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Abstract. We derive the most general first order symmetry operator for the
Dirac equation coupled to arbitrary fluxes. Such an operator is given in terms of
an inhomogenous form ω which is a solution to a coupled system of first order
partial differential equations which we call the generalized conformal Killing–Yano
system. Except trivial fluxes, solutions of this system are subject to additional
constraints. We discuss various special cases of physical interest. In particular, we
demonstrate that in the case of a Dirac operator coupled to the skew symmetric
torsion and U(1) field, the system of generalized conformal Killing–Yano equations
decouples into the homogenous conformal Killing–Yano equations with torsion
introduced in [arXiv:0905.0722] and the symmetry operator is essentially the one
derived in [arXiv:1002.3616]. We also discuss the Dirac field coupled to a scalar
potential and in the presence of 5-form and 7-form fluxes.

PACS numbers: 02.40.-k, 04.60.Cf, 04.65.+e

1. Introduction

The Dirac operator, since its introduction in 1928, has played a central role in physics
and more recently geometry. Physically, the Dirac operator is indispensable in the
construction of the Standard Model of particle physics. It is also intimately tied to
Riemannian geometry; indeed one approach treats the Dirac operator as fundamental
and the metric as a derived object [1]. A fundamental tool of modern physics is the
identification and exploitation of symmetries. From a metric point of view these are
well studied, being related to the existence of certain tensors, namely Killing tensors
and Killing–Yano tensors [2]. Taking the view that the Dirac operator should take
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priority over the metric, one may ask how the symmetries of the metric are manifest
in this alternative viewpoint. The key observation is that the existence of symmetry
operators for the Dirac equation implies constraints on the geometrical background
on which it is defined. In particular, symmetry operators of the massless equation
which are first order in derivatives are essentially in one-to-one correspondence with
conformal Killing–Yano tensors of the background metric [3, 4, 5, 6].

In the backgrounds considered for superstring and supergravity theories, the
metric is often supplemented by other fields or ‘fluxes’ which couple to the spinor
fields and modify the Dirac equation. The goal of this work is to understand how the
symmetries of this modified Dirac equation relate to the underlying geometry. This
will give insight into how the notion of ‘hidden symmetry’ should be adapted in the
presence of fluxes. Generally, if D is the standard Dirac operator, one considers a
modified Dirac equation:

Dψ = (D +B)ψ = 0 , (1)

where B is some section of the Clifford bundle‡. This includes the case of a massive
Dirac operator, the Dirac operator minimally coupled to a Maxwell field, the Dirac
operator in the presence of torsion as well as more general operators. An interesting
question is under what circumstances this modified Dirac equation admits a symmetry
operator. A partial answer was provided by Açik, Ertem, Önder and Verçin in [7], who
give necessary and sufficient conditions that a first order operator graded commutes
with D. If one asks only for a symmetry operator of (1), it suffices to seek an operator
L which R-commutes with D, i.e., which obeys

DL = RD . (2)

In this paper, we give necessary and sufficient conditions that a first order differential
operator on the spin bundle R-commutes with D. As a result, we exhibit the
appropriate generalization of the conformal Killing–Yano equation in the presence
of fluxes, which we call the generalized conformal Killing–Yano system. This system
incorporates all the special cases studied previously as well as providing a unified
description of some other possibilities. In particular, we show how in the case where
the fluxes consist of a Maxwell field and a 3-form torsion the conditions reduce to the
existence of a torsion conformal Killing–Yano tensor, as introduced in [8], together with
a compatibility condition on the Maxwell field. This reproduces in a more compact
way the results derived in [9] and establishes the uniqueness of these results. As a new
application we derive the symmetry operator for the Dirac field with arbitrary scalar
potential and the generalization of a conformal Killing–Yano equation in the presence
of 5-form and 7-form fluxes.

The paper is organized as follows. In the next section we introduce the modified
Dirac operator and discuss its basic properties. Its first-order symmetry operators are
derived in Sec. 3. The general theory is demonstrated with several examples in Sec. 4.
Sec. 5 is devoted to conclusions and discussion. In what follows we use conventions
and notations of [9] which we gather for convenience in the appendix.

2. Dirac operator

In what follows we consider the following Dirac operator:

D = D +B = ea∇a +B , (3)

‡ In the notation of physicists, B may be written as a sum of terms of the form Ba1...apγ
a1 . . . γap ,

where Ba1...ap are components of a p-form.
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where B is an arbitrary inhomogeneous form, describing the coupling to the ‘force
fields’. Since the standard Dirac operatorD is antiself-adjoint, i.e., obeying D = −D†,
in order D to be antiself-adjoint as well, D = −D†, we require

B = −B† = −(i)π(π−1)B∗ , (4)

where ∗ denotes the complex conjugation. This means that the p-form component of
B, Bp, has to be imaginary for p = 0, 1 mod 4 and real for p = 2, 3 mod 4.

An important property of the standard Dirac operator is that it obeys the
Schrödinger–Lichnerowicz formula relating its square to the spinor Laplacian. We
can derive a simlar result for D, but the spinor Laplacian related to D is that of a
new connection on the spin bundle. Let us introduce the following spinor connection:

∇̃a = ∇a + Ca , Ca =
1 + η

2
Xa−|B +

1− η

2
ea ∧B , (5)

where the action on a element of the Clifford algebra, α, is

∇̃aα = ∇aα+ Caα− αCa . (6)

One can easily show that the Dirac operator (3) can be written as

D = ea∇̃a + B̃ , B̃ =
[

1− π

2
(1− η)− n− π

2
(1 + η)

]

B , (7)

while we obtain

D2 = ∆̃ +
1

2
eabR̃Xa,Xb

+ (DB̃) . (8)

Here, ∆̃ = ∇̃a∇̃a − ∇̃∇̃aXa , a 2-form R̃Xa,Xb
is the curvature 2-form (A.16) of

connection ∇̃a, and in the last term D acts only on B̃. That is, by introducing
∇̃a, we have obtained the relation D2 = ∆̃ + zeroth order terms . Such a connection
is of interest on its own; for example, let us consider the case when

B = iA− 1

4
T , (9)

where A and T are 1-form and 3-form, respectively. Then we find

D = ea∇̃a +
1

2
T , ∇̃a = ∇a +Xa−| (iA− 1

4
T ) . (10)

This is a standard minimal coupling connection with torsion on spinors. In the case
when A = 0, the connection ∇̃a can in fact be lifted from a connection ∇T on the
tangent bundle, as considered in [9]. On an arbitrary form ω this acts as

∇̃aω ≡ ∇T
a ω = ∇aω +

1

2
(Xa−|T )∧

1
ω . (11)

and one can associate with it the following two operations:

δTω = −Xa
−|∇T

a ω = δω − 1

2
T ∧

2
ω ,

dTω = ea ∧ ∇T
a ω = dω − T ∧

1
ω . (12)

However, let us stress that this example is very special and in general the spinorial
connection ∇̃a, (5), is not the lift of a connection on the tangent bundle because it
does not preserve the degree of forms.
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3. First-order Dirac symmetry operators

We would like to construct the most general first-order differential operator L which
graded R-commutes with the Dirac operator (3), i.e., which obeys (2). Equivalently,
we may define the bracket { , } to be

{α, β} ≡ αβ − (−1)qβα , (13)

for a p-form β and a q-form α. Then one may show that R-commutation is equivalent
to

{D,L} = SD (14)

for some operator S. Obviously, such an operator L is not unique. Given L, a
new operator L + αD, where α is an arbitrary inhomogeneous form, automatically
satisfies the same equation (14) (possibly with different S). To construct all symmetry
operators of D, it is in fact sufficient to seek a special operator L,

L = 2ωa∇a +Ω , (15)

where ωa and Ω are unknown inhomogenous forms to be determined, obeying

{D, L} = ΣD , (16)

where Σ is of the zeroth-order, i.e., it is some inhomogeneous form [6]. A general
operator L obeying (14) is then given by L = L + αD, with α being an arbitrary
inhomogeneous form. In what follows we shall construct the special operator L.

Using the explicit form of D and L, (3) and (15), we find

{D, L} = 4Xa
−|ωb∇(a∇b) + 2

(

eb(∇bω
a) +Xa

−|Ω+ {B,ωa}
)

∇a

+2ea ∧ ωbRXa,Xb
+ ea(∇aΩ) + {B,Ω} − 2(ηωa)(∇aB) , (17)

where we have used (A.16). On the other hand, the r.h.s. of Eq. (16) is simply given
by

ΣD = Σea∇a +ΣB . (18)

By equating terms of equal order in derivatives in Eqs. (17) and (18) we obtain
X(a

−|ωb) = 0, which implies

ωa = Xa
−|ω (19)

for some inhomogeneous form ω, together with

eb∇bω
a +Xa−|Ω + {B,ωa} =

1

2
Σea ,

2ea ∧ ωbRXa,Xb
+ ea(∇aΩ) + {B,Ω} − 2(ηωa)∇aB = ΣB . (20)

Using (19) and definitions (A.4) we have eb∇bωa = Xa−| (δω − dω) +∇aω . Moreover,
using the results of [5] for an arbitrary inhomogeneous form ω one has

2ea ∧ (Xb
−|ω)RXa,Xb

= eb ∧Xa
−|R(Xa, Xb)ω . (21)

So, besides (19), we obtain the following two equations, which are the ‘conformal
generalizations’ of equations derived in [7]:

∇aω − 1

2
ea ∧ ηΣ−Xa−|

(

dω − δω − Ω− 1

2
ηΣ

)

+ {B,ωa} = 0 , (22)

eb ∧Xa
−|R(Xa, Xb)ω + ea(∇aΩ) + {B,Ω} − 2(ηωa)∇aB − ΣB = 0 . (23)
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The first equation represents a “generalized conformal Killing–Yano system” of
equations for inhomogeneous form ω. It also uniquely determines the symmetry
operator L. The second equation gives additional conditions which have to be satisfied
in order that L really be a symmetry operator for D.

In order to see these statements more explicitly, let us first concentrate on Eq.
(22). This can be re-written as

∇aω = Xa−|µ+ ea ∧ ν − {B,ωa} , (24)

where

µ = dω − δω − Ω− 1

2
ηΣ , ν =

1

2
ηΣ . (25)

By contracting (24) with Xa or wedging with ea we obtain the following two equations:

dω = πµ− ea ∧ {B,ωa} , −δω = (n− π)ν −Xa
−| {B,ωa} . (26)

By inverting these expressions we obtain

µ =
1

π
dω +

1

π

(

ea ∧ {B,ωa}
)

− f , ν =
1

n− π

(

Xa
−| {B,ωa})−

1

n− π
δω − ǫ . (27)

Here, f and ǫ are arbitrary 0-form and n-form respectively. [We define π−1 to be a
linear operator taking α to p−1α for a p-form α with p > 0 and similarly for (n−π)−1

acting on a p-form with p < n. Since dω has no 0-form component and δω no n-form
component, the expression above is well defined.] Using the explicit form of µ and ν,
(25), in (27) we obtain the following explicit expressions for Ω and Σ:

Ω =
π − 1

π
dω − n− π − 1

n− π
δω − 1

n− π
Xa

−| {B,ωa} −
1

π
ea ∧ {B,ωa}+ f + ǫ , (28)

Σ = − 2η

n− π
δω +

2η

n− π
Xa

−| {B,ωa} − 2ηǫ . (29)

Moreover, let us introduce the following projection operator for inhomogeneous forms
αa, see, e.g., [10]:

(αa)⊥ ≡ αa −
1

π + 1
Xa−|

(

eb ∧ αb

)

− 1

n− π + 1
ea ∧

(

Xb
−|αb

)

. (30)

[Note that we automatically have ea ∧ (αa)⊥ = 0 = Xa
−| (αa)⊥ and hence (αa⊥)⊥ =

(αa)⊥.] This projection naturally defines the twistor operator

Kaω ≡ (∇aω)⊥ = ∇aω − 1

π + 1
Xa−| dω +

1

n− π + 1
ea ∧ δω . (31)

Using this notation we can rewrite Eq. (24) as
(

∇aω + {B,ωa}
)

⊥
= 0, or,

Kaω + {B,ωa}⊥ = 0 . (32)

This is the desired form of the generalized conformal Killing–Yano system. For general
flux B, it represents a coupled system of linear first order partial differential equations
for homogeneous parts of inhomogeneous form ω. Its solution is a necessary and
sufficient condition for (16) to be satisfied in the second and first derivative order. It
is shown in the next section that if and only if B is a combination of a function, 1-form,
and 3-form, the generalized conformal Killing–Yano system (32) decouples, without
any additional restrictions on ω and B, into a system of independent equations for
homogeneous parts ωp of the form ω.
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In order that L, given by Ω, (28), really be a symmetry operator for D, the
solutions of (32) have to satisfy additional conditions following from (23). One finds
the following integrability conditions for the twistor operator:

2eb ∧Xa
−|∇[aKb]ω = eb ∧Xa

−|R(Xa, Xb)ω − π

π + 1
δdω − n− π

n− π + 1
dδω . (33)

Taking further into account that 2eb ∧Xa
−|∇[a{B,ωb]}⊥ = ∇b{B,ωb}⊥ , we arrive at

the integrability conditions of Eq. (32)

eb ∧Xa
−|R(Xa, Xb)ω =

π

π + 1
δdω +

n− π

n− π + 1
dδω −∇b{B,ωb}⊥ . (34)

Using further the explicit form of Ω, (28), in the term ea∇aΩ, we can rewrite Eq. (23)
as

δ

(

1

n− π
Xb

−| {B,ωb}
)

− d

(

1

π
eb ∧ {B,ωb}

)

−∇a{B,ωa}+
{

B,Ω} − 2(ηωa)∇aB − ΣB + df − δǫ = 0 . (35)

It is now obvious, using the explicit form of Σ, (29), that this equation represents (for
general B) an additional first order partial differential constraint on inhomogeneous
form ω; we shall sometimes refer to the l.h.s. as anomalies. In principle, one could
plug here the explicit expressions for Ω and Σ, for general B the final expression is,
however, not very illuminating. In certain special cases considered in the next section
a considerable simplification of this equation occurs. Let us also mention that in
certain special cases one may choose the (so far arbitrary) forms f and ǫ to simplify
the anomalies, see, e.g., the example of black hole background in minimal gauged
supergravity in Sec. 4.2.

4. Examples

4.1. Conformal Killing vectors

As a straightforward check of the results we have obtained, we consider the case where
ω is a one-form. Equation (32) reduces to the requirement that ω♯ be a confomal
Killing vector. Making use of the integrability conditions, (35) (with f = 0 = ǫ)
reduces to

Lω♯B = −δω
n
(π − 1)B. (36)

This condition can also be deduced by requiring that the action

S =

∫

(ψDψ + ψBψ) dvol, (37)

from which the modified Dirac equation follows, is invariant under the conformal
symmetry generated by ω♯.

4.2. Generalized Killing–Yano equations with torsion

Let us now consider the case when the Dirac spinor is coupled to a skew-symmetric
torsion and a U(1) field. We take B as in (9), i.e.,

B = iA− 1

4
T , (38)
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where A is a 1-form and T a 3-form. In [9] it was argued that the factor of −1/4 is
natural when considering a connection with torsion T . Expanding the bracket {B,ωa}
by using formulas (A.9) and applying (19) and (A.3) we immediately find

{B,ωa} = Xa−|

(

−2iA∧
1
ω +

1

2
T ∧

1
ω − 1

12
T ∧

3
ω
)

+
1

2
(Xa−| T )∧

1
ω ,

Xa
−| {B,ωa} =

1

2
T ∧

2
ω ,

ea ∧ {B,ωa} = π
(

−2iA∧
1
ω +

1

2
T ∧

1
ω − 1

12
T ∧

3
ω
)

− T ∧
1
ω , (39)

and

{B,ωa}⊥ =
1

π + 1
Xa−| (T ∧

1
ω)− 1

2

1

n− π + 1
ea ∧ (T ∧

2
ω)+

1

2
(Xa−|T )∧

1
ω .(40)

Obviously, the last bracket preserves the rank of each homogeneous part of ω.
Therefore, Eqs. (32) split into a set of uncoupled homogeneous equations for p-form
components of form ω. Moreover, introducing the torsion covariant derivative (11)
and the two associated operations (12) we can rewrite (32) as

KT
a ω ≡ ∇T

a ω − 1

π + 1
Xa−| dTω +

1

n− π + 1
ea ∧ δTω = 0 , (41)

where KT
a is a twistor operator with torsion. Therefore each p-form component of ω

has to satisfy the generalized conformal Kiling–Yano equation with torsion introduced
in [8]. One also finds

Ω =
π − 1

π
dω − n− π − 1

n− π
δTω + 2iA∧

1
ω +

2− π

2π
T ∧

1
ω − 1

2
T ∧

2
ω+

1

12
T ∧

3
ω+f+ǫ ,

Σ = − 2η

n− π
δTω − 2ηǫ . (42)

Note that when Σ = 0, i.e., for δTω = 0 and ǫ = 0, the operator L graded commutes
with the Dirac operator D. Thereafter we can rewrite L as follows:

L = 2Xa
−|ω∇a+

π − 1

π
dω+2iA∧

1
ω+

2− π

2π
T ∧

1
ω−1

2
T ∧

2
ω+

1

12
T ∧

3
ω+f , (43)

which (up to arbitrary 0-form f) is the symmetry operator derived in [9] [Eq. (4.18)]
in the case when A = 0.

In general, the additional constraint (35) reduces (after some lengthy calculation)
to

2i(dA)∧
1
ω +A(cl) +A(q) − df + δǫ = 0 , (44)

where

A(cl) =
1

π − 1
d(dTω)− 1

2
dT ∧

1
ω − 1

n− π + 3
T ∧ δTω , (45)

A(q) =
1

n− π − 1
δ(δTω)− 1

6(π + 3)
T ∧

3
dTω +

1

12
dT ∧

3
ω , (46)

are the ‘quantum’ and ‘classical’ anomalies introduced in [9]. Note that the U(1) and
torsion anomalies decouple (there are no mixed terms including A and T together).
In the case where ω is a homogeneous form of rank p, the first three terms in (44)
must vanish independently, being of rank p, p+ 2 and p− 2 respectively; one can use
the freedom of f and ǫ to simplify some of these terms. In the absence of torsion we
have the algebraic condition discussed in a more special case in [7]. In the absence
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of U(1) field we recover the conditions discussed in [9]. We stress however that this
result is stronger that in [9] as we have shown uniqueness—any symmetry operator of
the Dirac equation with torsion is determined by a (possibly inhomogeneous) form ω
which obeys the generalized conformal Killing Yano equation in every rank, and for
which the anomaly vanishes.

It can be verified that equations (44) (with f = 0 = ǫ) are satisfied by the
generalized closed conformal Killing–Yano tensors with torsion in Kerr–Sen black hole
spacetimes in all dimensions [11, 12, 13] in the case when the torsion is identified
with the 3-form flux H [14]. Another interesting example of the geometry where
all the conditions can be satisfied is the most general black hole spacetime [15] of
minimal gauged supergravity when the torsion is identified with the dual of Maxwell
field T = ∗F/

√
3 [8]. In this case ω is a generalized Killing–Yano with torsion 3-form

which obeys (44) if ǫ = 0 and the 0-form f is chosen to be f = − 1
12T ∧

3
ω. Using

further the fact that in this spacetime T ∧
1
ω = 0 = T ∧

2
ω, from (43) we recover the

symmetry operator

L = 2Xa
−|ω∇a +

3

4
dω + 2iA∧

1
ω (47)

for the massive minimally coupled with torsion Dirac equation obtained by Wu [16].

4.3. Dirac equation with potential

As another important example, we consider the symmetry operator of the Dirac
equation with scalar potential, B = iV . We find

{V, ωa} = 2Xa−| (V ωe) , {V, ωa}⊥ = 0 , (48)

where ωe is the even Z2-homogeneous part of ω. This means that every p-form part
of ω obeys a conformal Killing–Yano equation, Kaω = 0, and in addition we require
(setting f = 0 = ǫ)

− 2ea∇a(V ωe) + 2V Ωo − 2(ηωa)∇aV +
2η

n− π
δωV = 0 . (49)

We consider two cases: i) ω is Z2-odd, ω = ωo, and ii) ω is Z2-even, ω = ωe. In the
first case Eq. (49) reduces to

(dV )♯−|ω − V

n− π
δω = 0 . (50)

In particular, for V = m = const we require δω = 0. In the second case Eq. (49)
reduces to

dV ∧ ω +
V

π
dω = 0 , (51)

when V = m we require dω = 0. So, we have re-derived the well known fact [5] that
the symmetry operators of the massive Dirac equation are given in terms of Killing–
Yano tensors of odd rank or in terms of closed conformal Killing–Yano tensors of even
rank.

Let us also comment here on the constants of motion for classical trajectories.
In the U(1) case, it was demonstrated in [7] that conformal Killing–Yano forms ω
which give rise to symmetry operators of the minimally coupled Dirac equation, i.e.,
those obeying (44), (dA) ∧

1
ω = 0, generate not only the constants of geodesic motion,

u̇ = ∇uu = 0, but also provide quadratic in velocity invariants for classical (charged
particle) trajectories, u̇ ≡ ∇uu = u−| (dA). Similarly, we now demonstrate that
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conformal Killing–Yano forms ω which give rise to symmetry operators of the Dirac
equation with potential generate quadratic in velocity invariants for the corresponding
particle trajectories. For this purpose we consider the Lagrangian L = u · u− V 2; the
equations of motion are

u̇ ≡ ∇uu = −V (dV )♯ . (52)

Let us first consider ω = ωo and define w = u−|ω. Then we find (denoting by
ξ = − 1

n−π δω)

ẇ = u̇−|ω + u−|∇uω = −V (dV )♯−|ω + u−| (u♭ ∧ ξ)

= − V 2

n− π
δω + u · u ξ − u♭ ∧ (u−| ξ)

= (V 2 + u2)ξ − u♭ ∧ (u−| ξ) = −u♭ ∧ (u−| ξ) . (53)

In the second equality we have used (52) and the conformal Killing–Yano equation,
in the third we applied the condition (50), and in the last we used the freedom to set
the Hamiltonian H = u · u+ V 2 = 0. From the antisymmentry of ω it is obvious now
that w · ẇ = 0 and hence c ≡ w · w is a quadratic in velocity constant of motion for
trajectories (52). This constant corresponds to the rank-2 conformal Killing tensor

Kab = ωacω
c
b. Similarly, when ω = ωe and the condition (51) is satisfied one can show

that c̃ ≡ (u♭∧ω) · (u♭ ∧ω) is a quadratic in velocity constant of motion for trajectories
(52).§ Therefore we have established that in both cases ω gives rise to constants of
motion of classical trajectories (52). An alternative way to see this would be to use
the geometric optics approximation.

4.4. 5-form flux

For a 5-form flux, the bracket {B,ωa}⊥ has (p+ 2)- and a (p− 2)-form components:

{B,ωa}⊥ = 2(B ∧
1
ωa)⊥ − 1

3
(B ∧

3
ωa)⊥ . (54)

Thus the generalized Killing–Yano equation (32) does not split into conditions on
each rank of the inhomogeneous ω, but rather mixes the ranks. One may make an
ansatz that ω is a homogeneous form of rank p, in which case one must impose that
{B,ωa}⊥ = 0 for consistency. The interpretation is then that a standard conformal
Killing–Yano tensor gives rise to a symmetry in the case of a five-form flux, but that
{B,ωa}⊥ = 0 and (35) are additional equations which must be satisfied in order that
this is the case.

4.5. 7-form flux

Unlike in the case of the 5-form flux, for B a 7-form one finds that the bracket has
(p+ 4)-, p- and (p− 4)-form components:

{B,ωa}⊥ = 2(B ∧
1
ωa)⊥ − 1

3
(B ∧

3
ωa)⊥ +

1

60
(B ∧

5
ωa)⊥ . (55)

Again, there will in general be mixing between different rank components of the
inhomogeneous ω. If we seek a homogeneous ω, then (32) consists of the two algebraic
conditions

(B ∧
1
ωa)⊥ = 0, (B ∧

5
ωa)⊥ = 0 , (56)

§ We remark that when V = const the corresponding conformal Killing tensor is of the gradient type,
i.e., obeying K̃(ab;c) = g(abK̃c) with K̃a = ∇aK̃.
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together with a modified Killing–Yano equation which may be formally written as

KB
a ω = 0 , (57)

where KB
a is the twistor operator of the ‘connection’

∇B
a ω = ∇aω +

1

3
(Xa−|B)∧

3
ω (58)

and δB = −Xa
−|∇B

a and dB = ea ∧ ∇B
a are the associated two operations. Note,

however, that ∇B does not respect the wedge product or Clifford product and so it
is not a standard connection on the exterior bundle. On the other hand, one has
∗∇B = ∇B∗ and hence the modified twistor equation (57) is invariant under the
Hodge duality; if ω solves Eq. (57) so does ∗ω.

.

5. Discussion and conclusions

In this paper we have considered the problem of finding symmetry operators for a
Dirac equation coupled to arbitrary p-form fluxes. As a result, we have been able
to characterize all first order symmetry operators; they are given in terms of an
inhomogeneous form ω subject to various algebraic and differential constraints, Eqs.
(32) and (35). The main application which we have presented is to show that the
operators previously constructed for the Dirac operator with a 3-form torsion in [9]
are essentially unique. We were further able to include a minimal coupling to a U(1)
Maxwell field into this analysis. As a completely new application we have considered
the Dirac equation in scalar potential and Dirac equation in the presence of 5- and
7-form fluxes.

In the case of a 7-form flux we were able to define a new ‘connection’ and the
corresponding generalization of the twistor equation. Such an equation has to be
satisfied by a form ω determining the symmetry operator in the case when this form
is homogeneous. This case has a direct generalization for fluxes of the rank p = 4k+3,
where k = 0, 1, 2, . . . One can easily show that homogeneous form ω has to satisfy the
modified twistor equation

KB
a ω = 0 , ∇B

a ω = ∇aω − 2
(−1)k

(2k + 1)!
(Xa

−|B) ∧
2k+1

ω . (59)

(We stress, however, that the new ‘covariant derivative’ on forms ∇B
a does not obey

the Leibnitz rule with respect to the wedge product or Clifford product, unless k = 0.)
Similar to (57), the modified twistor equation (59) is invariant under the Hodge
duality. For fluxes of the rank p 6= 4k + 3 the homogeneous form ω has to satisfy
the standard twistor equation Kaω = 0. In both cases the (modified) twistor equation
is accompanied with additional algebraic conditions following from the requirement
that all terms of {B,ωa}⊥ which are not of the same rank as ω have to vanish as well
as with an additional first-order differential constraint given by Eq. (35). In the case
when ω is allowed to be inhomogeneous, the required equations (32) and (35) represent
a coupled system of equations. In consequence, the restrictions on each homogeneous
part of ω are much weaker.

Let us finally emphasize that although the requirements (32) and (35) seem very
restrictive there are non-trivial examples of supergravity backgrounds where these are
satisfied. This is for example the case of spacetimes with U(1) and torsion fluxes—
such as Kerr–Sen geometries in all dimensions or the most general spherical black hole
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spacetime of minimal gauged supergravity. It is an interesting open question whether
one can find analogous symmetries in backgrounds with fluxes of higher-rank, 5-form
flux for example.
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Appendix A. Notations

In this appendix we gather our conventions and formalism, these are essentially taken
from [17, 9]. M is a n-dimensional (pseudo)-Riemannian manifold equipped with a
metric g, {Xa} denotes an orthonormal basis for TM , g(Xa, Xb) = ηab, and {ea} is a
dual basis for T ∗M with g(ea, eb) = ηab. We additionally define

Xa = ηabXb , ea = ηabe
b. (A.1)

Operations ♭ and ♯ correspond to ‘lowering’ and ‘rising’ of indices of vectors and forms,
respectively. We shall further make use of the n-fold contracted wedge product defined
for any p-form α and q-form β inductively by [9]

α∧
0
β = α ∧ β , α∧

k
β = (Xa

−|α) ∧
k−1

(Xa−|β) , (A.2)

where the ‘hook’ operator −| corresponds to the inner derivative. For an arbitrary
p-form α this product satisfies

Xa−| (α∧
k
β) = (−1)k(Xa−|α)∧

k
β + (−1)pα∧

k
(Xa−|β) . (A.3)

Throughout the paper ∇ denotes the Levi-Civita connection and we use a shorthand
∇a ≡ ∇Xa

. The exterior derivative and co-derivative on forms are

d = ea ∧ ∇a , δ = −Xa
−|∇a . (A.4)

With respect to the contracted wedge product, ∇a is a derivation

∇a(α∧
k
β) = ∇aα∧

k
β + α∧

k
∇aβ , (A.5)

and, when α ∈ Λp(M), then

δ(α∧
k
β) = (−1)kδα∧

k
β − (−1)p∇aα∧

k
(Xa

−|β)

+ (−1)pα∧
k
δβ − (−1)k(Xa

−|α)∧
k
∇aβ , (A.6)

d(α∧
k
β) = (−1)kdα∧

k
β − (−1)kk∇aα ∧

k−1
(Xa

−|β)

+ (−1)pα∧
k
dβ − (−1)pk(Xa

−|α) ∧
k−1

∇aβ . (A.7)

When working with spinors, we identify the elements of the Clifford algebra with
differential forms and denote the Clifford multiplication by juxtaposition. This is
defined for a 1-form α and p-form ω by

αω = α ∧ ω + α∧
1
ω , ωα = (−1)p

(

α ∧ ω − α∧
1
ω
)

. (A.8)
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By repeating the application of this rule we construct the Clifford product between
forms of arbitrary degree. Let α ∈ Λp(M) and β ∈ Λq(M). Then,

αβ =

p
∑

k=0

(−1)k(p−k)+[k/2]

k!
α∧

k
β , βα = (−1)pq

p
∑

k=0

(−1)k(p−k+1)+[k/2]

k!
α∧

k
β , (A.9)

with [k/2] being the integer part of k/2. We further define the following bracket used
in the paper, Eq. (13):

{α, β} ≡ αβ − (−1)qβα . (A.10)

(Note that unless p is odd, this bracket differs from the Clifford graded commutator,
[α, β] ≡ αβ − (−1)pqβα, used in [7].) In terms of more familiar γ-matrices,
the identification between differential forms and elements of the Clifford algebra is
expressed as

ω =
1

p!
ωa1...ap

ea1 ∧ · · · ∧ eap −→ 1

p!
ωa1...ap

γ[a1 · · · γap]. (A.11)

Evidently, the relations (A.8) are equivalent to the usual anti-commutator for the
γ-matrices γaγb + γbγa = 2ηab.

We shall also work with inhomogeneous forms α which we decompose either into
their odd, αo, and even, αe, Z2-homogeneous parts, α = αo +αe, or into their p-form
homogeneous parts αp as follows:

α =

n
∑

p=0

αp , αp ∈ Λp(M) . (A.12)

For such forms we define the following two operations:

πα ≡
n
∑

p=0

pαp , ηα ≡
n
∑

p=0

(−1)pαp . (A.13)

It is obvious that all the above operations naturally extend to inhomogeneous forms.
In particular, for the bracket (A.10) we have

{α, β} = αβ − (ηβ)α . (A.14)

One also has ea ∧ (Xa−|α) = πα and Xa−| (ea ∧ α) = (n− π)α.
Finally, we shall need the curvature operator

R(Xa, Xb) = 2∇[a∇b] −∇[Xa,Xb]LB
, (A.15)

where [ , ]LB denotes the Lie bracket of two vector fields. When acting on a spinor,
it is given by [17]

R(Xa, Xb)ψ = RXa,Xb
ψ , (A.16)

where RXa,Xb
is a 2-form associated with the usual curvature 2-form Rab of the Levi-

Civita connection ∇, RXa,Xb
= − 1

4Xa−|Xb−|Rcde
cd. To simplify our calculations we

shall freely use a basis which is parallel at a point, i.e., which satisfies

∇aXb = ∇ae
b = [Xa, Xb]LB = 0 . (A.17)
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