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It is believed that in any number of dimensions the off-shell Kerr–NUT–(A)dS metric represents a
unique geometry admitting the principal (rank 2, non-degenerate, closed conformal Killing–Yano) tensor.
The original proof relied on the Euclidean signature and therein natural assumption that the eigenvalues of
the principal tensor have gradients of spacelike character. In this paper we evade this common wisdom and
construct new classes of Lorentzian (and other signature) off-shell metrics admitting the principal tensor
with “null eigenvalues,” uncovering so a much richer structure of spacetimes with principal tensor in four
and higher dimensions. A few observations regarding the Kerr–Schild ansatz are also made.
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I. INTRODUCTION

It is a remarkable property of theKerr–NUT–(A)dS family
of spacetimes [1,2] that they admit a hidden symmetry
encoded in the principal Killing–Yano tensor. This is true in
four [3,4] as well as in higher dimensions [5]. Many of the
basic characteristics of this family can be directly linked to
this tensor and derived from its very existence. For example,
the principal tensor generates a “Killing tower” of sym-
metries that guarantee complete integrability of geodesic
motion and separability of the Hamilton–Jacobi, Klein–
Gordon, and Dirac equations. The type D property of these
spacetimes can easily be derived from the integrability
condition for the principal tensor, and its eigenvectors are
intrinsically related to the principal null directions and a
possibility to cast the metric in the Kerr–Schild form, we
refer the interested reader to a recent review [6].
The principal tensor is a non-degenerate, closed con-

formal Killing–Yano 2-form. In D number of spacetime
dimensions (in what follows we assumeD ≥ 4), it obeys an
equation

∇chab ¼ gcaξb − gcbξa; ξa ¼
1

D − 1
∇bhba; ð1Þ

or in the language of differential forms

∇Xh ¼ X ∧ ξ; ξ ¼ 1

D − 1
∇ · h; ð2Þ

where X is an arbitrary vector field. Since h is closed, there
exists at least locally a potential 1-form b such that

h ¼ db: ð3Þ
The condition of nondegeneracy means that the principal
tensor has the maximal possible (matrix) rank and pos-
sesses the maximal number of functionally independent
eigenvalues.
The classification of higher-dimensional metrics admit-

ting the principal tensor has been attempted in [7–10]—
the off-shell Kerr–NUT–(A)dS metric was found to be
a unique solution admitting the principal tensor. As a
starting point of the derivation, the authors considered a
Riemannian metric g in

D ¼ 2nþ ϵ; ð4Þ
dimensions, with ϵ ¼ 0, 1 in even, odd dimensions, and the
principal tensor was written in the Darboux frame,

h ¼
Xn
μ¼1

xμeμ ∧ êμ;

g ¼
Xn
μ¼1

ðeμeμμþ êμêμÞ þ εê0ê0: ð5Þ

Here, ðeμ; êμ; ê0Þ is an orthonormal frame and the quantities
xμ are related to the “eigenvalues” of the 2-form h. The
condition of nondegeneracy of the principal tensor requires
that there are exactly n nonvanishing and functionally
independent eigenvalues xμ whose gradients are linearly
independent. Obviously, the Euclidean signature is at least
formally assumed and the spatial character of the gradients,
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ðdxμÞ2 > 0; ð6Þ

naturally follows.
Provided these assumptions, it was shown in [7–10] that

the most general metric admitting the principal tensor takes
the canonical off-shell Kerr–NUT–(A)dS form. In even
dimensions it reads

g2n ¼
Xn
μ¼1

�
Uμ

Xμ
dx2μ þ

Xμ

Uμ

�Xn−1
j¼0

AðjÞ
μ dψ j

�
2
�
: ð7Þ

In odd dimensions we have two possibilities

gð1Þ2nþ1 ¼ g2n þ
c

AðnÞ

�Xn
k¼0

AðkÞdψk

�
2

; ð8Þ

gð2Þ2nþ1 ¼ g2n þ cAðnÞdψ2
n: ð9Þ

Here, c is an arbitrary parameter, the functions AðkÞ, AðjÞ
μ ,

and Uμ are “symmetric polynomials” of coordinates xμ:

AðkÞ ¼
Xn

ν1 ;…;νk¼1
ν1<…<νk

x2ν1…x2νk ; AðjÞ
μ ¼

Xn
ν1 ;…;νj¼1
ν1<…<νj

νi≠μ

x2ν1…x2νj ;

Uμ ¼
Yn
ν¼1
ν≠μ

ðx2ν − x2μÞ; ð10Þ

and each metric function Xμ is a function of a single
coordinate xμ:

Xμ ¼ XμðxμÞ: ð11Þ

To indicate that these functions are not specified, we call
such a metric off-shell. The Darboux frame (5) in these
coordinate reads

eμ ¼
�
Uμ

Xμ

�1
2

dxμ; êμ ¼
�
Xμ

Uμ

�1
2
Xn−1
j¼0

AðjÞ
μ dψ j;

ê0ð1Þ ¼
�

c

AðnÞ

�1
2Xn
k¼0

AðkÞdψk; ê0ð2Þ ¼ ðcAðnÞÞ12dψn: ð12Þ

The principal tensor is given by

h ¼
Xn
μ¼1

xμdxμ ∧
�Xn−1

k¼0

AðkÞ
μ dψk

�
¼

X
μ

xμeμ ∧ êμ; ð13Þ

and can be derived from the potential

b ¼ 1

2

Xn−1
k¼0

Aðkþ1Þdψk: ð14Þ

This single object generates a whole Killing tower of
explicit and hidden symmetries, including Killing vectors,
rank-2 Killing tensors, and increasing rank Killing–Yano
tensors, see [6].
When the vacuum Einstein equations are imposed,

Rab −
1

2
Rgab þ Λgab ¼ 0; ð15Þ

the metric functions take the following on-shell form
[2,9–11]:

evenD∶ Xμ ¼
Xn
k¼0

ckx2kμ − 2bμxμ;

oddD∶ Xð1Þ
μ ¼

Xn
k¼1

ckx2kμ − 2bμ −
c
x2μ

;

Xð2Þ
μ ¼

Xn
k¼1

ckx2kμ − 2bμ; ð16Þ

where the parameter cn is related to the cosmological
constant,

Λ ¼ 1

2
ð−1ÞnðD − 1ÞðD − 2Þcn; ð17Þ

while other parameters ck, bμ, and (in odd dimensions) c
are related to rotations, mass, and NUT parameters, see [6]
for discussion.
Although this result has been derived assuming the

formal Euclidean signature, it has been used also for the
Lorentzian case. Indeed, using a suitable Wick rotation (see
following sections) and choosing carefully coordinate
ranges, the metric (7)–(9) with metric functions (16) can
be a Lorentzian solution of Einstein’s equations [6]. For this
reason the uniqueness of the metric admitting the principal
tensor has been usually formulated regardless of the
signature.
However satisfactory this uniqueness result is in the

Euclidean signature, in what follows we will show that it
is no longer true in the spacetimes of Lorentzian and
other signatures. In particular, considering such signatures,
the principal tensor may possess null eigenvalues, that
is eigenvalues characterized by a null gradient. Such a
possibility has not been considered in the original con-
struction presented in [7–10]. This allows one to construct
new canonical metric elements with the principal tensor. In
this paper we present several such new metrics, uncovering
the fact that the classification of corresponding metrics is
far from complete and a much richer structure of space-
times with principal tensor may exist in four and higher
dimensions.
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Our paper is organized as follows. We start in four
dimensions and show that a complete set of Lorentzian
metrics admitting the principal tensor, classified long time
ago by Dietz and Rudiger [12] and Taxiarchis [13], can be
obtained by a certain limiting procedure starting from the
Euclidean off-shell canonical element (7). Still in four
dimensions, Sec. III is devoted to a few observations about
the Kerr–Schild ansatz in various signatures and its con-
nections to the construction of new canonical metrics. Both
considerations are then extended to higher dimensions in
Sec. IV. Section V is devoted to conclusions.

II. CANONICAL METRICS IN 4D

A. Euclidean signature

In four dimensions, and denoting by ðx; y; τ;ψÞ ¼
ðx1; x2;ψ0;ψ1Þ and X ¼ X1, Y ¼ X2, the unique
Euclidean metric (7) reads

gE ¼ X
y2 − x2

ðdτ þ y2dψÞ2 þ Y
x2 − y2

ðdτ þ x2dψÞ2

þ y2 − x2

X
dx2 þ x2 − y2

Y
dy2; ð18Þ

where ranges of coordinates x, y must be chosen such that
x2 < y2, X > 0, and Y < 0. The principal tensor is deter-
mined from

b ¼ 1

2
½ðx2 þ y2Þdτ þ x2y2dψ �: ð19Þ

Of course, both the eigenvalues fx; yg are spacelike.
The metric is a solution of vacuum Einstein equations,

provided we set

X ¼ c0 þ c1x2 þ c2x4 − 2bxx;

Y ¼ c0 þ c1y2 þ c2y4 − 2byy; c2 ¼ Λ=3: ð20Þ

One can check that a suitable choice of coordinate ranges
can be achieved by restricting x and y to lie in between the
roots of polynomials X and Y, respectively.

B. Lorentzian signature

To obtain the canonical metric (18) in the Lorentzian
signature, additionally to a suitable choice of coordinate
ranges, we must perform the following Wick rotation:

x ¼ ir; Δr ¼ −X; Δy ¼ −Y; ð21Þ

to get

gL ¼ −
Δr

Σ
ðdτ þ y2dψÞ2 þ Δy

Σ
ðdτ − r2dψÞ2

þ Σ
Δr

dr2 þ Σ
Δy

dy2; Σ ¼ r2 þ y2; ð22Þ

while the principal tensor reads

b ¼ 1

2
½ðy2 − r2Þdτ − r2y2dψ �: ð23Þ

Both its eigenvalues fr; yg are non-null, that is have non-
null gradients. For a proper choice of coordinate ranges, the
angular coordinate y is spacelike, and the causal character
of r depends on a sign of the metric function Δr, reflecting
whether we are below or above the horizon. fτ;ψg are
Killing time and angular coordinates, respectively, with
their causal character depending on signs of the metric
functions Δr and Δy.
The Kerr–NUT–(A)dS solution of vacuum Einstein

equations is recovered upon introducing the mass
M ¼ −ibx and the NUT parameter N ¼ by, yielding

Δr ¼ −c0 þ c1r2 −
1

3
Λr4 − 2Mr;

Δy ¼ −c0 − c1y2 −
1

3
Λy4 þ 2Ny: ð24Þ

In order to write this solution in the standard form, e.g.,
[14], one has to further introduce the rotation parameter a,
c0 ¼ −a2, set c1 ¼ 1 − a2Λ=3, and perform the following
coordinate transformation to the Boyer–Lindquist coordi-
nates ðt;ϕ; r; θÞ:

y ¼ a cos θ; ψ ¼ ϕ=a; τ ¼ t − aϕ: ð25Þ

However, as discovered by Dietz and Rudiger [12] and
Taxiarchis [13], there is yet another off-shell canonical
spacetime besides (22), that admits the principal tensor
given by (23). It reads1

gL0 ¼ Δy

Σ
ðdτ − r2dψÞ2 þ Σ

Δy
dy2 þ 2drðdτ þ y2dψÞ: ð26Þ

The eigenvalue r of the principal tensor is now null
everywhere, that is

r∶ ðdrÞ2 ¼ 0: ð27Þ

Despite this fact, the principal tensor is still nondegenerate
in the sense of definition in [7–10] and generates (in a
standard way) both isometries ∂τ and ∂ϕ and a nontrivial
Killing tensor in this spacetime. The metric (26) becomes a

1As per usual, in all expressions for the metric we assume a
symmetric tensor product in off-diagonal terms.
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solution of vacuum (with Λ ¼ 0) Einstein equations pro-
vided we set

Δy ¼ 2Ny: ð28Þ

We expect it to describe some kind of the NUT charged
Aichelberg–Sexl solution.
Although originally derived in a different way [12,13],

let us now demonstrate that the new canonical metric (26)
can in fact be obtained by a certain limit starting from the
metric (22). To this purpose, we rewrite (22) as

gL ¼ −
Δr

Σ

��
dτ þ y2dψÞ2 − Σ2

Δ2
r
dr2

�

þ Δy

Σ
ðdτ − r2dψÞ2 þ Σ

Δy
dy2

¼ −
Δr

Σ
ll þ 2drl þ Δy

Σ
ðdτ − r2dψÞ2 þ Σ

Δy
dy2; ð29Þ

where we introduced a null vector

l≡ dτ þ y2dψ þ Σ
Δr

dr: ð30Þ

Defining new coordinates

dτ̂ ¼ dτ þ r2

Δr
dr; dψ̂ ¼ dψ þ dr

Δr
; ð31Þ

we find that

l ¼ dτ̂ þ y2dψ̂ ; ð32Þ

while ðdτ − r2dψÞ ¼ ðdτ̂ − r2dψ̂Þ. That is, we obtained

gL ¼ −
Δr

Σ
ll þ 2drl þ Δy

Σ
ðdτ̂ − r2dψ̂Þ2 þ Σ

Δy
dy2; ð33Þ

with l given by (32). It is now obvious that one can take the
limit

Δr → 0; ð34Þ

the metric remains nondegenerate, while r becomes a null
coordinate and we recover the canonical metric (26). One
can easily check that neither the coordinate transformation
(31) nor the limit (34) affect (apart from a gauge term) the
potential b, (23).
Let us note that if one were to perform the limit Δr → 0

for the class of on-shell vacuum solutions of Einstein’s
equations, more care would have to be taken. Namely, the
limitΔr → 0 effectively sets all the constants, apart fromN,
equal to zero, and influences thus also other metric
functions, effectively recovering (28). However, since the

metric functions also determine coordinate ranges, these
ranges can degenerate in the limit and a suitable rescaling
of coordinates has to be performed to resolve such a
degeneracy. The limits of this type and the corresponding
scaling of coordinates have been recently studied in [15].

C. Other signature

Let us now perform an additional Wick rotation

y ¼ iz; Δz ¼ −Δy; Σ ¼ r2 − z2: ð35Þ

The metric (22) then gives

gLL ¼ −
Δr

Σ
ðdτ − z2dψÞ2 − Δz

Σ
ðdτ − r2dψÞ2

þ Σ
Δr

dr2 þ Σ
Δz

dz2; ð36Þ

while (26) yields

gLL0 ¼ Σ
Δz

dz2−
Δz

Σ
ðdτ−r2dψÞ2þ2drðdτ− z2dψÞ: ð37Þ

Both these metrics admit the principal tensor given by

b ¼ 1

2
½−ðz2 þ r2Þdτ þ r2z2dψ �: ð38Þ

The only difference is that in the latter case the eigenvalue r
is null.
We note that gLL is a vacuum solution of the Einstein

equations provided

Δr ¼ −c0 þ c1r2 −
1

3
Λr4 − 2Mr;

Δz ¼ c0 − c1z2 þ
1

3
Λz4 − 2Nz: ð39Þ

while gLL0 requires

Δz ¼ −2Nz: ð40Þ

Let us now apply the procedure above, with the aim to
make also the eigenvalue y null. Starting from (37), we can
write

gLL0 ¼ −
Δz

Σ

��
dτ − r2dψÞ2 − Σ2

Δ2
z
dz2

�
þ 2drðdτ − z2dψÞ

¼ −
Δz

Σ
mmþ 2dzmþ 2drðdτ − z2dψÞ; ð41Þ

where we introduced a null vector

m≡ dτ − r2dψ þ Σ
Δz

dz: ð42Þ
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Defining new coordinates

dτ̂ ¼ dτ −
z2

Δz
dz; dψ̂ ¼ dψ −

dz
Δz

; ð43Þ

we find that

m ¼ dτ̂ − r2dψ̂ ; ð44Þ

while ðdτ − z2dψÞ ¼ ðdτ̂ − z2dψ̂Þ. This allows one to take
the limit

Δz → 0; ð45Þ

recovering the new metric

gL0L0 ¼ 2dzðdτ̂ − r2dψ̂Þ þ 2drðdτ̂ − z2dψ̂Þ; ð46Þ

Of course, such a metric is just a flat metric. Nevertheless, it
possesses the same nondegenerate principal tensor, given
by (38), with now two null eigenvalues:

ðdrÞ2 ¼ 0; ðdzÞ2 ¼ 0: ð47Þ

Although the corresponding h ¼ db is reducible (can be
written as a skew symmetric product of Killing vectors), it
is nondegenerate in the sense of [7–10] and gives rise to
two Killing vectors and a (reducible) Killing tensor by a
standard construction.
To conclude, in this (double minus) signature, there are

three possible canonical metrics, (36), (37), and (46) that all
admit the principal tensor (38).

III. VARIATIONS ON THE KERR–SCHILD FORM

In this section we obtain the Kerr–Schild form [16,17] of
the canonical metric elements. As we shall see, the above
described method for generating the new off-shell canoni-
cal metrics shares many features with the procedure for
obtaining such a form.

A. Lorentzian signature

We start in the Lorentzian signature, from the Lorentzian
metric gL written in the form (33). Instead of setting Δr →
0 as we did in the previous section to obtain the metric (26),
we now split

Δr ¼ Δ̃r − f; ð48Þ

where both Δ̃r and f are arbitrary functions of coordinate
r. By applying the “inverse transformation” to (31) on the
tilde part,

dτ̂ ¼ dτ̃ þ r2

Δ̃r
dr; dψ̂ ¼ dψ̃ þ dr

Δ̃r
; ð49Þ

we hence recover the following off-shell Kerr–Schild form
of the canonical metric:

gL ¼ g̃L þ f
Σ
ll; ð50Þ

where g̃L is the canonical metric (22) withΔr → Δ̃r and l is
a null vector with respect to both gL and g̃L metrics:

l ¼ dτ̃ þ y2dψ̃ þ Σ
Δ̃r

dr; Σ ¼ r2 þ y2;

g̃L ¼ −
Δ̃r

Σ
ðdτ̃ þ y2dψ̃Þ2 þ Δy

Σ
ðdτ̃ − r2dψ̃Þ2

þ Σ
Δ̃r

dr2 þ Σ
Δy

dy2: ð51Þ

Moreover, the potential b reads

b ¼ 1

2
½ðy2 − r2Þdτ̃ − r2y2dψ̃ �; ð52Þ

and generates the principal tensor for both the metric gL and
the metric g̃L. In other words, one can add to the canonical
metric g̃L a term f

Σ ll, with arbitrary fðrÞ, and the metric still
admits the same principal tensor. We believe that this
observation is new and quite interesting.
Note, however, that this is no longer true at the level of

Killing tensors. Namely, g̃L admits the following Killing
tensor:

k̃L ¼ 1

Σ
½y2Δ̃rðdτ̃ þ y2dψ̃Þ2 þ r2Δyðdτ̃ − r2dψ̃Þ2�

þ Σ
�
r2dy2

Δy
−
y2dr2

Δ̃r

�
: ð53Þ

Whereas, the metric gL has

kL ¼ k̃L −
fy2

Σ
ll: ð54Þ

Note that such a Killing tensor again takes the
“Kerr–Schild form.”
In particular, we may choose

f ¼ 2Mr; Δ̃r ¼ −c0 þ c1r2 −
1

3
Λr4;

Δy ¼ −c0 − c1y2 −
1

3
Λy4; ð55Þ

in which case the metric g̃L describes a pure (A)dS space,
while the whole metric gL is the Kerr–(A)dS spacetime,
written as a linear in mass deformation of the (A)dS space
[16,17]. In this case, k̃L is a reducible Killing tensor of the
(A)dS space, and becomes a nonreducible Killing tensor of
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the Kerr–(A)dS spacetime, kL, upon adding the

− fy2

Σ ll term.

B. Other signature

Similarly, starting from the Lorentzian canonical element
(50), while performing the Wick rotation (35), repeating the
steps (29)–(44), splitting

Δz ¼ Δ̃z − g; ð56Þ

and finally applying the inverse transformation to (43), we
obtain the double off-shell Kerr–Schild form

gLL ¼ g̃LL þ fðrÞ
Σ

ll þ gðzÞ
Σ

mm; ð57Þ

where Σ ¼ r2 − z2, and

l ¼ dτ − z2dψ þ Σ
Δ̃r

dr;

m ¼ dτ − r2dψ þ Σ
Δ̃z

dz;

g̃LL ¼ −
Δ̃r

Σ
ðdτ − z2dψÞ2 − Δ̃z

Σ
ðdτ − r2dψÞ2

þ Σ
Δ̃r

dr2 þ Σ
Δ̃z

dz2: ð58Þ

We also have

b ¼ 1

2
½−ðz2 þ r2Þdτ þ r2z2dψ � ð59Þ

for the potential of the principal tensor of both gLL and g̃LL.
In particular, choosing

f ¼ 2Mr; Δ̃r ¼ −c0 þ c1r2 −
1

3
Λr4;

g ¼ 2Ñz; Δ̃z ¼ c0 − c1z2 þ
1

3
Λz4; ð60Þ

we recover the special case of the on-shell multi-Kerr–
Schild form discussed in all dimensions in [18]. Note that
the Kerr–NUT–(a)dS metric is written here as a linear in
“mass” and linear in “NUT charge” deformation of the (A)
dS space.
Another interesting choice is given by

f ¼ 1

3
Λr4; Δ̃r ¼ −c0 þ c1r2 − 2Mr;

g ¼ −
1

3
Λz4; Δ̃z ¼ c0 − c1z2 − 2Ñz: ð61Þ

This means that the Kerr–NUT–(A)dS metric can also be
understood as a linear in Λ deformation of the Kerr–NUT

metric, perhaps an interesting observation unnoticed in the
literature. Of course, this result may be combined with the
above special case, to get Kerr–NUT–(A)dS as a linear
deformation of flat space in all: mass, NUT, and Λ.
Similarly, starting from (37), we arrive at the following

off-shell Kerr–Schild metric:

gLL0 ¼ g̃LL0 þ gðzÞ
Σ

mm; ð62Þ

where Σ ¼ r2 − z2 and

m ¼ dτ − r2dψ þ Σ
Δ̃z

dz;

g̃LL0 ¼ Σ
Δ̃z

dz2 −
Δ̃z

Σ
ðdτ − r2dψÞ2

þ 2drðdτ − z2dψÞ: ð63Þ

This metric also admits the principal tensor, given by the
potential (59).
To summarize, we have seen that the procedures for

obtaining the new canonical metric element and that for
obtaining the Kerr–Schild form are quite similar. Namely,
the key ingredient is to write the original metric in terms of
a null vector, and perform a coordinate transformation so
that the metric is linear in the associated metric function Δ.
The Kerr–Schild form then corresponds to the appropriate
split Δ ¼ Δ̃ − f, whereas the null limit amounts to setting
Δ → 0.

IV. HIGHER-DIMENSIONAL GENERALIZATIONS

It is obvious that the above presented four-dimensional
results can be straightforwardly generalized to higher
dimensions. Namely, starting from the Euclidean metric
elements (7)–(9), one can perform up to nWick rotations of
the eigenvalues xμ and take their “null limit,” to produce a
family of new canonical metrics of various signatures. Also
the trick for obtaining the off-shell multi-Kerr–Schild form
works as expected.
In what follows, let us limit ourselves to the case of

Lorentzian signature and write the two canonical elements
and the corresponding off-shell Kerr–Schild form. We first
illustrate on a five-dimensional example and then proceed
to a general dimension.

A. 5d case

Let us start from the 5-dimensional Euclidean metrics
(8), (9), denoting by ðx; y; τ;ψ ;ϕÞ ¼ ðx1; x2;ψ0;ψ1;ψ2Þ
and X ¼ X1; Y ¼ X2. To obtain the Lorentzian version we
perform the Wick rotation (21). This yields
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gð1ÞL ¼ −
Δr

Σ
ðdτ þ y2dψÞ2 þ Δy

Σ
ðdτ − r2dψÞ2

þ Σ
Δr

dr2 þ Σ
Δy

dy2

−
c

r2y2
ðdτ þ ðy2 − r2Þdψ − r2y2dϕÞ2; ð64Þ

respectively,

gð2ÞL ¼ −
Δr

Σ
ðdτ þ y2dψÞ2 þ Δy

Σ
ðdτ − r2dψÞ2

þ Σ
Δr

dr2 þ Σ
Δy

dy2 − cr2y2dϕ2; ð65Þ

where Σ ¼ r2 þ y2, and assuming c < 0, Δy > 0. The
principal tensor is given by the potential

b ¼ 1

2
½ðy2 − r2Þdτ − r2y2dψ �; ð66Þ

both its eigenvalues fr; yg are spacelike.
The metric becomes a vacuum solution provided we set

Δð1Þ
r ¼ −

c
r2

þ c1r2 −
1

6
Λr4 þ 2M;

Δð1Þ
y ¼ c

y2
− c1y2 −

1

6
Λy4 þ 2N; ð67Þ

respectively

Δð2Þ
r ¼ c1r2 −

1

6
Λr4 þ 2M;

Δð2Þ
y ¼ c1y2 −

1

6
Λy4 þ 2N; ð68Þ

where we have denoted M ¼ bx and N ¼ by.
Note that

gð1;2ÞL þ fðrÞ
Σ

ll; l ¼ dτ þ y2dψ þ Σ
Δr

dr; ð69Þ

where fðrÞ is an arbitrary function, are again the off-shell
Kerr–Schild metrics with the same principal tensor (66).
By performing the transformation

dτ ¼ dτ̂ −
r2

Δr
dr; dψ ¼ dψ̂ −

dr
Δr

; ð70Þ

complemented with

dϕ ¼ dϕ̂ −
1

r2Δr
dr; ð71Þ

for the metric (64) and

dϕ ¼ dϕ̂; ð72Þ

for the metric (65), we can take the limit Δr → 0 to obtain

gð1ÞL0 ¼ Δy

Σ
ðdτ̂ − r2dψ̂Þ2 þ Σ

Δy
dy2 þ 2drðdτ̂ þ y2dψ̂Þ

−
c

r2y2
ðdτ̂ þ ðy2 − r2Þdψ̂ − r2y2dϕ̂Þ2; ð73Þ

gð2ÞL0 ¼ Δy

Σ
ðdτ̂ − r2dψ̂Þ2 þ Σ

Δy
dy2

þ 2drðdτ̂ þ y2dψ̂Þ − cr2y2dϕ̂2; ð74Þ

respectively, both admitting the same principal tensor (66).

The first metric, gð1ÞL does not solve the vacuum equations

for any choice of Δð1Þ
y , whereas the second one is a solution

provided we set

Δð2Þ
y ¼ 2N: ð75Þ

B. General dimension

To write the Lorentzian canonical metrics in a general
dimension, we perform the following Wick rotation:

xn ¼ ir; Xn ¼ −Δ; Un ¼ Σ; ð76Þ

leaving all other Xμ’s (contrary to the previous sections)
unchanged. We also understand all functions having
xn-dependence replaced by ir, for example,

Σ ¼
Yn−1
ν¼1

ðx2ν þ r2Þ: ð77Þ

The Lorentzian canonical element in even dimensions, (7),
then reads

gL2n ¼ −
Δ
Σ

�Xn−1
j¼0

AðjÞ
n dψ j

�
2

þ Σ
Δ
dr2

þ
Xn−1
μ¼1

�
Uμ

Xμ
dx2μ þ

Xμ

Uμ

�Xn−1
j¼0

AðjÞ
μ dψ j

�
2
�
: ð78Þ

In odd dimensions, corresponding to (8) and (9), we have

gð1ÞL2nþ1 ¼ gL2n þ
c

AðnÞ

�Xn
k¼0

AðkÞdψk

�
2

; ð79Þ

gð2ÞL2nþ1 ¼ gL2n þ cAðnÞdψ2
n: ð80Þ

All of them admit the principal tensor given by (14),
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b ¼ 1

2

Xn−1
k¼0

Aðkþ1Þdψk: ð81Þ

The metrics become vacuum solutions provided we set

evenD∶ Δ ¼ −
Xn
k¼0

ckð−r2Þk − 2Mr;

oddD∶ Δð1Þ ¼ −
Xn
k¼1

ckð−r2Þk þ 2M −
c
r2
;

Δð2Þ ¼ −
Xn
k¼1

ckð−r2Þk þ 2M; ð82Þ

while other Xμ’s (μ ¼ 1;…; n − 1Þ are given in (16).
As in the lower-dimensional cases, we introduce a null

vector

l ¼
Xn−1
j¼0

AðjÞ
n dψ j þ

Σ
Δ
dr; ð83Þ

and change coordinates as

dψ̂ j ¼ dψ j þ
r2ðn−1−jÞ

Δ
dr; ð84Þ

with the expression for ψ̂n modified to just ψ̂n ¼ ψn in
the second odd-dimensional case (80). Here, τ̂≡ ψ̂0

plays a role of time coordinate. Such a change satisfiesP
n−1
j¼0 A

ðjÞ
μ dψ j ¼

P
n−1
j¼0 A

ðjÞ
μ dψ̂ j for μ ¼ 1;…; n − 1,P

n
k¼0 A

ðkÞdψk ¼
P

n
k¼0 A

ðkÞdψ̂k, and l simplifies to

l ¼
Xn−1
j¼0

AðjÞ
n dψ̂ j: ð85Þ

Here we have extensively used the identity

Xn−1
j¼0

AðjÞ
μ

ð−x2νÞn−1−j
Uν

¼ δνμ: ð86Þ

The metric takes the form

gL2n ¼ −
Δ
Σ
ll þ 2ldr

þ
Xn−1
μ¼1

�
Uμ

Xμ
dx2μ þ

Xμ

Uμ

�Xn−1
j¼0

AðjÞ
μ dψ̂ j

�
2
�
; ð87Þ

supplemented by (79) or (80) with ψ̂ j instead of ψ j in the
odd-dimensional case.
Clearly, splitting the metric function Δ ¼ Δ̃ − fðrÞ

yields the off-shell Kerr–Schild form

gL ¼ g̃L þ fðrÞ
Σ

ll; ð88Þ

where g̃L is given by (78)–(80) with Δ replaced by Δ̃. Both
gL and g̃L admit the same principal tensor. (If other
signatures were considered, we would recover the off-shell
multi-Kerr–Schild form, generalizing the results in [18].)
In the metric (87) we can easily perform the limit Δ → 0,

making the eigenvalue r null, and obtaining the new
canonical elements:

gL02n ¼ 2dr

�Xn−1
j¼0

AðjÞ
n dψ̂ j

�

þ
Xn−1
μ¼1

�
Uμ

Xμ
dx2μ þ

Xμ

Uμ

�Xn−1
j¼0

AðjÞ
μ dψ̂ j

�
2
�
; ð89Þ

and

gð1ÞL02nþ1
¼ g̃L2n þ

c

AðnÞ

�Xn
k¼0

AðkÞdψ̂k

�
2

; ð90Þ

gð2ÞL02nþ1
¼ g̃L2n þ cAðnÞdψ̂2

n: ð91Þ

These metrics become the vacuum solutions of Einstein
equations (with Λ ¼ 0) provided we set

evenD∶ Xμ ¼ −2bμxμ;

oddD∶ Xð2Þ
μ ¼ −2bμxμ; ð92Þ

whereas there is no solution for Xð1Þ
μ .

Let us finally note that by introducing the following
veilbein (μ ¼ 1;…; n − 1Þ:

k¼ dr; l ¼
Xn−1
j¼0

AðjÞ
1 dψ̂ j;

eμ ¼
�
Uμ

Xμ

�1
2

dxμ; êμ ¼
�
Xμ

Uμ

�1
2Xn−1
j¼0

AðjÞ
μ dψ̂ j;

ê0ð1Þ ¼
�

c

AðnÞ

�1
2Xn
k¼0

AðkÞdψ̂k; ê0ð2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
cAðnÞ

p
dψ̂n; ð93Þ

where k and l are null, with k · l ¼ 1, the new metrics
(89)–(91), together with their principal tensor can be
written as

h ¼ −r k ∧ l þ
Xn−1
μ¼1

xμeμ ∧ êμ; ð94Þ

gL0 ¼ 2 kl þ
Xn
μ¼2

ðeμeμ þ êμêμÞ þ ε ê0ê0; ð95Þ
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which is a “null Lorentzian version” of the Darboux
frame (5).

V. CONCLUSIONS

It has been believed that the classification of metrics
admitting the principal tensor, that is a nondegenerate
closed conformal Killing–Yano 2-form, is completed and
uniquely leads to the off-shell Kerr–NUT–(A)dS metric
(reviewed in the Introduction). However, as shown in this
paper, this is not true unless the signature of the metric is
Euclidean. The original classification assumed the
Euclidean signature for the metric and the canonical
Darboux form for the principal tensor, see Eq. (5).
Consequently, also the eigenvalues of the principal tensor
were assumed to have spacelike character.
In this paper we have shown how to construct new

canonical elements whose characteristic feature is that one
or more of the eigenvalues of the principal tensor are null.
Among these, the new Lorentzian canonical elements (89)–
(91) are perhaps of the biggest interest, generalizing the
4-dimensional metric element constructed in [12,13]. These
metrics can formally be constructed by a procedure similar
to obtaining the Kerr–Schild form. Namely, one introduces
a null vector and performs a coordinate transformation such
that the metric becomes linear in the corresponding metric
function. Such a metric function can then be sent to zero,
making the associated eigenvalue null, while other func-
tions remain unspecified. Going back to the canonical
coordinates recovers the new metric elements (89)–(91).
This is a clever trick for how to switch off one of the metric
functions without making the metric singular. In this sense,

the new metrics can be considered as a “special case” of the
off-shell Kerr–NUT–(A)dS metric.
The presented results reopen the problem of classifying

the metrics admitting the principal tensor. Of special
importance to physics are of course the metrics with
Lorentzian signature. While in this paper we uncovered
some new such metrics, the classification is far for
complete. In this paper we simply concentrated on the
metrics for which the principal tensor takes the “null
Lorentzian Darboux form” (95), with r a null eigenvalue.
However, in the Lorentzian signature there is many more
possibilities for the canonic form of a non-degenerate
2-form, see e.g., [19]. For this reason the problem
of classifying all Lorentzian metrics admitting the principal
tensor still remains open and will be discussed else-
where [20].
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