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1. Introduction

In four-dimensional spacetimes like the Kerr metric [1], the existence of conserved quantities

for geodesics (constants of motion) [2] and the tensorial structures that generate them

(Killing vectors, Killing tensors [3, 4], and Killing-Yano tensors [5 – 7]) have been very

important, not only elucidating particle motion in these spacetimes, but also leading to

the separation of the Klein-Gordon [2], massless neutrino [8, 9], massive Dirac [10, 11],

electromagnetic [8, 12], and gravitational wave [8, 12] equations.

With the recent interest in higher-dimensional spacetimes, it has become of interest to

extend these old four-dimensional studies to higher dimensions D. For example, it has been

found that the rotating black hole metrics [13 – 18] in higher dimensions have a Killing-

Yano tensor of rank D − 2 [19, 20] (which we shall call a principal Killing-Yano tensor)

that was used (along with the Killing vectors) to show [21, 22] that geodesic motion in

the general D-dimensional Kerr-NUT-AdS rotating black hole spacetime [18] is completely

integrable, with D independent constants of motion in involution.

For convenience, we use square brackets to denote the integer part of what is inside

and define n ≡ [D/2], k ≡ [(D + 1)/2], and ε ≡ k − n (0 for even D and 1 for odd D), so

D = 2n + ε = 2k − ε = k + n. Then the Kerr-NUT-AdS spacetimes have k Killing vectors

(giving constants of motion linear in the velocity) and n independent Killing tensors of

higher rank (including the metric) [21, 22] (giving other independent constants of motion

in involution that are higher-order polynomials in the velocity).

Here we show how to construct k Killing-Yano tensors, of ranks D−2j for 0 ≤ j ≤ k−1,

for any spacetime with a principal Killing-Yano tensor. Contractions of each of these with

itself (leaving two indices free) give k rank-2 Killing tensors and hence k independent
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constants of geodesic motion in involution for any spacetime with a principal Killing-Yano

tensor.

For the case of the Kerr-NUT-AdS spacetimes [18], all of the k Killing vectors can

also be constructed from the principal Killing-Yano tensor and its covariant derivative, so

all D constants of motion arise from one single Killing-Yano tensor (and the metric, of

course, for defining covariant derivatives and contractions). For these metrics, we exhibit

explicitly the resulting k Killing-Yano tensors of rank D− 2j, the k rank-2 Killing tensors,

and the k Killing vectors. (For odd D, ε = 1, one of these rank-2 Killing tensors is the

tensor product of a Killing vector with itself and so is not independent or irreducible,

leaving only D = 2k− ε independent rank-2 and rank-1 Killing tensors.) We also show the

relations of the constants of motion arising from all these Killing tensors with those given

in [21, 22], as well as with the constants of motion arising from the recent separation of

the Hamilton-Jacobi and Klein-Gordon equations [23].

2. Generating function

The following construction of the Killing tensors, Killing-Yano tensors, and of the cor-

responding conserved quantities applies for any metric1 with a rank-2 closed conformal

Killing-Yano tensor h (or, equivalently, a (D − 2)-rank Killing-Yano tensor f = ∗h; see

section 4). Since h and f play an important role in our construction, we call both of them

principal tensors.

Let us recall that a rank-2 conformal Killing-Yano tensor h is an antisymmetric 2-form

which obeys

∇(ahb)c =
1

D − 1

(

gab∇eh
e
c −∇eh

e
(a gb)c

)

. (2.1)

Assuming the existence of such a tensor, we define the 2-form F = u · ∗ (u · ∗h), which

in components reads

Fab = w hab − uau
chcb − hacu

cub = w hcd P c
a P d

b . (2.2)

Here ua is the velocity,2 w = uau
a, and P c

a = δc
a − w−1ucua is the projector to the space

orthogonal to u. The 2-form F is covariantly conserved in the direction of u,

ua∇aFbc = 0 . (2.3)

1In the construction presented here we do not assume the specific form of the metric; however, similar

to the Kerr-NUT-AdS case [18], we assume that the metric is written at least formally with Euclidean

signature. The Wick rotation to physical signature would bring some different signs in various expressions,

but the general structure would not be affected.
2The velocity u appears here in a dual way. When proving that, e.g., F is covariantly conserved along

each geodesic, we understand u as the tangent vector with respect to an affine parameter (not necessary

normalized). However, we can also use the velocity u in a situation when we do not assume the whole

trajectory to which u is tangent. In such a case we refer to a point in the phase space which is naturally

realized as the cotangent bundle. The point in the phase space is given by the point in the configuration

space and by the momentum 1-form which can be identified with the unnormalized velocity. Indeed, the

geodesic motion is generated by the Hamiltonian w = u · u, the momentum is u, and conserved quantities

are those which Poisson commute with w.
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Now we introduce the generating function W (β),

W (β) = det
(

I +
√

βw−1F
)

, (2.4)

where we take F (and similarly h, P , p, and Q below) to be the matrix of components F a
b

of the 2-form F . Due to the antisymmetry of F and properties of the determinant, W (β)

can be rewritten as a function of β instead of
√

β, and in terms of h and P instead of F ,

W (β) = det1/2
(

I − βw−2F 2
)

= det
(

I −
√

β hP
)

. (2.5)

Because it is constructed only in terms of covariantly conserved quantities F and w, the

generating function is conserved along geodesics, and the same is true for its derivatives

with respect to β. We can thus define constants of motion cj as the coefficients in the

β-expansion of W (β):

W (β) =
1

w

∞
∑

j=0

cj βj . (2.6)

It turns out that all terms with j > n are zero.

To evaluate the observables cj , we first split W (β) in the following way:

W (β) = W0(β) Σ(β) , (2.7)

with
W0(β) = det

(

I −
√

βh
)

,

Σ(β) = det
(

I+

√
βh

I−
√

βh
p
)

= tr
(

(I−
√

βh)−1 p
)

.
(2.8)

Here pa
b = w−1uaub is the projector into the u direction, and we used the fact that the ma-

trix in the determinant in the expression for Σ(β) differs from I only in the one-dimensional

subspace given by u. The generating function thus splits into a part W0(β) independent

of u and a part Σ(β) linear in p. Using the antisymmetry of h, we can rewrite W0(β) and

Σ(β) in terms of the conformal Killing tensor with components Qa
b = −ha

ch
c
b,

W0(β) = det1/2
(

I + βQ
)

,

Σ(β) = tr
(

(I + βQ)−1p
)

=
∞
∑

j=0

(−1)j tr
(

Qjp)βj .
(2.9)

We shall assume that h is non-degenerate with different eigenvalues. This means that

there exist n uniquely defined 2-dimensional subspaces labeled by the index µ = 1, . . . , n,

each of which can be spanned by a pair of the orthonormal vectors eµ and eµ̂ (µ̂ ≡ n + µ),

in odd number of dimensions complemented with a one-dimensional subspace spanned by

the vector e0̂ (0̂ ≡ 2n + 1), with non-zero different eigenvalues xµ, such that h has the form

h =

n
∑

µ=1

xµ ωµ . (2.10)
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Here, ωµ ≡ eµ ∧ eµ̂ are mutually orthogonal 2-forms associated with the 2-dimensional

planes.

Using this frame we can write also the conformal Killing tensor Q as

Q =
n

∑

µ=1

x2
µ

(

eµeµ + eµ̂eµ̂
)

. (2.11)

Now we can write down the functions W0 and Σ in terms of the eigenvalues xµ. For

the part independent of u, we get

W0(β) =
n

∏

µ=1

(1 + βx2
µ) =

n
∑

j=0

A(j)βj , (2.12)

where (cf. [18], though here in a more general situation)

A(j) ≡
∑

ν1<···<νj

x2
ν1

. . . x2
νj

. (2.13)

Similarly,

Σ(β) =
1

w

(

εu2
0̂
+

n
∑

µ=1

u2
µ + u2

µ̂

1 + βx2
µ

)

=
1

w

(

εu2
0̂
+

∞
∑

j=0

(−1)jβj
n

∑

µ=1

(u2
µ + u2

µ̂)x2j
µ

)

,

(2.14)

with uµ, uµ̂, and u0̂ being components of u with respect to the dual frame eµ,eµ̂,e0̂. Recall

that ε = 0 in even dimensions D = 2n and ε = 1 in odd dimensions D = 2n + 1.

The original generating function reads

W (β) =
1

w

n
∑

j=0

(

j
∑

l=0

(−1)lA(j−l)wl

)

βj , (2.15)

where

wl = w tr
(

Qlp
)

= u · Q·l · u = ua1
Qa1

a2
. . . Qal

au
a (2.16)

are quantities quadratic in the velocity u given by the l-th matrix power Q·l of the conformal

Killing tensor Q. Clearly, w0 = w, and wj =
∑

µ(u2
µ + u2

µ̂)x2j
µ for j > 0. In terms of the

eigenvalues xµ, from the product of eqs. (2.12) and (2.14) we obtain

W (β) =
1

w

n
∑

j=0

(

εA(j)u2
0̂
+

n
∑

µ=1

A(j)
µ

(

u2
µ + u2

µ̂

)

)

βj , (2.17)

where we have introduced the quantities (cf. [18])

A(j)
µ ≡

∑

ν1<···<νj

νi 6=µ

x2
ν1

. . . x2
νj

. (2.18)
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3. Constants of motion and rank-2 Killing tensors

Comparing eqs. (2.15) and (2.17) with eq. (2.6), we can identify the k = n+ε = [(D+1)/2]

conserved quantities cj (constants of geodesic motion, j = 0, . . . , k − 1),

cj =

j
∑

l=0

(−1)lA(j−l)wl = εA(j)u2
0̂
+

n
∑

µ=1

A(j)
µ

(

u2
µ + u2

µ̂

)

. (3.1)

These constants are quadratic in the velocities. They can be generated [4] by rank-2 Killing

tensors K(j) as

cj = K
(j)
ab uaub , (3.2)

where

K(j) ≡
j

∑

l=0

(−1)lA(j−l)Q·l

= εA(j)e0̂e0̂ +
n

∑

µ=1

A(j)
µ

(

eµeµ + eµ̂eµ̂
)

.

(3.3)

The matrix power Q·l of the tensor Q is defined in eq. (2.16). The Killing tensors are

completely symmetric tensors obeying the equations

∇(aK
(j)
bc) = 0 . (3.4)

Let us remark that the constant cn present in an odd number of spacetime dimensions

is the square of the constant corresponding to the Killing vector f (n); cf. sections 4 and 5.

The relation (3.1) can be inverted using the identities (A.6) and (A.7) from the ap-

pendix. We obtain

u2
µ + u2

µ̂ = U−1
µ

m
∑

j=0

(−x2
µ)n−1−j cj , (3.5)

and, in an odd number of dimensions,

u2
0̂

=
cn

A(n)
. (3.6)

Here, the quantity Uµ is defined as (cf. [18])

Uµ ≡
∏

ν 6=µ

(x2
ν − x2

µ) . (3.7)

The coefficients A(j) of the β-expansion of W0(β) are the sums of all different products

of j different eigenvalues of h, cf. eq. (2.13). Such combinations can be obtained taking

first the j-th wedge-power of the 2-form h,

h∧j= h ∧ · · · ∧ h = j!
∑

ν1<···<νj

xν1
. . . xνj

ων1 ∧ · · · ∧ ωνj , (3.8)
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and contracting it with itself in all tensor indices. Indeed,

A(j) =
1

(2j)!(j!)2
h∧j • h∧j

=
(2j)!

(2jj!)2
h[a1b1 . . . hajbj ]h[a1b1 . . . hajbj ] ,

(3.9)

where • denotes the complete contraction, i.e., B • B = Babc...B
abc..., and where we used

the orthogonality ωµ • ων = 2δµν , along with the normalization (A.4).

Observing that the relation between the constants w−1cj and the tensor w−1F is the

same as between A(j) and h [cf. eqs. (2.4), (2.6), (2.7), (2.8), and (2.12)], we obtain a new

simple expression for the constants of motion cj ,

cj =
1

(2j)!(j!)2
w1−2j F ∧j • F ∧j . (3.10)

If one defines a 1-form v with components

va = habu
b , (3.11)

orthogonal to the velocity 1-form u, then eq. (2.2) implies that

F = wh + u ∧ v . (3.12)

Since u ∧ v ∧ u ∧ v = 0, we have

F ∧j = wjh∧j + jwj−1u ∧ v ∧ h∧(j−1) . (3.13)

The total contraction of this with itself is

F ∧j • F ∧j = w2jh∧j • h∧j

+ 2jw2j−1h∧j •
(

u ∧ v ∧ h∧(j−1)
)

+ j2w2j−2
(

u ∧ v ∧ h∧(j−1)
)

•
(

u ∧ v ∧ h∧(j−1)
)

.

(3.14)

In the total contraction of the last term, u · v = 0, and any term with a contraction of

u with any of the h’s gives another v which combines with the original v to give zero by

the antisymmetry of the wedge product. Therefore, the only nonzero parts of the last term

have another w = u ·u factor, giving a total factor of w2j−1 for the total contraction of that

term. Upon the substitution of eq. (3.14) into (3.10), the dependence on w cancels out,

and we recover the quadratic dependence on u which enters through u and v. Comparing

with (3.2), we can write the tensorial relation between K(j) and h, which in components

reads

K(j)a
b =

(2j)!

(2jj!)2

(

δa
b h[a1b1 . . . hajbj ]h[a1b1 . . . hajbj ]

− 4j h[ab1 . . . hajbj ]hb[b1 . . . hajbj ]

+ 2j ha[b1 . . . hajbj ]hb[b1 . . . hajbj ]

)

=
(2j)!

(2jj!)2

(

δa
b h[a1b1 . . . hajbj ]h[a1b1 . . . hajbj ]

− 2j h[ab1 . . . hajbj ]h[bb1 . . . hajbj ]

)

,

(3.15)
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where we have employed the definition (3.11), the identities (A.2) and (A.3), and the

normalization (A.4).

Recently [21] there have been found different conserved quantities,

Cj = w−j tr
[

(−F 2)j
]

, (3.16)

which are, however, not quadratic in velocities. Now we show that also these observables

can be generated from the generating function W (β). Taking the logarithm of eq. (2.5)

and expanding it into a power series, we obtain

log W (β) =
1

2
tr log

(

I − βw−2F 2
)

=
∞
∑

j=0

(−1)j+1

2j

βj

wj
Cj . (3.17)

The constants Cj are thus (up to constant factors and powers of w) given by derivatives

of log W (β). We also obtained the relation between both sets of constants which can be

formulated as
∞
∑

j=0

w−1cjβ
j = exp

( ∞
∑

j=0

(−1)j+1

2j

βj

wj
Cj

)

. (3.18)

Comparing different orders of β we get for the first four constants

c1 = −1

2
C1 ,

w c2 = −1

4
C2 +

1

8
C2

1 ,

w2c3 = −1

6
C3 +

1

8
C1C2 −

1

48
C3

1 ,

w3c4 = −1

8
C3+

1

12
C1C3+

1

32
C2

2−
1

32
C2

1C2+
1

384
C3

1 .

(3.19)

It is shown in [22] that the observables Cj Poisson commute between each other. The

relation (3.18), which shows that the cj ’s are polynomial combinations of the Cj’s and w

with constant coefficients, thus proves that also the observables cj are in involution,

{ci, cj} = 0 . (3.20)

This gives non-trivial relations for the corresponding Killing tensors, namely

K
(j)
e(a ∇

eK
(l)
bc) − K

(l)
e(a ∇

eK
(j)
bc) = 0 . (3.21)

4. Killing-Yano tensors

The existence of the closed conformal Killing-Yano tensor h guarantees the existence

of the Killing-Yano tensor f which is obtained by the Hodge dual f = ∗h [24].

This principal Killing-Yano tensor enables one to construct a rank-2 Killing tensor

Ka
b = fae1...eD−3fbe1...eD−3

. Here we demonstrate that all the Killing tensors found in the

previous section can be constructed in a similar way.
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First, let us recall that a conformal Killing-Yano tensor (CKYT) [25 – 27] of a general

rank r is an antisymmetric r-form f the covariant derivative of which can be split into the

antisymmetric and divergence parts

∇f = A∇f + T ∇f . (4.1)

Here A is the standard anti-symmetrization and T is the projection onto the ‘trace’ part

of the tensor of rank r + 1 which is antisymmetric in the last r indices,

T Aaa1...ar =
r

D − r + 1
ga[a1

Ae
|e|a2...ar ] . (4.2)

The operation T satisfies T 2 = T and T A = AT = 0. This means that a tensor A

satisfies T A = A if and only if it has the form Aaa1...ar = ga[a1
αa2...ar ]. The divergence part

T ∇f thus depends only on the divergence ∇ef
e
ab.... The condition (4.1) implies that ∇f

does not have a harmonic part [28] (given by the complement of the A and T projectors),

i.e., f does not have a part for which both d f and ∇·f vanishes.

A CKYT transforms into a CKYT under Hodge duality. The antisymmetric part A∇f

transforms into the divergence part T ∇∗f and vice versa.

A Killing-Yano tensor f is such a CKYT for which the divergence part is missing, i.e.,

∇f = A∇f . (4.3)

The dual of a Killing-Yano tensor is a closed CKYT (see also [24]), i.e., an r-form obeying

∇f = T ∇f . (4.4)

The wedge product of two closed CKYTs is again a closed CKYT [see eq. (A.5) in the

appendix]. We can thus start with the principal closed CKYT h and construct its wedge

powers h∧j (j = 0, . . . , k − 1), which are again closed CKYTs. Their duals,

f (j) = ∗h∧j , (4.5)

are then Killing-Yano tensors of rank D − 2j. Their components are

f (j)
a1...aD−2j

= 2−jεa1...aD−2j

e1...e2jhe1e2
. . . he2j−1e2j

, (4.6)

where εa1...aD
are components of the Levi-Civita tensor ε and the normalization (A.4) has

been employed.

Now we show that these Killing-Yano tensors generate the rank-2 Killing tensors K(j)

constructed above. Namely, using the identity (A.1), we write

1

(D−2j−1)!(j!)2
f (j)ae2...eD−2jf (j)

be2...eD−2j
=

(2j+1)!

(2jj!)2
δ

[a
[bh

a1b1 . . . hajbj ]ha1b2 . . . hajbj ] . (4.7)

With the help of eq. (A.2), we see that the last expression coincides with the formula (3.15)

for the Killing tensors. So we have

K(j)a
b =

1

(D−2j−1)!(j!)2
f (j) ae2...eD−2jf

(j)
be2...eD−2j

. (4.8)

– 8 –
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Starting from the principal closed CKYT h, we build the sequence of closed CKYTs

h∧j , given explicitly in eq. (3.8), which generates Killing-Yano tensors f (j) = ∗h∧j . These

Killing-Yano tensors can be used to construct the rank-2 Killing tensors K(j) given by the

formula (4.8), or explicitly by eq. (3.3) or (3.15).

In particular, in an odd number of spacetime dimensions, the last Killing-Yano tensor

f (n) ∝
√

A(n) e0̂ is a Killing vector. Obviously, the corresponding Killing tensor K(n) ∝
f (n)f (n) is reducible.

5. Kerr-NUT-AdS spacetimes

We shall now demonstrate that the structure explored above is fully realized in the Kerr-

NUT-AdS spacetimes [18].

In the notation of previous sections (i.e., using the base of 1-forms ea = {eµ,eµ̂,e0̂},
µ = 1, . . . , n, µ̂ = µ + n, 0̂ = 2n + 1, with the 1-form e0̂ present only for odd D), the Kerr-

NUT-AdS metric may be written in the orthonormal form

g =

D
∑

a=1

eaea =

n
∑

µ=1

(eµeµ + eµ̂eµ̂) + εe0̂e0̂ , (5.1)

where the orthonormal basis one-forms are

eµ = Q−1/2
µ dxµ ,

eµ̂ = Q1/2
µ

n−1
∑

j=0

A(j)
µ dψj ,

e0̂ = (−c/A(n))1/2
n

∑

j=0

A(j)dψj .

(5.2)

The quantities A(j), A
(j)
µ in terms of coordinates xµ are of the form of eqs. (2.13) and (2.18),

Qµ = Xµ/Uµ with Uµ given by eq. (3.7), c =
∏k−1

j=1 a2
j , and

Xµ = (−1)1−ε 1 + λx2
µ

x2ε
µ

k−1
∏

j=1

(a2
j − x2

µ) + 2Mµ(−xµ)1−ε. (5.3)

The constants (Mµ, aj) are related to the mass, NUT parameters, and angular momenta,

and λ is proportional to the cosmological constant [18]. The metric represents an Einstein

space obeying the Einstein equation

Rab = (D − 1)λgab . (5.4)

Using the identities (A.6) and (A.7), we find the dual vectors

eµ = Q1/2
µ ∂xµ ,

eµ̂ =
1

Q
1/2
µ Uµ

k−1
∑

j=0

(−x2
µ)n−1−j∂ψj

,

e0̂ =
(

−cA(n)
)−1/2

∂ψn
,

(5.5)
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and the corresponding inverse relations

∂xµ = Q−1/2
µ eµ ,

∂ψj
= εA(j)

(

− c

A(n)

)1/2
e0̂ +

n
∑

µ=1

Q1/2
µ A(j)

µ eµ̂ ,

∂ψn
=

(

−cA(n)
)1/2

e0̂ .

(5.6)

It is possible to prove3 that that the h found in [20] (there called k) in this metric in

all dimensions D is a principal closed CKYT, which in the frame (5.2) takes exactly the

form (2.10). This means that the generally defined eigenvalues xµ of the principal CKYT

h (2.10) coincide with the chosen (‘natural’) coordinates xµ of the Kerr-NUT-AdS metric.

We now demonstrate that from the very existence of this tensor one can extract all

the constants of geodesic motion for the Kerr-NUT-AdS metrics. Namely, besides the k

constants of motion (3.1) connected with the rank-2 Killing tensors (3.3), also all the k

isometries follow from the existence of the principal CKYT h.

First of all, it was proved in [29] that in an Einstein space, obeying eq. (5.4), the

divergence ξ of a CKYT h,

ξa =
1

D − 1
∇b hba , (5.7)

is a Killing vector. In particular we find ξ = ∂ψ0
[20].

Next, using eqs. (3.3) and (5.6), we can recover n − 1 other Killing vectors ∂ψj
,

(∂ψj
)a = K(j)a

bξ
b, j = 1, . . . , n − 1 . (5.8)

For a similar construction in 4D see [30 – 32]. Finally, as mentioned in section 4, in odd

dimensions the last Killing vector is given by the n-th Killing-Yano tensor f (n), which in

the present example turns out to be ∂ψn
.

It would be very interesting to find under what general conditions on the CKYT h,

and possibly on the curvature, this construction gives all the isometries present in the

spacetime.

The constants of geodesic motion in the higher-dimensional Kerr-NUT-AdS spacetime

are now completely determined. Denoting the constants from the Killing vectors as

bj = (∂ψj
)aua , j = 0, . . . , k − 1, (5.9)

we first find the frame components of velocity uµ̂, and possibly u0̂. It follows from eq. (5.5)

that

uµ̂ =
1

Q
1/2
µ Uµ

k−1
∑

j=0

(−x2
µ)n−1−jbj , u0̂ =

(

−cA(n)
)−1/2

bn . (5.10)

Comparing with (3.6) we find

cn = −b2
n

c
, (5.11)

3This was checked in [20] for D < 10 and proved by the authors for general dimensions D by checking

the condition (4.3) for the dual f = ∗h, using a direct calculation of the connection coefficients. Cf. also [35]

for a recent independent calculation of the connection coefficients.
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which clearly illustrates the fact that the constant cn corresponds to the reducible Killing

tensor K(n) ∝ f (n)f (n). The remaining components of velocity, uµ, are given (up to signs)

in terms of the constants bj, j = 0, . . . , k− 1, and cj , j = 0, . . . , n− 1 [which correspond to

the irreducible Killing tensors (3.3)] by eq. (3.5).

The existence of n rank-2 irreducible Killing tensors K(j) and k = D − n Killing

vectors ∂ψj
is closely related to the question of separability of the Hamilton-Jacobi and

Klein-Gordon equations. It is shown in [33, 34] that if the spacetime possesses such tensors

that satisfy the condition (3.21), L∂ψj
K(j) = 0 with {∂ψj

,∂ψl
} = 0 — which holds in our

case — then there exists a so-called separability structure. This structure guarantees the

separability of the Hamilton-Jacobi equation and for Einstein spaces also the separability

of the Klein-Gordon equation.

The separability of these equations was explicitly demonstrated recently [23]. It turns

out that the integration constants obtained by the separation of the Hamilton-Jacobi equa-

tion are the quantities cj given by eq. (3.1). Indeed, if we transform the tetrad components

uµ, uµ̂ and u0̂ into the coordinate frame we find that the expression Uµ(u2
µ + u2

µ̂) corre-

sponds to the quantity Fµ of [23]. Comparing eqs. (3.5) and (14) of [23], we can identify

the constants defined above with those from [23] (cf. also eqs. (3.6) and (5.11) with eq. (15)

of [23]).

6. Discussion

We have seen that the existence of a principal Killing-Yano tensor (rank D−2) guarantees

the existence of k = D − n Killing-Yano tensors of rank (D − 2j), j = 0, . . . , k − 1, and

that each of these Killing-Yano tensors generates a Killing tensor of rank 2, n of which

are irreducible. In the case of the Kerr-NUT-AdS spacetimes, the principal Killing-Yano

tensor also generates all the k Killing vectors, and hence all D of the independent constants

of geodesic motion.

Our results raise various questions. For example, is the construction of Killing vectors

by a rank-(D−2) Killing-Yano tensor general, or specific to only certain metrics? For what

classes of spacetimes are there rank-(D−2) Killing-Yano tensors? For what classes of such

spacetimes does the rank-(D − 2) Killing-Yano tensor generate enough Killing tensors to

give D independent constants of motion? Are there any new Einstein metrics within

these classes? Do these structures enable one to separate the Dirac, electromagnetic, and

gravitational wave equations in the Kerr-NUT-AdS spacetimes and/or in any other possible

members of these classes? What is the relation of the existence of principal Killing-Yano

tensors to the algebraic type of the metric? We suspect that our observations may be the

tip of an iceberg of important new relations for higher dimensional spacetime metrics.
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A. Useful identities

In this appendix we list some identities used in the main text. Their proofs are mostly

straightforward but also lengthy and cumbersome.

First we list three identities for antisymmetric tensors. The Levi-Civita tensor satisfies

εa1...arcr+1...cDεb1...brcr+1...cD
= r!(D − r)!δ

[a1

b1
. . . δ

ar ]
br

, (A.1)

the projector on the antisymmetric tensors can be split as

(r + 1) δ
[a
[b δa1

b1
. . . δ

ar ]
br ] = δa

b δ
[a1

[b1
. . . δ

ar ]
br ] − r δa

[b1
δ
[a1

|b| . . . δ
ar ]
br ] (A.2)

and finally

h[a1b1 . . . hajbj ] = ha1[b1 . . . hajbj ] , (A.3)

which holds for any antisymmetric tensor hab.

In our convention the wedge product is proportional to the anti-symmetrization of the

tensor product which for the j-th wedge-power of a 2-form h gives

h∧j =
(2j)!

(2!)j
Ahj . (A.4)

Next we want to show that the wedge product of two closed CKYTs p and q of rank

r and s respectively is again a closed CKYT. It is clear that p ∧ q is closed. Rewriting the

wedge product p ∧ q as the anti-symmetrization of their tensor product, we get

∇e(p[ab...qcd... ]) = (∇ep[ab...) qcd... ] + p[ab... (∇|e|qcd... ])

= ge[a

(

r
D−r+1(∇|g|p

g
b...) qcd... ] + (−1)r s

D−s+1pb...c (∇|g|q
g
d... ])

)

,
(A.5)

where we used the property (4.4) of p and q. We can see by inspection that the result

has the form ga[a1
αa2...ar ], so, as we discussed after eq. (4.2), T (p ∧ q) = p ∧ q, and hence

p ∧ q is a closed CKYT.

If we understand A
(j)
µ with µ = 1, . . . , n and j = 0, . . . , n − 1 as an n×n matrix, its

inverse is B µ
(j) = (−x2

µ)n−1−j/Uµ with Uµ defined in eq. (5.3). This means

n−1
∑

j=0

(−x2
µ)n−1−j A

(j)
ν

Uµ
= δν

µ ,
n

∑

µ=1

(−x2
µ)n−1−j A

(l)
µ

Uµ
= δl

j . (A.6)

We also have its ‘extension’ for j = n, l = 0, . . . , n − 1:

n
∑

µ=1

A
(l)
µ

x2
µUµ

=
A(l)

A(n)
. (A.7)
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[17] Z.W. Chong, G.W. Gibbons, H. Lü and C.N. Pope, Separability and Killing tensors in

Kerr-Taub-NUT-de Sitter metrics in higher dimensions, Phys. Lett. B 609 (2005) 124

[hep-th/0405061].
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