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1 Introdution1.1 Blak hole entropy and entanglement entropyThe onnetion between di�erent areas of physis is of most importane in fundamentalphysis. One of the most remarkable ahievements of general relativity is the disoverythat an entropy is an inherent property of the blak hole horizons. In fat, the famousBekenstein-Hawking formula [1{6℄ SBH = kB3~ A4G (1.1)is appliable to any Killing horizon and provides the relation of the entropy of the grav-itational system and the area of the horizon A. This remarkable formula onnets ther-modynamis, gravity and relativisti quantum �eld theory. This relation is valid not onlyin four dimensions but in higher dimensions too. In higher dimensions the gravitationalonstant G is the D-dimensional one and A is the volume of (D�2)-dimensional surfae ofthe horizon.An entanglement entropy is known to have a very similar dependene on the area of asurfae separating two subsystems of a quantum mehanial system [7{9℄. This resemblaneof the entanglement entropy with the horizon entropy has deep roots and is related to theproblem of statistial-mehanial explanation of blak hole entropy [8℄. Let us onsiderquantum �elds desribed by a wave funtion in a stationary blak hole spaetime. Theblak hole horizon is the surfae whih separates the interior of the blak hole from itsexterior. Then one an show [10℄ that the orresponding entanglement entropy redues tothe Bekenstein-Hawking entropy. For that one has to take into aount that quantum �eldson a urved bakground lead to the renormalization of the e�etive gravitational onstantand, at the same time, these quantum �elds also ontribute to the entanglement entropyof the horizon. It's amazing that the renormalized entropy per unit area of a horizon isgoverned by the same formulas as the quantum orretions to the gravitational oupling[11℄. As the result (1.1) remains valid after taking aount of quantum orretions, onejust has to substitute G with Gren.The interpretation of the Bekenstein-Hawking formula (1.1) as an entanglement en-tropy beomes even more onvining in the framework of indued or emergent gravitymodels [12{16℄. In these models the Einstein{Hilbert ation is the leading term to the low-energy e�etive gravitational ation, where the gravitational oupling and a osmologialonstant, are ompletely generated by quantum utuations of matter �elds living on aurved bakground spaetime. The gravitational onstant G entering the (1.1) is then theindued Newton onstant Gind.In the ase of stati blak holes the event horizon oinides with the Killing horizonand is the minimal area surfae de�ned on the Einstein-Rosen bridge. In the paper [10℄it was proposed that the the minimal area surfae on the t = onst slie of the spaetimemay play an important role in de�ning the entanglement entropy of blak holes in a moregeneral setup of the problem. Note that the minimal area surfae is a more general notionthan just a horizon of a stati blak hole. The trae of the extrinsi urvature vanishes both{ 2 {



for the minimal area surfae and the horizon, but in the ase of the horizon all omponentsof the extrinsi urvature vanish.1.2 Entanglement entropy and minimal surfaesReently holographi omputation of the entanglement entropy in onformal �eld theo-ries (CFT) got a lot of attention and developments, espeially in the frameworks of theAdS/CFT orrespondene. Ryu and Takayanagi [17{19℄ proposed that in a stati on�g-uration the entanglement entropy of a subsystem loalized in a domain 
 is given by theelegant formula1 S
 = A�
4G : (1.2)Given a stati time slie (the (D�1)-dimensional bulk spae), the (D�2)-dimensional do-main 
 belongs to in�nite boundary I of the bulk and A�
 in Eq. (1.2) is the area of a(D�2)-dimensional minimal surfae �
 in the bulk spanned on the boundary �
 of thesubsystem (i.e., ��
 = �
). One may onsider the bulk surfae �
 to be homologous tothe boundary region 
 [20, 21℄.In the ase of the Einstein gravity in the bulk and stati bakgrounds this onjeturewas reently proved [22℄. In a more general ase, when the gravitational ation ontainshigher urvature orretions, a formula similar to the Wald entropy was proposed [23℄.The holographi derivation of the Eq. (1.2) for the entanglement entropy was proposedin [20℄ using the replia trik. This approah works well in appliation to the von Neumannentropy. A more general notion of the Renyi entanglement entropy appears naturally inthe replia method. But the derivation of the relation of the Renyi entanglement entropywith the area of a minimal surfae needs di�erent approah [24, 25℄.There is another interesting question: Is there formula similar to Eq. (1.2), when thedomain 
 onsists of a set of disjoint domains? In this ase the minimal surfaes in thebulk may not be unique. The existene of a set of di�erent solutions for minimal surfaeswith the same boundaries ��
 = �
 may lead to a new physis in the ontext of AdS/CFTorrespondene. A natural generalization is to onsider the set of surfaes with the absoluteminimum of their total area taken as a measure of the entanglement of disonneted regions.This hoie satis�es the strong sub-additivity property [26℄, that any physially aeptableentropy funtion has to satisfy.Reently there have been disussions of di�erent generalizations of the Eq. (1.2) inappliation to the entanglement entropy for disonneted regions [27, 28℄ that still respetthe strong sub-additivity ondition. A losely related notion of `di�erential entropy' hasbeen proposed in [29℄ in appliation to a set of losed urves in the bulk of AdS3. It desribesunertainty about the quantum state of two-dimensional CFT left by the olletion of loal,�nite-time observables. In [30℄ the notion of `di�erential entropy' has been extended tohigher dimensions.Nontrivial physis appears already in the ase of only two disjoint domains. Entangle-ment entropy for a quantum subsystem loalized in two domains an be used as a probe of1From now on we use kB =  = ~ = 1 system of units.{ 3 {



on�nement [31, 32℄. In general, minimal surfaes in the bulk are not uniquely de�ned bythe ondition ��
 = �
 at the AdS in�nity, if �
 is the boundary of the disjoint regions.In addition to the solution desribing two disonneted minimal surfaes in the bulk, therean be a tubelike minimal area surfae, onneting the boundaries of both domains. Theexistene of suh solutions depends on the distane between the domains an on their size.There is a maximum distane between omponents beyond whih the tubelike minimalsurfae ease to exist [31, 33℄.1.3 Plan of the workIn this paper we study minimal surfaes in the pure AdS spaetime. We found exatsolutions for all types of minimal surfaes spanned on one or two spherial boundaries atonformal in�nity. The relative positions and the sizes of these spherial boundaries areonsidered to be arbitrary. We show that even in the pure AdS bakground there is a ritialbehavior of the entanglement entropy that was demonstrated [31℄ for the asymptotiallyAdS spaetimes with a blak hole in the bulk. Some of these results have been alreadyannouned in a short overview [34℄, here we present detail derivation and more thoroughdisussion.In the following setion we onsider minimal surfaes in a warped spae with an ad-ditional symmetry. The next setion is the overview of various fats from the hyperboligeometry whih appears as a geometry of the time slie of the AdS spaetime. The se-tion 4 ontains the main results: we �nd the minimal surfaes spanned on the boundariesof two spherial domains at in�nity. Three qualitatively di�erent ases of mutual positionsof the spherial domains are onsidered: (i) two disjoint domains, (ii) overlapping domains,and (iii) touhing domains. In the �rst ase we �nd that for lose spherial domains thereexists a tube-like minimal surfae joining the boundaries of these domains. In the setion 5we disuss embeddings of the minimal surfaes into AdS spaetime. We show that the em-bedding of the tube-like minimal surfae using the Killing vetor assoiated with observerswith the aeleration larger than the osmologial one an model \tearing" of the minimalsurfae into two piees when the the domains are moved far away from eah other. Thepaper is onluded by the summary.2 Minimal surfaes in warped spaes2.1 Warped spaeIn mathematis a problem of �nding a minimal surfae with a given boundary is knownas Plateau's problem. In general, the variational priniple leads to the loal ondition ofvanishing trae of extrinsi urvature k = 0 : (2.1)However, it is diÆult to �nd an expliit solution for general boundary onditions inan arbitrary urved spae. Therefore, we will disuss only highly symmetri spaes and{ 4 {



surfaes aligned to their symmetry. Namely, we start with the warped spae with themetri g = pij(xk)dxidxj +R2(xk) q��(y�)dy�dx� (2.2)Here, the D-dimensional spae is overed by oordinates fxi; y�g, with i = 1; 2 and � =1; : : : ; D�2. We speak about 2-dimensional x-plane with the metri p and (D�2)-dimensional`symmetry' y-spae with the inner metri q. Mixing between x-plane and y-spae is en-oded only in the `radial' funtion R(xk).In 3 dimensions, there is only one y-oordinate and it is aligned to a Killing symmetryof the spaetime; for example, y1 = ' and q = d'2 for the rotational symmetry, see Fig. 1.In the warped spae we an look for a minimal surfae � aligned to its symmetry. Bythe alignment of � to the symmetry we mean that a surfae � is given by a pro�le urvew(�) in the x-plane, with oordinates y� being unrestrited.In the 3-dimensional example above, the rotation-symmetri surfae is given by therotation of the pro�le urve w(�) around the axis, f. Fig. 1a.Substituting the ansatz (2.2) into a de�nition of the extrinsi urvature of the surfae,a straightforward derivation gives an expression in terms of quantities living on the x-plane:k = �� _wjOj(s�2 _wi) + �iRD�2�ni : (2.3)Here _w is a vetor tangent to the pro�le urve w(�), s2 = _wi _wjpij , and n is a unit normalof the pro�le urve in the x-plane (ni _wi = 0, ninjpij = 1). The ovariant derivative O (asmaller nabla) is the metri derivative assoiated with the 2-dimensional metri p, livingjust in the 2-dimensional x-plane.The task of �nding a minimal surfae thus leads to the seond order equation k = 0for the urve w(�) in the 2-dimensional x-plane.

(a) (b)Figure 1. Warped spae. Warped spae is a generalization of idea that rotationally symmetrispae an be obtained by a rotation of a x-plane around the axis. The orbits of the rotation form soalled y-spae, f. (a). Alternatively, the y-diretions an have a harater of a translation (b). Ofourse, in higher dimensions one an have more general situations. The surfaes aligned to the warpsymmetry are given by a pro�le funtion w(�) in the x-plane propagated freely in y-diretions.
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2.2 Additional symmetryNow we restrit the geometry even more. We assume an additional Killing symmetry inthe x-plane and a diagonal form of the metri p,p = h2(1)(x2)(dx1)2 + h2(2)(x2)(dx2)2 ; R = R(x2) : (2.4)x1 is thus the Killing oordinate.We may �x the parametrization of the pro�le urve, namely we use x2 oordinate asthe parameter w2(�) = � : (2.5)We are thus looking just for the oordinate w1(�).Substituting these assumptions into (2.3), the ondition for a minimal surfae (2.1)beomes �w1 + ( _w1)3h2(1)h2(2) (RD�2h(1))_RD�2h(1) + _w1 (RD�2h2(1)h�1(2))_RD�2h2(1)h�1(2) = 0 : (2.6)Here, h(j)(�) and R(�) depend only on the parameter � (the oordinate w2), and the dotdenotes the derivative with respet of �.Thanks to the additional Killing symmetry this equation does not ontain w1, just itsderivatives. It is thus the �rst order di�erential equation for _w1 whih, atually, an beintegrated: _w1 = h(2)h(1) qRD�2h2(1) � 2 : (2.7)Here,  is an integration onstant.Integrating this expression one more, we get the pro�le urve w(�) for the minimalsurfae. Before doing it in expliit examples, we derive a general expression for the area ofthe minimal surfae.The metri h indued on the aligned surfae � ish = s2d�d�+R2q��dy�dy� : (2.8)The orresponding volume element h1=2 ish1=2 = sRD�2d� q1=2 ; (2.9)where q1=2 is the volume element on y-spae given by the metri q. Taking into aount(2.7), the area of the surfae � beomesA = Z h1=2 = AZ sRD�2d� = AZ h(1)h(2)R2(D�2)qR2(D�2)h2(1) � 2 d� : (2.10)Here, A = R q1=2 is the volume of the y-spae (for example, A = 2� in the 3-dimensionalexample disussed above), and the integral in (2.10) must be taken in appropriate limits.{ 6 {



3 Lobahevsky spae { spatial setion of the anti-de Sitter spaetime3.1 Stati Killing vetors in AdSOur aim is to study minimal surfaes in stati regions of the 4-dimensional AdS spaetime.AdS is maximally symmetri spae with a onstant urvature whih de�nes a length sale `.Sine we are interested in global view of the AdS spaetime, we speify the metri in globalosmologial oordinates �; r; #; ':gAdS = `2 �� h2r d�2 + dr2 + sh2r (d#2 + sin2#d'2)� : (3.1)It is useful to visualize the AdS spaetime as a tube R �B3. The vertial diretionR orresponds to time and the horizontal ball B3 represents a spatial setion with itshyperboli geometry ompati�ed to unit ball [35℄. More details on its geometry andvarious oordinates an be found Appendix B.At this moment it is suÆient to mention that AdS possesses three qualitatively di�er-ent Killing vetors whih have a stati region. Orbits of suh Killing vetors are worldlinesof uniformly aelerated observers.Let us denote the Killing vetor with the orbit aeleration smaller than 1=` the statiKilling vetor of type I. It is globally smooth vetor �eld whih is timelike in the wholeAdS (see Fig. 2a). The standard prototype of suh Killing vetor is the time oordinatevetor �� in the osmologial oordinates introdued above.The Killing vetor with the orbit aeleration larger than 1=` will be alled the statiKilling vetor of type II. It is not globally smooth, it has a bifuration harater and itresembles (in the bifuration area) the boost Killing vetor of the Minkowski spaetime(f. Fig. 2b). In the aligned stati oordinates (B.5), it is given by �T .Finally, the Killing vetor with the orbit aeleration exatly 1=` will be alled thePoinar�e Killing vetor sine the assoiated oordinate system is formed by the well-knownPoinar�e oordinates (B.7). In these oordinates it is given by ��t. Its orbits are shown inFig. 2.In all these three ases spatial setions orthogonal to the Killing vetors (namely� = onst, T = onst or �t = onst) have the geometry of a maximally symmetri 3-dimen-sional spae of a onstant negative urvature, i.e., of the Lobahevsky spae (also, thehyperboli spae). Now, we will give a short desription of its geometry; for further detailssee Appendix A.3.2 Lobahevsky spae and its symmetriesThe geometry of the hyperboli spae an be given by the metri in spherial oordinates:1̀2 gLob = dr2 + sh2r �d#2 + sin2#d'2� : (3.2)r is the radial distane from the origin. We an introdue also a resaled oordinate � givenby sh r = tan�. Using this oordinate the metri takes a form onformal to the metri onhemisphere, f. (A.3). { 7 {
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(a) (b) ()Figure 2. Killing vetors in AdS. AdS spaetime an be visualized as a tube R �B3 withtime in vertial diretion. Spatial diretions are appropriately ompati�ed and the surfae R � S3of the tube orresponds to in�nity I of AdS. 2-dimensional diagrams here represent just setions# = 0, ' = 0; �. The diagrams show orbits of three qualitatively di�erent Killing vetors whih areat least somewhere timelike. Surfaes � orthogonal to the orbits of the Killing vetors, representingone instant of stati times, are also shown. (a) Stati Killing vetor of type I. It is a globallysmooth Killing vetor. Its orbits have a uniform aeleration smaller than 1=`. (b) Stati Killingvetor of type II. It has a bifuration struture repeating in temporal diretion. The spaetime isdivided into various domains separated by Killing horizons H. The Killing vetor is timelike onlyin regions R and L, it is spaelike in the domains P and F. The orbits of this vetor have a uniformaeleration bigger than 1=`. () Poinar�e stati Killing vetor. It is timelike everywhere exeptthe horizons where it is null. The aeleration of the orbits is exatly 1=`. The horizons H dividespaetime into separate pathes overed by Poinar�e oordinates.The symmetry group of the 3-dimensional Lobahevsky spae is SO(3,1). All isometriesan be generated by three rotations and three translations. Orbits of the rotations areirles around the axis of rotation, the orbits of the translations are exoyles { urvesequidistant from the axis of the translation.The translation and the rotation with a ommon axis ommute. Therefore, it is pos-sible to �nd oordinates adjusted to both these symmetries, whih we naturally all theylindrial oordinates. The metri in the ylindrial oordinates reads:1̀2 gLob = d�2 + h2�d�2 + sh2�d'2 : (3.3)� is a distane from the axis, � is a oordinate running in the diretion of the translation, and' in the diretion of the rotation. We will use also an axial oordinate P = sh � 2 (0;1)measured by the irumferene of a irle around the axis, the metri is then given by1̀2 gLob = 11 + P 2 dP 2 + (1 + P 2)d�2 + P 2 d'2 : (3.4)
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Yet another axial oordinate Z = h � 2 (1;1) leads to the metri1̀2 gLob = 1Z2 � 1 dZ2 + Z2 d�2 + (Z2 � 1)d'2 : (3.5)For relation between the spherial and ylindrial oordinates see Appendix A, eqs. (A.4),(A.6), (A.7).Beside translations and rotations, there exists also a speial isometry type: the horo-yli symmetry.2 Its orbits are horoyles with a ommon enter at in�nity (vaguely said,the horoyles are irles with the enter moved just to in�nity; all orbits have exatlyone ommon improper point at in�nity oiniding with their ommon enter). All horo-yli symmetries with the same enter at in�nity ommute with eah other. One an thus�nd oordinates adjusted to two horoyli symmetries: Poinar�e oordinates �x; �y; �z, f.eq. (A.8), (A.10). The metri in terms of these oordinates readsgLob = `2�z2 �d�x2 + d�y2 + d�z2� : (3.6)�z labels various horospheres, oordinates �x and �y de�ne two ommuting horoyli sym-metries.All three types of isometries an be used to understand Lobahevsky spae as thewarped geometry. Moreover, the omplementary ommuting symmetry an be understoodas the additional symmetry in a sense of (2.4) and it allows us to use the results (2.7) and(2.10) derived above.3.3 Various representations of Lobahevsky spaeBefore we proeed in looking for minimal surfaes, we desribe how we will visualize hy-perboli spae.Hyperboli spae is spherially symmetri. It is demonstrated expliitly in termsof spherial oordinates r; #; '. The spherial symmetry suggests that we an (non-isometrially) map whole Lobahevsky spae into a unit ball in Eulidean spae by justidentifying #; ' with the standard Eulidean spherial angles and hoosing a suitable om-patifying funtion for the radial oordinate. We will use so alled Poinar�e spherial modelwhih is given by the ompatifying funtion th r2 , see Fig. 3a. The surfae of the unit ballorresponds to in�nity of the hyperboli spae.Another natural representation emphasizes the ylindrial symmetry. We an mapwhole Lobahevsky spae into interior of the ylinder identifying oordinates �; ' with thestandard Eulidean ylindrial oordinates and employing suitable ompatifying funtionof the oordinate �, namely th �2 , in the diretion from the axis, f. Fig. 3b. The surfae ofthe ylinder again orresponds to in�nity of the hyperboli spae.Finally, the fat that the metri in Poinar�e oordinates (3.6) has a onformally atform suggests another representation, so alled Poinar�e half-spae model. Identifying�x; �y; �z with the standard Cartesian oordinates, it maps the Lobahevsky spae onto half2Although this symmetry is not either a rotation or a translation, its generator an be obtained as alinear ombination of generators of a rotation and a translation.{ 9 {



(a) (b) ()Figure 3. Visualization of Lobahevsky spae. Lobahevsky spae an be represented inEulidean spae in various ways, emphasizing di�erent symmetries of the hyperboli geometry.Diagram (a) shows so alled Poinar�e spherial model in whih the spherial symmetry is em-phasized. Whole Lobahevsky spae is ompati�ed into a unit ball with its spherial boundaryorresponding to in�nity of the hyperboli spae. Geodesi are represented as ars orthogonal toin�nity and hyperboli planes as spherial surfaes orthogonal to in�nity. Planes reah in�nity inirular boundaries. Diagram (b) emphasizes ylindrial symmetry of the hyperboli geometry.Whole Lobahevsky spae is squeezed into ylinder. The in�nity orresponds to the surfae ofthe ylinder and two improper points in both diretions along the axis. The lines parallel to theaxis represent exoylles { urves equidistant from the axis. Hyperboli planes orthogonal to theaxis (and exoyles) are represented by at diss. They reah in�nity in boundaries representedby a irle around the ylinder. Diagram () is half-spae Poinar�e model in whih Lobahevskyspae is mapped onto the half �z > 0 of Eulidean spae. The plane �z = 0 (together with one moreimproper point) depits in�nity of Lobahevsky spae. Shifts parallel to this plane (in Eulideansense) represent horoyli symmetries of the hyperboli geometry. Geodesis are semiirles andhyperboli planes hemispheres, both orthogonal to in�nity. Hyperboli planes reah in�nity againin irular boundaries.�z > 0 of the Eulidean spae, see Fig. 3. In�nity of the hyperboli spae orresponds tothe plane z = 0.4 Minimal surfaes in Lobahevsky spae4.1 Spherial/irular boundary at in�nityThe entanglement entropy an be de�ned for an arbitrary domain at in�nity of the hyper-boli spae. However, we onentrate on speial domains restrited just by simple spherialboundaries. (For 2-dimensional in�nity of the D = 3 bulk spae these would be irularboundaries). By the spherial/irular boundary we mean a surfae at in�nity, whih isobtained by projeting a hyperboli plane in the bulk into in�nity.The in�nity of the hyperboli spae has a struture of the sphere with a onformalgeometry indued by the bulk geometry. For D = 3, the onformal geometry of two-dimensional sphere is equivalent to the omplex struture of the Riemann sphere. The{ 10 {



holomorphi M�obius transformations preserve the notion of the irle, as an be also seenfrom their orrespondene to isometries of the bulk.The representation of the spherial/irular boundaries using hyperplanes in the bulkallows us to de�ne the distane between two disjoint spherial/irular boundaries: it isthe distane of the orresponding hyperplanes. Indeed, for not-rossing boundaries thehyperplanes are so alled ultraparallel and there exists a ommon perpendiular line alongwhih we measure the distane of both planes.For two spherial/irular boundaries whih interset themselves, we an analogouslyde�ne the angle between them as the angle of orresponding interseting hyperplanes.The last possibility is that the spherial/irular boundaries touh themselves in onepoint. The orresponding hyperplanes are then asymptoti to eah other. In this aseone annot assoiate with these two hyperplanes any measure whih would estimate theirrelation. The reason is simple: all pairs of asymptoti hyperplanes are isometri to eahother. It means that any two touhing spherial/irular boundaries are equivalent andthere is no sale whih ould distinguish them.The de�nition of spherial/irular boundary gives immediately also a solution of theminimal surfae problem. The trivial minimal surfae spanned on one spherial/irularboundary is just the hyperplane whih de�nes the boundary.Of ourse, we will be mainly interested in more ompliated surfaes. Namely, insurfaes spanned on two spherial/irular boundaries. However, the trivial planar solutionwill be important for renormalization of the area of the minimal surfae. The area of thehyperplanes regularized in various ways will be given below. It an be shown that in allases it is proportional to regularized size of the boundary [34℄.4.2 Surfaes with rotational symmetryAs we mentioned in Se. 4, the 3-dimensional Lobahevsky spae an be viewed as awarped spae in various ways. We start with the hoie in whih the symmetry y-spae hasthe rotational '-symmetry and the additional symmetry of the x-plane is the translation�-symmetry. For that, it is natural to employ the ylindrial oordinates with parametriza-tion (3.4).To �nd a minimal surfae, we substitutex1 = � ; x2 = P ; y1 = 'h(1) = `p1 + P 2 ; h(2) = `p1 + P 2 ; R = ` P (4.1)into equation (2.6) for the pro�le urve. One obtains� 0(P ) = � P0p1 + P 20(1 + P 2)pP 4 + P 2 � P 40 � P 20 ; (4.2)where we onveniently rede�ned the integration onstant. This equation an be integrated{ 11 {



(a) (b) ()Figure 4. Rotation-symmetri minimal surfae spanned on two boundaries. The surfaeis depited using (a) spherial, (b) ylindri and () half-spae visualization of Lobahevsky spae(f. Fig. 3). The ylindri visualization orresponds losely to the 2-dimensional diagram in Fig. 5.in terms of ellipti integrals (f. 3.157.5 of [36℄):�(P ) = �0 � P0p1 + P 20p1 + 2P 20� h(1 + P 20 )F�aros P0P ;r 1+P 201+2P 20 �� P 20 ��aros P0P ; 11+P 20 ;r 1+P 201+2P 20 �i : (4.3)The pro�le urve is thus parametrized by �0 and P0. P takes values in (P0;1). Twopossible signs orrespond to two symmetri parts of the same urve with a turning point atP = P0, � = �0. Embedding of the orresponding rotation-symmetri minimal surfae intothe 3-dimensional Lobahevsky spae is shown in Fig. 4. The graph of the pro�le urveitself is depited in Fig. 5.We see that the pro�le urve reahes in�nity for two values of �. It thus desribes theminimal surfae spanned on two irular boundaries. Boundaries of the surfae orrespondto the hyperplanes given by � = �0 � �1, where�1 = P0p1 + P 20p1 + 2P 20 h(1 + P 20 )K�r 1+P 201+2P 20 �� P 20 �� 11+P 20 ;r 1+P 201+2P 20 �i : (4.4)The graph of the dependene of �1 on P0 in Fig. 6 shows that there exists a maximalvalue of �1. It means that there exists a maximal distane of the irular boundariesfor whih these an be joined by a minimal surfae. Numerially, this ritial distane issmax = 2`�1 � 1:00229 `, it is ahieved for Pmax � 0:516334.The graph in Fig. 6 also reveals that for a given distane of two irular boundariessmaller than smax there exist two minimal surfaes spanned between them. One (that withlarger value of P0) is shallow, remaining further from the axis, and other (with smaller P0)is reahing loser to the axis, see Fig. 7. It indiates that the orresponding system at theAdS in�nity an exist in two di�erent non-trivial phases, both of them distint from thetrivial phase given by two hyperplanes. { 12 {
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Figure 5. Pro�le urve for rotation-symmetri minimal surfae. The urve is drawn inthe x-plane overed by oordinates �; P . It is given by solution (4.3). The orresponding minimalsurfae is shown in Fig. 4.Now we an proeed to evaluate the area of the minimal surfae. Substituting (4.1)into (2.10) (and taking into aount both halves of the surfae given by (4.3)) we �nd thatarea up to radius P is given byA(P ) = 4�`2 Z PP0 P 2pP 4 + P 2 � P 40 � P 20 dP = 4�`2P 20p1 + 2P 20 ��aros P0P ; 1;r 1+P 201+2P 20 � (4.5)(f. 3.153.4 of [36℄ with 111.06 of [37℄).The area of the whole minimal surfae AjP=1 is diverging: the surfae is reahingup to in�nity. However, we an renormalize it by subtrating the area of the trivial solu-tion spanned of the same boundaries, i.e., subtrating the area of two hyperplanes. The
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Figure 6. Distane of the irular boundaries joined by the minimal surfae The mini-mal surfae given by (4.3) reahes in�nity in two irular boundaries whih has distane s = 2`�1.Diagram shows the dependene of �1 on the parameter P0. For �1 < �max, one has two values ofP0, i.e., two possible minimal surfaes joining suh boundaries (see Fig. 7). For �1 > �max, thereis no minimal surfaes joining the boundaries.
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Figure 7. Two minimal surfaes spanned on the same boundaries. Two irular bound-aries with the mutual distane smaller than the distane smax an be joined by two minimal surfaes.One remains far from the axis, other reahes loser to the axis.regularized area of one hyperplane (i.e., evaluated up to radius P ) isAhp(P ) = 2�`2Z P0 P dPp1 + P 2 = 2�`2(p1 + P 2 � 1) : (4.6)The expansion for large P shows that the renormalized area of the surfae (4.3) is �nite:Aren = (A�2Ahp)jP!1 = 4�`2h1+ P 20p1+2P 20 K�r 1+P 201+2P 20 ��q1+2P 20 E�r 1+P 201+2P 20 �i : (4.7)The renormalized area as a funtion of the parameter P0 and of the distane s be-tween the boundaries is shown in Fig. 8. The �rst diagram shows that for P0 < Pr therenormalized area is positive. In other words, the area of the minimal surfae is largerthan the area of two hyperplanes spanned on the same boundaries. For small values of P0,the nontrivial phase has thus larger entanglement entropy than than the trivial one. Theseond diagram reveals that for the distane of the boundaries s 2 (sr; smax) there existtwo nontrivial phases with entanglement entropy larger than the the trivial phase. Fors > smax there exists only the trivial phase. A numerial estimate gives Pr � 0:95264 andsr � 0:876895 `.Finally, for lose boundaries, s < smax, we an ompute the di�erene �A betweenareas of two possible minimal surfaes. This di�erene is �nite and independent of arenormalization of the areas. The graph of �A is shown in Fig. 8.4.3 Surfaes with translation symmetryLobahevsky spae an be also viewed as a warped spae with the symmetri y-spaegiven by the translation �-symmetry. The additional symmetry of the x-plane is then therotational '-symmetry. Again, it is useful to work in ylindrial oordinates, however, anintegration is simpler in oordinates (3.5).{ 14 {
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(a) (b) ()Figure 8. Regularized area of the minimal surfae spanned on two disjoint irularboundaries. (a) The regularized area Aren as a funtion of the parameter P0 of the minimal sur-fae. (b) The regularized area as a funtion of the distane s = 2`�1 between the irular bound-aries. () Di�erene �A between areas of two minimal surfaes spanned on the same boundaries.Substituting x1 = ' ; x2 = Z ; y1 = � ;h(1) = `pZ2 � 1 ; h(2) = `pZ2 � 1 ; R = `Z (4.8)into equation (2.6) for the pro�le urve we get'0(Z) = � Z0pZ20 � 1(Z2 � 1)pZ4 � Z2 � Z40 + Z20 : (4.9)Integrating (f. 3.157.5 of [36℄), we obtain'(Z) = '0 � Z0pZ2 � 1p2Z20 � 1� hZ20 ��aros Z0Z ; 11�Z20 ;r Z20�12Z20�1�� (Z20 � 1)F�aros Z0Z ;r Z20�12Z20�1�i : (4.10)Similarly to the previous ase, two signs orrespond to two halves of the pro�le urvewith a turning point at Z = Z0, ' = '0. The graphs of the orresponding minimal surfaeembedded into 3-dimensional Lobahevsky spae are shown in Fig. 9. The pro�le urve inx-plane is depited in Fig. 10. Three dimensional graphs demonstrate that the minimalsurfae is atually spanned on two rossing irular boundaries at in�nity; more preisely,spanned on two ars whih interset in two points.Values of the angular oordinate in whih the pro�le urve (4.10) reahes in�nity are' = '0 � '1 with'1 = Z0pZ20 � 1p2Z20 � 1hZ20 �� 11�Z20 ;r P 20�12Z20�1�� (Z20 � 1)K�r Z20�12Z20�1�i : (4.11)
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(a) (b) ()Figure 9. Translation-symmetri minimal surfae spanned on two rossing bound-aries. The surfae is shown using (a) spherial, (b) ylindri and () half-spae visualization ofthe Lobahevsky spae (f. Fig. 3). The ylindri visualization is related to the oordinates in whihthe surfae (4.10) has been found. The setion � = onst orresponds to Fig. 10. The spherialvisualization (a) demonstrates that the `straight' boundaries from diagram (b) atually orrespondto two ars of the rossing irular boundaries at in�nity.
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Figure 10. Pro�le urve for translation-symmetri minimal surfae. The urve is drawnin the x-plane overed by oordinates ';Z. It is given by solution (4.10). The orrespondingminimal surfae is shown in Fig. 9.The rossing irular boundaries thus form the angle � = 2'1. The dependene of thisangle on parameter Z0 is shown in Fig. 11. It is monotonous funtion running � = 0 forZ0 =1 to � = � for Z0 = 1. The last value orresponds to a hyperplane spanned on twosemi-irles forming the straight angle.As we have already observed, the surfae in Fig. 9 is not spanned on whole irularboundaries, but just on two ars belonging to these boundaries. The omplete minimalsurfae spanned on entire two rossing irles should onsist of two sheets spanned on theopposite pairs of ars joining the intersetion points. Eah of these sheets is given by{ 16 {
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Figure 11. The angle of two rossing irular boundaries joined by the minimal surfae.The minimal surfae given by (4.10) reahes in�nity in two ars of the rossing irular boundarieswhih have angle � = 2'1. Diagram shows the dependene of � on the parameter Z0 of the solution.The relation is one-to-one.surfae (4.10) found above, see Fig. 12.The one-to-one relation (4.11) between � on Z0 suggests that for a given angle of therossing irular boundaries there exists only one non-trivial minimal surfae. However, it istrivial realization that the seond non-trivial surfae for angle � is the surfae orrespondingto the angle � � �. This seond minimal surfae also onsist of two opposite sheets whihjoin the omplementary pairs of the boundary ars.The area of the minimal surfae (omposed of two sheets) is given by substituting (4.8)into (2.10). It gives the regularized area evaluated up to radius Z in the following form:A(Z) = 4A`2 Z ZZ0 Z2pZ4 � Z2 � Z40 + Z20 dZ = 4A`2Z20p2Z20 � 1 ��aros Z0Z ; 1;r Z20�12Z20�1� :(4.12)Here, the volume of the symmetry y-spae is given by A = R d� and it is divergent. Clearly,the surfae with a translation symmetry has an in�nite length in the symmetri diretionand the area su�ers the `infrared' divergene. Therefore, we alulate only density a = AA`of the area per unit volume of y-spae. This density a(Z) is still diverging for a large Zand it must be renormalized by subtrating the area of the trivial solution, i.e., the area oftwo hyperplanes. The regularized (omputed up to radius Z) density of suh an area isahp(Z) = Ahp(Z)A` = 2`Z Z0 Z dZpZ2 � 1 = 2`pZ2 � 1 : (4.13)Finally, the renormalized area density isaren = (a� 2ahp)jZ!1 = 4`h Z20p2Z20�1 K�r Z20�12Z20�1��q2Z20�1E�r Z20�12Z20�1�i : (4.14)The renormalized area density as a funtion of the parameter Z0 and as a funtion of theangle � is drawn in Fig. 13 { 17 {



Figure 12. The minimal surfaes spanned on two rossing irular boundaries Theminimal surfae spanned on two rossing irles (i.e., on four boundary ars) onsists of two sheets.They join the opposite pairs of the boundary ars. Eah of the sheets is given by (4.10) withappropriately hosen parameters '0 and Z0.For a given boundary, there exist two minimal surfaes whih onsist of two non-interseting sheets.Sheets of the seond minimal surfae join the omplementary opposite pairs of the boundary ars.One ould onsider also the third minimal surfae formed by two interseting hyperplanes spannedon the irular boundaries. This trivial solution is used to renormalize the area of the non-trivialminimal surfaes.We an also evaluate the di�erene of the area densities of two minimal surfaesspanned on the same rossing irular boundaries, �a(�) = aren(�)� aren(� � �). Thedi�erene is �nite and independent of the renormalization of the area densities.On other side, it an be interesting to look at the total area density atot(�) = aren(�)+aren(���) of these two minimal surfaes. It orresponds to the renormalized entanglemententropy of the whole spae divided into four bloks by two rossing irles. Both quantities�a and atot are shown in Fig. 13.These diagrams show that, in ontrast to the ase of two disjoint irular boundaries,the area density (and orresponding entanglement entropy) of the minimal surfae spannedon two rossing irles is always smaller than the area density of the trivial solution.One ould also study inequalities between areas of minimal surfaes and orrespond-ing entanglement entropies (suh as strong subadditivity properties [26, 33℄) spanned onboundaries of various ompositions of di�erent domains at in�nity. Let us onsider do-mains bounded by two semiirles joining two �xed poles. Suh a domain is haraterizedby the angle � between the semiirles. A omposition of two suh domains with a ommonsemiirle forms again a domain of the same type.33A similar disussion an be done also in the previous ase of domains bounded by two disjoint irles.However, the disussion is more involved sine the omposition law for the distanes between irularboundaries is not so simple: If 
13 = 
12 [ 
23, where 
ij is a domain between two irular boundaries �iand �j , the distanes sij = s(�i;�j) between these boundaries are not, in general, in an additive relation.{ 18 {
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(a) (b) () (d)Figure 13. Regularized area of the minimal surfae spanned on two rossing irles.(a) Regularized area density aren as a funtion of the parameter Z0. (b) Regularized area density asa funtion of the angle � between the irular boundaries. Two branhes orresponds to two possibleminimal surfaes spanned on the same boundaries, f. Fig. 12. They are given by omplementaryangles � and � � �. () Di�erene of the area densities �a of two minimal surfaes spanned onthe same boundaries. (d) Sum atot of the regularized area densities of two minimal surfaes.The subadditivity property [17, 26℄ translated to language of areas is satis�ed in theleading diverging order a(�1 + �2) � a(�1) + a(�1) : (4.15)Indeed, the right hand side has more diverging boundary ontributions. It is not a surprisesine the subadditivity is a straightforward onsequene of the minimality of the area[17℄. A more subtle situation is the strong subadditivity, where the leading divergingontributions to the area anel eah other and one an ompare renormalized values. Thestrong subaddivity thus readsaren(�1 + �2 + �3) + aren(�2) � aren(�1 + �2) + aren(�2 + �3) ; (4.16)where the renormalized area density aren is given by one half of expression (4.12) with theparameter Z0 expressed in terms of angle � = 2'1 using (4.11). For � > � one naturallyunderstands aren(�) = aren(2� � �). Evaluating (4.16) for angles �1+�2+�3 < 2� we haveexpliitly heked that the strong inequality is satis�ed. It is onsistent with the generalstatement of [26℄. { 19 {



(a) (b) ()Figure 14. Horoyli-symmetri minimal surfae spanned on two touhing bound-aries. The surfae is shown using (a) spherial, (b) ylindri and () half-spae visualization ofLobahevsky spae (f. Fig. 3). The half-spae visualization is related to the oordinates in whihthe surfae (4.18) has been found. The setion �y = onst orresponds to Fig. 15. The spherialvisualization (a) demonstrates that the `straight' boundaries from diagram () are atually two ir-ular boundaries touhing at one point. All minimal surfaes with this type of boundary onditionsare isomorphi.4.4 Surfaes with horoyli symmetryThe last qualitatively di�erent ase orresponds to the horoyli symmetry. The y-spaean be identi�ed with �y diretion in Poinar�e oordinates (3.6). The additional symmetryof the x-plane then orresponds to the horoyli shift in �x diretion:x1 = �x ; x2 = �z ; y1 = �y ;h(1) = �̀z ; h(2) = �̀z ; R = �̀z : (4.17)The equation of the pro�le urve (2.6) an be again integrated (f. 3.153.3 of [36℄)�x(�z) = �x0�Z �z0�z d�zq �z40�z4 � 1 = �x0� �z0hp2E�aros �z�z0 ; 1p2�� 1p2F�aros �z�z0 ; 1p2�i : (4.18)A orresponding horoyli-symmetri minimal surfae embedded into the Lobahevskyspae is shown in Fig. 14, the pro�le urve is depited in Fig. 15.The surfae is parametrized by the parameter �z0 whih is the maximal value of theoordinate �z whih the surfae reahes. It is also the turning point joining two halves ofthe surfae given by two signs in (4.18). We all line �z = �z0 the top line of the surfae,f. Fig. 14. It is a horoyle in the sense of the hyperboli geometry, f. Fig. 14a.The additivity s13 = s12 + s23 holds only if the irular boundaries �i are onentri.In the ase of domains between two ars is the situation simpler, the angles between ars satisfy theadditivity law. { 20 {
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Figure 15. Pro�le urve for horoyli-symmetri minimal surfae. The urve is drawnin the x-plane overed by oordinates �z; �x. It is given by solution (4.18). The orresponding minimalsurfae is shown in Fig. 14.The limiting value of oordinate �x at in�nity �z = 0 is�x1 = �x0 �X0 �z0 ; with X0 = �(34 )2p2� � 0:59907 : (4.19)The minimal surfae thus reahes in�nity at two straight lines in Poinar�e oordinates,f. Fig. 14. However, the spherial representation in Fig. 14a shows that these boundariesare atually two irular boundaries touhing at one point (the improper point of planarin�nity in the half-spae representation of Fig. 14).From the equation (4.18) of the pro�le urve, we an observe that the ombination �x�z0depends only on �z�z0 . This douments that all solutions of this type (i.e., with an arbitraryvalue of �z0) are isometri. Indeed, the translation � ! � + �0 along the Killing vetor ��in Poinar�e oordinates ats�z ! exp �0 �z ; �x! exp �0 �x ; �y ! exp �0 �y ; (4.20)i.e., as a onstant resaling of Poinar�e oordinates. The solutions (4.18) for various �z0are related exatly by this translation. Parameter �z0 only labels the position of the min-imal surfae in the spae, not its shape. It is, of ourse, a onsequene of the fat thatall on�gurations of two touhing irular boundaries are equivalent, as we observed insetion 4.1.The regularized area funtion (2.10) of the minimal surfae in this ase isA(�z) = 2A`2 Z �z0�z �z20�z2p�z40 � �z4d�z= 2A`2�z0 "s �z20�z2 � �z2�z20 �p2E�aros �z�z0 ; 1p2�+ 1p2 F�aros �z�z0 ; 1p2�# : (4.21)
{ 21 {



The regularized area of the part of the hyperplane �x = onst alulated up to ut-o� �z isAhp(�z) = A`2�z : (4.22)Subtrating two hyperplanes from the minimal surfae thus gives the renormalized areaAren = (A� 2Ahp)j�z!0 = �2AX0�z0 `2 ; (4.23)with the onstant X0 given in (4.19).However, we have to solve the infrared divergene hidden in the y-spae volumeA = R d�y. One has to be areful how to treat this in�nity sine the hoie of the �y oordi-nate was rather arbitrary. Indeed, an arbitrary resaled oordinate �y ould have been usedsine a onstant resaling orrespond to the isometry (4.20).One natural way how to ut-o� the �y diretion is to alulate the surfae area per unit�y-length, where this `unit length' is de�ned by a presription formulated only in terms ofthe surfae itself, by a presription whih does not employ any additional struture. Forexample, we an measure �y-length Y0 at the top line of the surfae (i.e., at �z = �z0). Clearly,Y0 = R �̀z0d�y = `A�z0 . The orresponding area density then readsaren = ArenY0 = �2X0` : (4.24)It is independent of the parameter �z0, as ould had been expeted from the disussionabove: �z0 de�nes only a position of the surfae, not its shape, and no additional struturehas been introdued whih ould distinguish among minimal surfaes with di�erent �z0.Other possibility how to deal with the divergene in the �y diretion is to ompatifythis diretion. We an assume S1 ompati�ation along the oordinate �y given by a �xedrange ��y. Then A = ��y and the regularized area of the ompati�ed minimal surfae isAomp = �2��yX0�z0 `2 = �4��y��xX20 `2 : (4.25)The dependene on �z0 reets that the minimal surfaes with various positions �z0 aresqueezed into the ompati�ed spae in a di�erent way. Sine this spae is not globalLobahevsky spae anymore, the minimal surfaes with various �z0 are not globally isomor-phi. In the last equality we expressed �z0 using the oordinate distane ��x = 2X0�z0 of theboundaries of the minimal surfae, f. (4.19).In both these ases the regularized area is negative, i.e., the area of the minimal surfaespanned on two touhing irular boundaries is smaller than the area of two orrespondinghyperplanes.By a omposition of two or three domains between touhing irular boundaries witha ommon ontat point we an hek the the subadditivity and the strong subadditivityproperties. The subadditivity property is again satis�ed in the diverging order.To hek the strong subadditivity we have to onsider three domains 
i, i = 1; 2; 3,loated among the irular boundaries separated by the oordinate intervals ��xi. These{ 22 {



domains must be regularized in ommon way. Therefore we use the ompati�ation of the�y oordinate to the interval ��y. The strong subadditivityA
1[
2[
3 +A
2 � A
1[
2 +A
2[
3 ; (4.26)thus, using (4.25), translates into� 1��x1 +��x2 +��x3 � 1��x2 � � 1��x1 +��x2 � 1��x2 +��x3 ; (4.27)whih is (for positive ��xi) trivially satis�ed.44.5 General position of two irular boundariesIn the preeding subsetions we have found the minimal surfaes for three qualitativelydi�erent positions of the irular boundaries. It ould seem that we studied only irularboundaries whih are speially positioned with respet to the hosen system of oordi-nates. For example, two disjoint irles are onentri in Fig. 4. However, it would be awrong impression. Atually, we have found the minimal surfae for a ompletely arbitraryon�guration of two irular boundaries at in�nity.Indeed, any two irles at in�nity an be moved by an isometry to the position forwhih we have already found the solution. Or, in opposite way, we an always onstruta oordinate systems whih is adjusted to a boundary on�guration. Using isometries wean than transform the solution to an arbitrary other frame.For two disjoint irles spanned on two hyperplanes we an always �nd a unique lineperpendiular to both hyperplanes and use this line as � = 0 axis of our ylindrial oor-dinate system. The irular boundaries beome onentri in this frame.Similarly, for two rossing irles we use the intersetion line of the orrespondinghyperplanes as the axis of the ylindrial system. For two touhing irles we an use anyline going through the ontat point of both irles as a suitable axis.Two examples of the minimal surfaes spanned on two generially positioned disjointirles at in�nity are shown in Fig. 16.4.6 Higher dimensionsSimilar analysis an be done for arbitrary higher dimensionD. Unfortunately, the integralsfor the pro�le urve and surfae area (2.6) and (2.10) beome more ompliated and annotbe integrated easily in terms of speial funtions. However, the numerial integrationsshow that the results from the spatial dimension D = 3 remain qualitatively the same ina higher dimension. For example, Fig. 17 shows the graphs of the regularized area versusthe distane of boundaries (an analogue of Fig. 8b) in the spatial dimensions D = 4 andD = 5.4One ould onsider also a omposition of domains between touhing irular boundaries with di�erentontat points. However, the omposed domain would be between two disjoint irles. Both areas (4.7) and(4.21) would enter the subadditivity inequalities. In suh a ase, the regularization proedure would haveto be disussed arefully: all infrared in�nities have to be regularized in a onsistent way. We leave suh adisussion elsewhere. { 23 {



(a) (b) ()Figure 16. Minimal surfaes spanned on two generally loated disjoint irles at in�n-ity. The minimal surfae depited in Fig. 4 an be shifted using isometries so it reahes any twodisjoint irular boundaries at in�nity. Eah line shows one example of suh a on�guration of twoboundaries and visualizations of the orresponding minimal surfae in (a) spherial, (b) ylindrialand () half-spae model of Lobahevsky spae.
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D = 4 D = 5Figure 17. Regularized area for minimal surfae spanned on two disjoint irularboundaries in higher dimensions The dependene of the regularized area on the distane ofthe irular boundaries is qualitatively the same as in the dimension D = 3, f. Fig. 8.
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5 Minimal surfaes in the anti-de Sitter spaetime5.1 Two irular boundaries in one stati regionTill now we have disussed minimal surfaes loalized in the spatial setion of the AdSspae. Their area orrespond to the entanglement entropy for the holographially assoi-ated system at in�nity.However, as we disussed at the beginning of Se. 4, the spatial setion with hyperboligeometry an be understood as a time slie for three di�erent stati Killing vetors in theAdS spaetime. A di�erent hoie of the Killing vetor should somehow inuene the hoieof the state of the system at in�nity. Surprisingly, this hoie does not enter the alulationof the minimal surfae and of the entanglement entropy in any way.In terms of the metri, three qualitatively di�erent stati Killing vetors di�er by thelapse (red-shift) fator in front of the orresponding time element in the metri. Thisfator, however, does not enter the haraterization of the spatial geometry.Nevertheless, it ould be instrutive to visualize the whole history of the minimalsurfae, even although it is not given by an evolution equation. In the ase when thewhole boundary of the minimal surfae lies at in�nity of one stati region, the proedureis straightforward: the minimal surfae is just prolonged along the Killing time oordinate

(a) (b) ()Figure 18. World-sheets of the minimal surfae spanned on two disjoint irles. Threediagrams represent three possible extension of the minimal surfae into the temporal diretion usingthree stati Killing vetors. In all three ases both irular boundaries are loated in the same statiregion. The horizons of the Killing vetors and one slie of a onstant stati time are indiated. Therotation-symmetri diretion ' i suppressed in these diagrams, the tube-like minimal surfae thussplits into two disonneted piees. For the same reason, the world-sheet of eah irular boundaryis represented just by two worldlines. (a) For the stati Killing vetor of type I there is only onestati region and the minimal surfae remains eternally in AdS universe. (b) The Killing vetorof type II possesses Killing horizons whih divide the spaetime into stati and non-stati regions.Here, both irular boundaries are loated in one stati region and the minimal surfae remains inthis stati region. () Horizons of the Poinar�e Killing vetor divides AdS spaetime into a sequeneof stati regions. Again, both irular boundaries are loated in one stati region.
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and it spans 3-dimensional world-sheet in one stati region of the AdS universe. Of ourse,by a di�erent hoie of the Killing vetor one gets di�erent sheets.The world-sheets of the minimal surfae spanned on two disjoint irles whih both liein the same stati region, using stati Killing vetors of type I, II, and Poinar�e one, aredepited in Fig. 18.5.2 Two irular boundaries in opposite stati regionsHowever, for the stati Killing vetor of type II we an also enounter a more interestingsituation. In this ase Lobahevsky spae orresponds to a time slie T = onst in twoseparate stati regions. The Killing vetor of type II has a bifurations struture and itsKilling horizons divide the AdS spaetime into separate domains, f. Fig. 19. There arepairs of stati regions R and L whih are positioned aausally to eah other, but for whihtheir time slies an be joined into one global Lobahevsky spae.We an thus onsider irular boundaries loalized symmetrially in these oppositestati regions R and L. In suh a ase the world-sheet of the minimal surfae spanned onthese two irles reahes the horizons of the stati regions and it must be ontinued into

Figure 19. Hypersurfaes T = onst of the stati Killing vetor of type II. The statiKilling vetor of type II has a bifuration struture. Its Killing horizons divide AdS spaetime intoa sequene of pairs of stati regions R, L and non-stati regions P and F where the Killing vetoris spaelike. The horizons H are null surfaes. Eah of them orresponds to a plane of light yingthrough AdS universe, starting and ending in improper bifuration points at in�nity I. Horizonsinterset in bifuration lines h. The Killing vetor of type II an play a role of a time translation (instati regions) or of a spatial translation (in non-stati regions) or of a boost (near the bifurationlines). Time slies T = onst both in stati and non-stati regions are indiated. Time slies intwo opposite stati regions an be joined to form one global Lobahevsky spae T . Time slies innon-stati regions an be all joined to form 3-dimensional AdS spaetime T 0.
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Figure 20. Minimal surfae in slie T 0. Minimal surfae � loated in time-like slie T 0 (joinedslies T = onst in non-stati regions P and F, f. Fig. 19) whih has 3-dimensional AdS geometry.The minimal surfae � is omposed by two symmetri piees from the regions P and F. It is given bythe pro�le funtion (5.1) with parameter P0 whih haraterize the maximum radius of the surfae.The surfae is non-smooth at two vertexes � on the axis. The surfae approahes a null haraternear these verties. The spatial intersetion h of the Killing horizons H is shown (f. Fig. 19).Another representation of the surfae � (with added T -diretion and suppressed '-diretion) isdepited in Fig. 21.non-stati regions F and P above and under the Killing horizons. The equation (2.6) forthe pro�le urve of the minimal surfae an be solved even in these non-stati regions sineit does not depend on the harater of the Killing vetor and signature of the metri. Thesolution is �(P ) = P0p1+P 20p1+2P 20 ��aros PP0 ; P 201+P 20 ;r P 201+2P 20 � : (5.1)The solution is losely related to that in stati regions (4.3), it is a di�erent branh of theanalyti ontinuation of (4.3).The resulting surfae loated in the non-stati regions F and P an be viewed if re-strited into slie T = onst. Suh a slie is atually the 3-dimensional AdS spaetime,f. Fig. 19. Embedding of the minimal surfae into this slie is shown in Fig. 20. It has asurprising feature that it is not smooth at the vertexes loated on the axis.The world-sheet of the minimal surfae ould be understood as a olletion of trajeto-ries whih start from the bottom vertex with the speed of light, slow down, and eventuallyare spherially ollapsing at the top vertex, again with the speed of light. When one addthe Killing vetor diretion, the full surfae in the the future non-stati region F has a{ 27 {



Figure 21. World-sheet � of the minimal surfae spanned on two oppositely aeleratedirles. Diagrams show two views of the same world-sheet. The Killing horizons H of the statiKilling vetor of type II are inluded in the right diagram. The whole world-sheet is obtained byjoining piees loated in the stati regions L, R (where they are given by the pro�le funtion (4.3))and piees in the non-stati regions P and F (where they are given by the pro�le funtion (5.1)). Itreahes in�nity I in two irular boundaries loated in the opposite stati regions L and R. In thesediagrams, eah boundary is represented by a pair of worldlines. The world-sheet � is singular attwo spatial lines �. The future singular line an be interpreted as a `history' of the rapture of theminimal surfae, see disussion in the text.struture of ollapsing ylinder whih degenerate along a spatial line (the vertex prolongedfor all values of spatial oordinate T ).However the part of the surfaes in the region F also reahes the Killing horizons (forT ! �1). Here it has to be joined with the surfae in stati regions R and L. Similarlythe surfae loated in the past stati region P joins the surfae in the stati regions frombelow. The omplete minimal surfae is depited in Fig. 21. Here, the rotation-symmetridiretion ' is suppressed. We see that the surfae is indeed singular along two spatial linesin the P and F regions. These singular lines reah in�nity of AdS spaetime at points wherethe Killing vetor is bifurating.One ould try to interpret the world-sheet of the minimal surfae as a dynamialproess (although we repeat that the surfae is not governed by an evolutionary equation,but by the stati equation at one time slie). First, we onsider hyperplanes in the bulkwhih orrespond to the irular boundaries at in�nity. Sine they are stati in the senseof the Killing vetor �T , these hyperplanes move with the aeleration larger then 1=`.They are oming from in�nity towards eah other, deelerating from the speed of light tothe zero veloity and aelerating bak to in�nity asymptotially approahing the speed oflight. The points at in�nity from whih the hyperplanes start and where they end are those{ 28 {



in�nite bifuration points of the Killing vetor �T . In this sense we an speak about twoaelerating irular boundaries at in�nity. Clearly, the world-sheets of these boundariesare not smooth at the in�nite bifuration points.We an now look at the world-sheet of the minimal surfae spanned between theseaelerated irles in terms of the global osmologial time � . Its time slies orrespond tohorizontal planes in Fig. 21. Starting in the middle of the surfae (at the losest approahof the irles) the minimal surfae has exatly the shape depited in Fig. 4. After that theirular boundaries are aelerating away from eah other and the minimal surfae starts todeform. When the time-slie � = onst reahes the top singular line of the world-sheet, theminimal surfae tears into two piees. At later times, these two piees are still attahed tothe irular boundaries at in�nity and they y from eah other. On the other side they areterminated by the singular vertexes whih desribe the plae where the minimal surfae wastorn. These vertexes ies from eah other with a superluminal speed (along the spaelikesingular lines �). This view orresponds to the earlier observation that the minimal surfaean join two disjoint irles at in�nity only if they are loser than the ritial distane sr.For the irles aelerating from eah other the minimal surfae thus annot exist whenthey get too far.However, one should be autious with suh an interpretation sine we are mixing herethe stati piture with respet to one Killing vetor with the desription in terms of timeof another Killing vetor. Also, we should remember that the world-sheet of the minimalsurfae is not a world-sheet of a ausally evolving matter.6 SummaryWe found out exat solutions for all types of minimal surfaes spanned on one or twospherial boundaries at onformal in�nity. The relative positions and the sizes of thesespherial boundaries are onsidered to be arbitrary. The Ryu-Takayanagi holographionjeture (1.2) enables us to relate the areas of minimal surfaes in the bulk of AdS withthe entanglement entropy of any two generally positioned spherial domains at in�nity.There are three qualitatively di�erent ases of mutual positions of the spherial domains:(i) two disjoint domains, (ii) overlapping domains, and (iii) touhing domains. In the �rstase there exist tube-like minimal surfaes joining the boundaries of these domains. In thisinteresting ase we showed that for boundaries loser than smax there are three possibleminimal surfaes, whih orresponds to three possibilities (phases) for the holographientanglement entropy in CFT. The transition between these phases ours at the ritialdistane s = sr, when the area of the tube-like surfae starts to exeed the area of the trivialsolution of two hyperplanes. Thus even in the pure pure AdS bakground there is a ritialbehavior of the entanglement entropy that was demonstrated [31℄ for the asymptotiallyAdS spaetimes with a blak hole in the bulk.If the entanglement entropy for disjoint subsystems is given by the area of the absoluteminimal surfae5 then the renormalized area (4.7) is diretly related to the mutual infor-mation I(
1;
2) = S
1 + S
2 � S
1[
2 whih quanti�es orrelations between the disjoint5See [27℄ for alternative proposals. { 29 {



subsystems. Indeed, sine the entanglement entropy S
 of a single spherial domain 
 isgiven by the area Ahp of the trivial hyperplane boundary �
, the renormalized area Aren ofthe tube joining the boundaries of two suh domains gives diretly the mutual informationI(
1;
2), provided that the tube does give the minimal area, i.e., for s < sr.Although the entanglement entropy hanges ontinuously with the distane betweenthe boundaries at s = sr, the orresponding minimal surfae hanges disontinuously. Tosee the transition from the trivial phase to the tube-like phase, one would have to start withtwo very lose hyperplanes. At a point, where they almost touh, a very deep tube-likesurfae an appear. Thought the topology of the surfae hanges it does not hange thetotal area of the surfaes. While we inrease the distane between the boundaries, the tubegrows wider. It follows the upper branh of the urve in Fig. 8b and Fig. 17 up to themaximal possible distane smax of the boundaries. This branh orresponds to the loallyminimal surfae, but it's not an absolute minimum beause there is another solution fora tube-like minimal surfae with the same boundaries but lesser area. When one reahesthe smax and starts to derease the distane between the boundaries the tube grows evenwider (following the lower branh in Fig. 8b and Fig. 17). After dereasing the distaneunder sr one obtains the physial tube-like phase.In addition to the ase of two spherial domains one an investigate even more ompli-ated situations, for example, a set of spherial domains 
i, eah of them being a subdomainof all the subsequent ones: 
i � 
j for i < j. They may not be all simultaneously on-entri. The irular boundaries of these domains orrespond to ultraparallel hyperplanesin the bulk. For suh a on�guration we know the minimal surfaes for any pair of theboundaries. Employing (1.2) we �nd that the renormalized entropy depends only on thedistane between the boundaries, f. (4.4), (4.5). We an thus test properties of the entropyfor domains obtained by a ombination of several subdomains. Namely, one an hek thestrong subadditivity inequalities to �nd that they are satis�ed, as expeted from generalonsiderations [33℄. Similarly, one an study systems of strips between several semiirlesjoined at the same poles.To summarize, the obtained exat analytial solutions for minimal surfaes in AdSprovide us with a lassial geometri tool of probing quantum properties of CFT.The holographi entanglement entropy an be applied to testing phase transitions inQFT, similar to the on�nement/deon�nement phase transition at a �nite temperature[31, 32℄. It an useful in generalizations of -theorems in higher dimensions [38, 39℄. Onean use the properties of the entanglement entropy the other way around and even to`derive' gravitational dynamis from entanglement [40, 41℄.AknowledgmentsP. K. was supported by Grant GA�CR 14-37086G and appreiates the hospitality of theTheoretial Physis Institute of the University of Alberta. A. Z. thanks the Natural Sienesand Engineering Researh Counil of Canada and the Killam Trust for the �nanial supportand appreiates the hospitality and support of the Institute of Theoretial Physis of theCharles University in Prague. { 30 {



A Coordinates in Lobahevsky spaeThe geometry of the hyperboli spae in spherial oordinates is given by the metri (3.2),i.e., 1̀2 gLob = dr2 + sh2r �d#2 + sin2#d'2� : (A.1)Here, r is the radial distane from the origin. It an be rede�nedsh r = tan� (A.2)to obtain the metri onformally related to the homogeneous metri on the hemisphere,1̀2 gLob = 1os2��d�2 + sin2� �d#2 + sin2#d'2�� : (A.3)The boundary � = �2 of the hemisphere orresponds to the onformal in�nity of the hyper-boli spae.The spherial oordinates �; #; ' on the hemisphere an be replaed by other spherialoordinates ��; �#; ' around a new pole on the equator of the hemisphere,os� = sin �� os �# ; os �� = � sin�# ;tan# = � tan �# sin �# ; tan �# = tan� sin# : (A.4)The Lobahevsky metri beomes:1̀2 gLob = 1sin2 �� os2 �#�d��2 + sin2 �� �d�#2 + sin2 �#d'2�� : (A.5)These oordinates are related to the ylindri oordinates by a rede�nition of the oordi-nate ��, tanh � = � os �� : (A.6)This new oordinate � is the Killing oordinate orresponding to the translation in thehyperboli spae along the axis �# = 0. One an introdue several variants of the axialoordinate whih are related astan �# = sh� = P =pZ2 � 1 ;os�1 �# = h � =p1 + P 2 = Z : (A.7)The metri takes forms (3.3), (3.4), and (3.5), respetively.Introduing yet another \radial" oordinate �r in the metri (A.5),�r = tan ��2 = exp � ; (A.8)one obtains a onformally at form of the Lobahevsky metri1̀2 gLob = 1�r2 os2 �#�d�r2 + �r2 �d�#2 + sin2 �#d'2�� : (A.9)
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Introduing the \Cartesian" oordinates �x; �y; �z�x = �r sin �# os' ; �z = �r sin �# sin' ; �z = �r os �# : (A.10)for the onformally related at metri, one obtains the Poinar�e oordinates on the hyper-boli spae with the metri (3.6).Finally, if we introdue the oordinate �� measuring the distane along the �z-diretion,�z = exp �� ; (A.11)the metri reads 1̀2 gLob = d��2 + e�2���d�x2 + d�y2� : (A.12)The oordinates ', �, and �x, �y are Killing oordinates orresponding to rotational,translational and horoyli symmetries, respetively.B Coordinates in anti-de Sitter spaetimeThe anti-de Sitter spaetime is desribed in global osmologial oordinates �; r; #; ' bythe metri (3.1), gAdS = `2 �� h2r d�2 + dr2 + sh2r (d#2 + sin2#d'2)� : (B.1)The Killing vetor �� represents the global translation symmetry in temporal diretion.Orbits of this vetors represent uniformly aelerated stati observers with the aelerationsmaller than the osmologial aeleration 1=`, f. Fig. 2a.One an introdue another oordinates T;R; �#; '|the stati oordinates of type II|assoiated with the uniformly aelerated stati observers with aeleration larger than1=`. In these oordinates the AdS metri readsgAdS = `2R2 os2 �# ���1� R2`2 �dT 2 + �1� R2`2 ��1dR2 +R2�d�#2 + sin2 �#d'2�� : (B.2)The Killing vetor �T is timelike in domains R2 < `2. It has a bifuration harater andits orbits are visualized in Fig. 2b. The spatial setion T = onst, R2 < `2 possesses thespatial metri gLob = `2os2 �# � 1R2�1� R2`2 �dR2 + d�#2 + sin2 �#d'2� ; (B.3)whih desribes the geometry of the hyperboli spae. It an related to the Lobahevskymetri (A.5) by R = sin �� = h�1 � : (B.4)Relations between the global osmologial oordinates �; r; #; ' and the stati oordi-nates of type II T;R; �#; ' an be split into two steps. First, at the spatial setion � = onstone introdues the onformally spherial oordinates �; #; ' and the rotated oordinates{ 32 {



��; �#; ' by the relations (A.2) and (A.4). In the seond step, one mixes �{�� setor intro-duing the oordinate T and R,R̀ = sin ��sin � ; T̀ = 12 log����os � � os ��os � + os �� ���� : (B.5)Another well-known oordinates on the AdS spaetime are the Poinar�e oordinatesin whih the metri takes the onformally at formgAdS = `2�z2��d�t2 + d�x2 + d�y2 + d�z2� : (B.6)If we introdue the spherial Poinar�e oordinates �t; �r; �#; ' by relations (A.10), one anrelate the Poinar�e oordinates to the oordinates �; ��; �#; ' as�t = ` os �os � + os �� ; tan � = 2`�t`2 � �t2 + �r2 ;�r = ` sin ��os � + os �� ; tan �� = 2`�r`2 + �t2 � �r2 : (B.7)The Killing vetor ��t represents stati observers with the uniform aeleration 1=`. Itsorbits are shown in Fig. 2.
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