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We explicitly exhibit n� 1 � �D=2� � 1 constants of motion for geodesics in the general
D-dimensional Kerr-NUT-AdS rotating black hole spacetime, arising from contractions of even powers
of the 2-form obtained by contracting the geodesic velocity with the dual of the contraction of the velocity
with the (D� 2)-dimensional Killing-Yano tensor. These constants of motion are functionally indepen-
dent of each other and of the D� n� 1 constants of motion that arise from the metric and the D� n �
��D� 1�=2� Killing vectors, making a total of D independent constants of motion in all dimensions D.
The Poisson brackets of all pairs of these D constants are zero, so geodesic motion in these spacetimes is
completely integrable.
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With motivations especially from string theory, many
people have shown much recent interest in black hole
metrics in higher dimensions. Nonrotating black hole met-
rics in higher dimensions were first given in 1963 by
Tangherlini [1]. In 1986, Myers and Perry [2] generalized
the 1963 Kerr metric [3] for a 4-dimensional rotating black
hole to all higher dimensionsD. In 1968, Carter [4] added a
cosmological constant to get a 4-dimensional rotating
Kerr-de Sitter metric. In 1998, Hawking, Hunter, and
Taylor-Robinson [5] found the general 5-dimensional ex-
tension of this metric, and in 2004, Gibbons, Lü, Page, and
Pope [6,7] discovered the general Kerr-de Sitter metrics in
all higher dimensions. In 2006, Chen, Lü, and Pope [8]
were able to add a NUT [9] parameter to get the general
Kerr-NUT-AdS metrics in all dimensions, which they pre-
sented in an especially simple form, analogous to the
Plebański-Demiański [10] 4-dimensional generalization
of Carter’s Kerr-de Sitter metric.

With n � �D=2�, " � D� 2n, m � n� 1� ", Latin
indices running over 1 through D � 2n� ", and Greek
indices running over 1 through n, these Kerr-NUT-AdS
metrics [8] that solve the Einstein equation Rab �
��D� 1�g2gab may, after suitable analytic continuations,
be written in the orthonormal form (cf. [11])

 ds2 � g �
XD
a�1

XD
b�1

�abeaeb

�
Xn
��1

�e�e� �E�E�� � "!! ; (1)

where the orthonormal basis one-forms are
 

e� � Q�1=2
� dx�; en�� � E� � Q1=2

�

Xn�1

k�0

A�k�� d k;

e2n�1 � ! � ��c=A�n��1=2
Xn
k�0

A�k�d k ; (2)

and where
 

Q� �
X�
U�

; U� �
Y0n
��1

�x2
� � x

2
��; c �

Ym
k�1

a2
k;

X� � ��1�"
g2x2

� � 1

x2"
�

Ym
k�1

�a2
k � x

2
�� � 2M���x���1�"�;

A�k�� �
X0

�1<			<�k

x2
�1

. . . x2
�k ; A�k� �

X
�1<			<�k

x2
�1

. . . x2
�k :

(3)

Primes on the sum and product symbols mean that the
index � � � is omitted. The ak and M� are related to
angular momentum, mass, and NUT parameters.

The inverse Kerr-NUT-AdS metric has the form

 

�
@
@s

�
2
�
XD
a�1

XD
b�1

�abeaeb

�
Xn
��1

�e�e� � E�E�� � "EE ; (4)

where the orthonormal basis vectors are
 

e� � Q1=2
�

@
@x�

;

en�� � E� � Q�1=2
� U�1

�

Xm
k�0

��1�n�1�kx2�n�1�k�
�

@
@ k

;

e2n�1 � E � ��cA�n���1=2 @
@ n

: (5)

Kubizňák and Frolov [11] have shown that the Kerr-
NUT-AdS metric possesses a (D� 2)-rank Killing-Yano
tensor

 f � 
k ; (6)

where the closed 2-form k can easily be shown to be
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 k �
Xn
��1

x�e� ^E�: (7)

In the general case, a Killing-Yano tensor [12] of rank p
is a p-form f that satisfies the equations

 fa1...ap � f�a1...ap�; fa1...�ap;ap�1�
� 0 : (8)

Kubizňák and Frolov [11] then show how to use the
conformal Killing tensor

 Q � Qabeaeb � kackb
ceaeb �

Xn
��1

x2
��e�e� � E�E��

(9)

to construct the 2nd-rank Killing tensor that can easily be
shown to be

 K � Q�
1

2
Qc

cg

� �
Xn
��1

A�1�� �e�e� � E�E�� � "A�1�!! : (10)

A Killing tensor [13–15] of rank r is a totally symmetric
tensor K that satisfies the equations

 Ka1...ar � K�a1...ar�; K�a1...ar;ar�1�
� 0 : (11)

Geodesic motion gives conserved constants from con-
tractions of one velocity u � uaea with each of the
D� n � n� " � m� 1 Killing vectors @=@ k, from
the contraction of two velocities with the metric, and
from contractions of velocities with any Killing tensors
present. With one 2nd-rank Killing tensor present that is
independent of the metric (which is always a Killing
tensor), one thus has D� 2� n constants of motion. For
n � 2 orD � 5, this gives a full set ofD constants to make
the geodesic motion integrable. However, forD> 5, it was
not previously known how to find a full set of D constants
of geodesic motion for the general Kerr-NUT-AdS metrics
[8], or even for the general Myers-Perry (MP) metrics [2]
obtained by eliminating the NUT parameters and the cos-
mological constant. For earlier work on geodesic motion
and Killing tensors in the MP, Kerr-(NUT)-AdS, and re-
lated metrics in higher dimensions, see [11,16–32].

The point of the present Letter is to show that one can
obtain a full set of D independent constants in involution
for geodesic motion in the general Kerr-NUT-AdS metrics,
thereby making this motion completely integrable.

Briefly, the demonstration uses the fact that when the
velocity is contracted with the Killing-Yano tensor of rank
D� 2, this gives a (D� 3)-form that is covariantly con-
stant along each geodesic. The dual of this (D� 3)-form
gives a 3-form that is also covariantly constant along each
geodesic, as is the 2-form contraction of this 3-form with
the velocity. This 2-form has at least n� 1 nonzero
complex-conjugate (pure imaginary) pairs of eigenvalues

that give n� 1 constants of motion, which we can show
[33] are independent of each other and of the D� n� 1
constants of motion obtainable from the Killing vectors
and the metric, with all of the Poisson brackets between
them vanishing. Therefore, we have D independent con-
stants of motion in involution for geodesics in the general
Kerr-NUT-AdS metrics, making the geodesics completely
integrable (see, e.g., [34,35]).

Let us write the resulting 2-form as

 F � u 	 f
�u 	 �
k��g �
1

2
Fabea ^ eb ; (12)

with components

 Fab � �kabuc � kbcua � kcaub�u
c : (13)

Then since F is covariantly constant along geodesics,
ucFab;c � 0, the eigenvalues of F are constants of motion.
In particular, the traces of even powers of the matrix form
of F are constants. (The traces of odd powers are zero
because of the antisymmetry of F.)

Now let us give a formula for the new constants of
motions Cj that are proportional to traces of the even
powers of the matrix form of F and evaluate them explic-
itly for the 2nd, 4th, 6th, and 8th powers. For convenience,
let us use matrix notation, in which F is the antisymmetric
matrix with orthonormal components Fab, K is the anti-
symmetric matrix with components kab (not to be con-
fused with a Killing tensor), Q � �K2 is the symmetric
matrix with components Qa

b � �k
a
ckcb, W is the sym-

metric matrix with components uaub, w � Tr�W� � ucuc,
P � I �W=w is the projection onto the hyperplane or-
thogonal to the velocity, and S � �PKPKP. These matri-
ces have the properties that P2 � P andWK2j�1W � 0 for
all nonnegative integers j. Then the component Eq. (13)
becomes the matrix equation

 F � wK � KW �WK � wPKP ; (14)

whose negative square is the symmetric matrix

 � F2 � w2S � w2PQP� wKWK : (15)

One can now prove [33] that for all j,

 Tr �Qj� � Tr�Sj� � 2Tr��QP�j� : (16)

Therefore, we get the constants of motion

 Cj � w�jTr���F2�j� � wjTr�Sj�

� 2Tr��wQ�QW�j� � wjTr�Qj�

� wjTr�Qj� � 2jwj�1Tr�QjW�

�
Xj
c�2

X
l1�...�lc;

P
i

li�j

��1�cNj
l1...lj

wj�c
Yc
i�1

Tr�QliW� ;

(17)

where in the last expression the coefficientsNj
l1...lj

are some
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positive combinatoric factors [33]. We have used the fact
that terms Tr�QjWQkW 	 	 	� factorize into �TrQjW��
�TrQkW� 	 	 	 . Notice that all traces in the last line contain
strictly lower powers of Q than Qj.

To write the constants of motion in tensor notation, it is
convenient to define the scalars Q�j� that are the traces of
the jth power of the matrix Q,

 Q�j� � Tr�Qj� � 2
Xn
��1

x2j
� ; (18)

and the symmetric covariant tensor components Q�j�ab that
form the tensor Q�j� corresponding to the jth power of the
matrix Q,

 Q �j� � Q�j�abeaeb �
Xn
��1

x2j
� �e�e� �E�E�� : (19)

For example, Q�1� � Qc
c, Q�1�ab � Qab, Q�2� � Qc

dQd
c,

Q�2�ab � Qa
cQcb, Q�3� � Qc

dQd
eQe

c, and Q�3�ab �
Qa

cQc
dQdb.

Then one can easily see that the Cj’s have the form

 Cj � Ka1...a2j
ua1 . . . ua2j (20)

for some symmetric tensors Ka1...a2j
formed from combi-

nations of the metric gab, Q�j�, and the Q�i�ab’s for i � j. It
can be shown [14] that these are Killing tensors in the sense
of Eq. (11).

In particular, we get
 

C1 � wTr�Q� � 2Tr�QW� � �Q�1�gab � 2Q�1�ab�u
aub

� �2Kabu
aub ; (21)

the constant from the previously-known 2nd-rank Killing
tensor given in Eq. (10), and
 

C2 � w2Tr�Q2� � 4wTr�Q2W� � 2�Tr�QW��2

� �Q�2�gabgcd � 4Q�2�abgcd � 2Q�1�abQ
�1�
cd �u

aubucud

� Kabcduaubucud ; (22)

where the new 4th-rank Killing tensor has components

 Kabcd � Q�2�g�abgcd� � 4Q�2�
�abgcd� � 2Q�abQcd� (23)

and gives theDth constant of motion forD�6 andD � 7.
Continuing in a similar fashion to get theDth constant of

motion for D � 8 and D � 9,
 

C3 � w3Tr�Q3� � 6w2Tr�Q3W� � 6wTr�Q2W�Tr�QW�

� 2�Tr�QW��3

� �Q�3�gabgcdgef � 6Q�3�abgcdgef � 6Q�2�abQ
�1�
cdgef

� 2Q�1�abQ
�1�
cdQ

�1�
ef �u

aubucudueuf

� Kabcdefuaubucudueuf ; (24)

where the new 6th-rank Killing tensor is

 Kabcdef � Q�3�g�abgcdgef� � 6Q�3�
�abgcdgef�

� 6Q�2�
�abQcdgef� � 2Q�abQcdQef� : (25)

To finish the explicit expressions for all D constants of
motion (not counting the constants from the metric and
Killing vectors) up throughD � 11, the highest dimension
generally considered in superstring/M theory, we calculate
 

C4�w
4Tr�Q4��8w3Tr�Q4W��8w2Tr�Q3W�Tr�QW�

�4w2�Tr�Q2W��2�8wTr�Q2W��Tr�QW��2

�2�Tr�QW��4

��Q�4�gabgcdgefggh�8Q�4�abgcdgefggh

�8Q�3�abQ
�1�
cdgefggh�4Q�2�abQ

�2�
cdgefggh

�8Q�2�abQ
�1�
cdQ

�1�
ef ggh�2Q�1�abQ

�1�
cdQ

�1�
efQ

�1�
gh�

�uaubucudueufuguh

�Kabcdefghu
aubucudueufuguh ; (26)

with the corresponding 8th-rank Killing tensor being

 Kabcdefgh � Q�4�g�abgcdgefggh� � 8Q�4�
�abgcdgefggh�

� 8Q�3�
�abQcdgefggh� � 4Q�2�

�abQ
�2�
cdgefggh�

� 8Q�2�
�abQcdQefggh� � 2Q�abQcdQefQgh� :

(27)

For a spacetime with D � 2n� " dimensions, we get
D� n � n� " constants of motion from the D� n
Killing vectors and one constant of motion, w � u 	 u,
from the metric Killing tensor. Therefore, we need Cj up
through j � n� 1 to give the remainder of theD constants
of motion.

We can explicitly show [33] that all of these D constants
of motion are independent of each other, as functions of the
velocity components ua, by calculating the Jacobian of this
transformation. When all of the first n velocity components
are nonzero, and at a generic point of the manifold where
none of the �x��2’s coincide (which would actually give a
coordinate singularity if any did coincide), we find that the
Jacobian is nonzero. Key to the proof is the fact that in the
constant Cj, the coefficient of Tr�QjW�, given explicitly in
Eq. (17), is nonzero, as well as the fact that the n pairs of
eigenvalues of the matrix Q, namely, the �x��2’s, are all
different when none of the �x��2’s coincide. Therefore, the
Tr�QjW� term for each higher j up to n� 1 gives a
function of the velocity components that is independent
of any of the terms with lower j. We can also prove [33]
that the Poisson bracket between any pair of these D
constant vanishes, so these constants are in involution, a
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sufficient condition for the integrable motion to be com-
pletely integrable (see, e.g., [34,35]).

In summary, we have shown that geodesic motion is
completely integrable for all Kerr-NUT-AdS metrics [8] in
all dimensions and with arbitrary rotation and NUT pa-
rameters. However, this has not enabled us (at least yet) to
separate the Hamilton-Jacobi, Dirac, and Klein-Gordon
equations.
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Note added.—For further recent work on this subject,
including separation of the Hamilton-Jacobi and Klein-
Gordon equations, see [36,37].
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