · ~hÞ ¼ α ∧ ð~λ · ~hÞ: ðA12Þ

Tearing off the vector a from (A11) and making the
contraction, we obtain the divergence ∇ · ~h. Taking into
account the assumption (3.13) and that ~λ · ~h is trivial in
barred directions, the divergence ∇ · ~h reads

∇ · ~h ¼ ~∇ · ~hþ D̄ð~λ · ~hÞ ¼ ð ~Dþ D̄ − qþ 1Þ~λ · ~h:
ðA13Þ

Substituting it back into (A12) we arrive at (2.6) with (2.7)
substituted and D ¼ ~Dþ D̄.
Next, we want to prove the symmetry lift (3.9) using

the Hodge duality. Let ~f ¼ ~� ~h is a KY form of the
metric ~g. Then � ~h must be a KY form of the metric g.
Employing (3.2) and the relation for the Hodge dual
(2.3), we obtain

� ~h ¼ ~wD̄ ~h • ð~ε ∧ ε̄Þ ¼ ~wD̄ð ~h ~• ~εÞ ∧ ε̄ ¼ ~wD̄ð~� ~hÞ ∧ ε̄;

ðA14Þ

which proves (3.9).

KILLING-YANO FORMS AND KILLING TENSORS ON A … PHYSICAL REVIEW D 93, 024057 (2016)

024057-7



Theorem 4

Finally, we want to prove that a CKT ~q of the metric ~g is
also a CKT of the warped metric g, provided the condition
(3.15) is satisfied. Splitting the covariant derivative using
(A2) and (A3), we get

∇a ~qbc ¼ ~∇a ~qbc þ δ̄ba ~λn ~qnc þ δ̄ca ~λn ~qbn: ðA15Þ

Raising index a using g and symmetrizing in all three
indices, we find

∇ða ~qbcÞ ¼ ~∇ða ~qbcÞ þ 2 ~w−2ḡðab ~qcÞn ~λn: ðA16Þ

Taking into account the fact that ~q satisfies the tilded
version of (2.9) and the consistency condition (3.15), we
obtain

∇ ∨ ~q ¼ ~g−1 ∨ ~σ þ ~w−2ḡ−1 ∨ ~σ ¼ g−1 ∨ ~σ; ðA17Þ
which is (2.9) for the warped geometry we wanted to prove.

APPENDIX B: WARPING THE KERR-NUT-(A)dS
GEOMETRY

In this appendix we gather various technical results about
the Kerr-NUT-(A)dS geometry and its warped product that
are referred to in the main text.

1. Useful identities

Let us start by listing a couple of the useful properties of

functions AðjÞ
μ , Uμ, and AðjÞ defined in (5.2). First, AðjÞ

μ can
be understood as a matrix and its inversion can be found
explicitly:

X
k

AðkÞ
μ

ð−x2νÞN−1−k

Uν
¼ δνμ;

X
μ

AðkÞ
μ

ð−x2μÞN−1−l

Uμ
¼ δkl :

ðB1Þ
We also have the following important lemma, e.g. [29]:
Lemma 1.—Functions fμ ¼ fμðxμÞ of one variable

satisfy the condition

X
μ

fμ
Uμ

¼ 0 ðB2Þ

if and only if they are given by the same polynomial of
degree N − 2,

fμ ¼
XN−2

k¼0

akx2kμ : ðB3Þ

If the right-hand side of Eq. (B2) is nontrivial, the solution
for functions fμ is given by a particular solution plus

homogeneous solution (B3). We list three examples, which
sums to a special right-hand side:

X
μ

ð−x2μÞN−1

Uμ
¼ 1; ðB4Þ

X
μ

ð−x2μÞN
Uμ

¼ −Að1Þ; ðB5Þ

X
μ

1

x2μUμ
¼ 1

AðNÞ : ðB6Þ

The last relation is useful when dealing with the warp
factor (5.8).

2. More on Kerr-NUT-(A)dS

Let us next provide more information about the general
Kerr-NUT-(A)dS metric (5.1). Introducing an orthonormal
frame

eμ ¼
�
Uμ

Xμ

�1
2

dxμ; êμ ¼
�
Xμ

Uμ

�1
2
X
k

AðkÞ
μ dψk; ðB7Þ

together with its dual frame

eμ ¼
�
Xμ

Uμ

�1
2

∂xμ ; êμ ¼
�
Uμ

Xμ

�1
2
X
k

ð−x2μÞN−1−k

Uμ
∂ψk

;

ðB8Þ

the Kerr-NUT-(A)dS metric (5.1) and its inverse can be
written as

g ¼
X
μ

ðeμeμ þ êμêμÞ; g−1 ¼
X
μ

ðeμeμ þ êμêμÞ:

ðB9Þ

The principal CCKY tensor h, (5.5), now writes as

h ¼
X
μ

xμeμ ∧ êμ; ðB10Þ

and obeys (2.6) with the strength ξ given by

ξ ¼ 1

D − 1
∇ · h ¼ g · ∂ψ0

¼
X
μ

�
Xμ

Uμ

�1
2

êμ: ðB11Þ

Explicit expressions for the KYand CCKY forms (5.6) can
be found in [27]. Killing tensors kðjÞ and CKT qðjÞ (5.6)
read

kðjÞ ¼
X
μ

AðjÞ
μ ðeμeμ þ êμêμÞ; ðB12Þ
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qðjÞ ¼
X
μ

x2μA
ðj−1Þ
μ ðeμeμ þ êμêμÞ: ðB13Þ

The Levi-Civita tensor is given by

ε ¼ e1 ∧ ê1 ∧ � � � ∧ eN ∧ êN: ðB14Þ
It was shown in [30] that the Ricci curvature is also

diagonal in frame (B7),

Ric ¼ −
XN
μ¼1

rμðeμeμ þ êμêμÞ; ðB15Þ

with eigenvalues

rμ ¼
1

2

X00
μ

Uμ
þ
X

ν
ν≠μ

1

Uν

xνX0
ν − xμX0

μ

x2ν − x2μ
−
X

ν
ν≠μ

1

Uν

Xν − Xμ

x2ν − x2μ
:

ðB16Þ

The scalar curvature simplifies to

R ¼ −
X
ν

X00
ν

Uν
: ðB17Þ

The primes denote the differentiation with respect to a
single argument of the metric function, X0

μ ¼ Xμ;μ.

3. Consistency conditions

Let us now return back to the warped geometry (3.1)
studied in Sec. V, given by two Kerr-NUT-(A)dS seeds and
the warp factor (5.8). We want to prove the consistency
conditions of Theorems 3 and 4, namely, (3.12), (3.13), and

(3.15), that guarantee that the forms ~f ð
~kÞ, ~hð

~kÞ, and the CKTs
~qð~jÞ of the metric ~g can be lifted to the symmetries of the full
warped geometry. Since all these conditions are formulated
entirely in the language of tilded quantities, we can simplify
our notations by skipping tildes in all expressions till the
end of this subsection.
For the warp factor (5.8), vector g−1 · λ reads

g−1 · λ ¼
X
μ

1

xμ

Xμ

Uμ
∂xμ ; ðB18Þ

cf. (B9). Contracting it with the principal CCKY form

(B10) and employing dAðkþ1Þ ¼ 2xμA
ðkÞ
μ dxμ, we get

λ · h ¼
X
μ

Xμ

Uμ

X
k

AðkÞ
μ dψk ¼ g · ∂ψ0

¼ ξ: ðB19Þ

Recalling that the contraction acts as a derivative with
respect to the wedge product, the definition (5.6) and the
previous result (B19) imply

λ · hðkÞ ¼ ξ ∧ hðk−1Þ: ðB20Þ

Acting with ∇ on hðjÞ, we find

∇ahðkÞa1…a2k ¼ ∇aha1a2 ∧ hðk−1Þa3…a2k

¼ δaa1 ∧ ξa2 ∧ hðk−1Þa3…a2k ; ðB21Þ

where the wedges are understood between lower
indices only and, in the second equality, we have used
the property (2.6) of the principal CCKY form written as
∇ahbc ¼ 2δa½bξc�. The divergence ∇ · hðkÞ thus reads

∇ · hðkÞ ¼ ðD − 2kþ 1Þξ ∧ hðk−1Þ: ðB22Þ

Comparing (B20) with (B22), we proved the condition
(3.13) with q ¼ 2k. The condition (3.12) is equivalent to
(3.13) through the Hodge duality.
To prove condition (3.15), we contract λ ¼ P

μ
1
xμ
dxμ

with (B13) and with the help of (B8) we find

2λ · qðjÞ ¼
X
μ

2xμ
Xμ

Uμ
Aðj−1Þ
μ ∂xμ ¼ g−1 · dAðjÞ; ðB23Þ

cf. (B9) and again dAðjÞ ¼ 2xμA
ðj−1Þ
μ dxμ. Comparing with

(5.7), we proved condition (3.15).

4. On-shell warped metric

Finally, we want to investigate for which metric func-
tions ~X ~μ and X̄μ̄ the warped geometry studied in Sec. V
satisfies the Einstein equations. Inspecting the structure of
the Ricci tensor (3.3), the Einstein equations with a
cosmological constant Ric ¼ 2Λ

D−2 g split into two indepen-
dent parts

~Ric ¼ D̄
~w
~H þ 2Λ

D − 2
~g; ðB24Þ

R̄ic ¼ ~w2

�
~H
~w
þ ðD̄ − 1Þ~λ2 þ 2Λ

D − 2

�
ḡ: ðB25Þ

The geometry in space M̄ should not depend on position in
~M, therefore the coefficient on the right-hand side of (B25)
must be a constant, say, K,

K ¼ ~w2

�
~H
~w
þ ðD̄ − 1Þ~λ2 þ 2Λ

D − 2

�
: ðB26Þ

When both partial metrics are Kerr-NUT-(A)dS geometries,
we can use known expressions for the covariant derivative
[30] and can calculate the Hessian explicitly. All involved
quantities read
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~λ2 ¼
X
~μ

~X ~μ

~x2~μ ~U ~μ

; ðB27Þ

~H ¼
X
~μ

~w
2~x~μ

�X
~ν

~X ~ν

~U ~ν

�
; ~μ
ð~e ~μ ~e ~μ þ ~̂e ~μ ~̂e ~μÞ; ðB28Þ

~H ¼
X
~μ

~w ~X0
~μ

~x ~μ ~U ~μ

: ðB29Þ

Substituting (B27), (B28), (B4), and (B6) into (B26), we
obtain the condition

X
~μ

1

~U ~μ

� ~X0
~μ

~x ~μ
þ ð2N̄ − 1Þ

~X ~μ

~x2~μ
−
K
~x2~μ

þ Λ
N − 1

ð−~x2~μÞ ~N−1
�
¼ 0:

ðB30Þ
Applying Lemma 1, we get

~x~μ ~X
0
~μ þ ð2N̄ − 1Þ ~X ~μ ¼ K þ

X~N−2

~k¼0

~a~kx
2ð~kþ1Þ
~μ þ Λ

N − 1
ð−~x2~μÞ ~N;

ðB31Þ

with arbitrary coefficients ~a~k. The right-hand side is just a
polynomial of degree ~N and the differential operator on the
left-hand side is homogeneous. Solving this simple differ-
ential equation, we find (introducing a minus sign in
powers of −~x2~μ is merely a convenient choice compensated
for by replacing constants ~a’s with ~c’s)

~X ~μ ¼
X~N

~k¼0

~c~kð−x2~μÞ~k þ
~b ~μ

~x2N̄−1
~μ

; ðB32Þ

where the ~b ~μ’s are integration constants (different for each ~μ),

~c~k, ~k ¼ 1;…; ~N − 1 are arbitrary constants (replacing the
~a’s), and

~c ~N ¼ Λ
ð2N − 1ÞðN − 1Þ ; ~c0 ¼

K
2N̄ − 1

: ðB33Þ

We thus found metric functions ~X ~μ for which the propor-
tionality factor in (B25) is constant, K ¼ ð2N̄ − 1Þ~c0.
Surprisingly, recalling (B15), (B16), (B29), and identities
(B1), one can show that tilded part (B24) of the Einstein
equations is already satisfied by these metric functions.
Barred part (B25) of the Einstein equations actually

requires that ḡ is an on-shell Kerr-NUT-(A)dS metric with
cosmological constant ðN̄ − 1ÞK. Following (5.3), the
metric functions X̄μ̄ are given by

X̄μ̄ ¼
XN̄
k̄¼0

c̄k̄ð−x̄2μ̄Þk̄ − 2b̄μ̄x̄μ̄; ðB34Þ

with arbitrary constants b̄μ̄ and c̄k̄, provided that

c̄N̄ ¼ K
2N̄ − 1

: ðB35Þ

Putting (B33) and (B35) together, we thus derived an on-
shell form of the warped geometry studied in Sec. V.
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