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Charged particle in higher dimensional weakly charged rotating black hole spacetime
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Institute of Theoretical Physics,

Faculty of Mathematics and Physics,

Charles University in Prague,
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We study charged particle motion in weakly charged higher dimensional black holes. To describe
the electromagnetic field we use a test field approximation and use the higher dimensional Kerr-
NUT-(A)dS metric as a background geometry. It is shown that for a special configuration of the
electromagnetic field the equations of motion of charged particles are completely integrable. The
vector potential of such a field is proportional to one of the Killing vectors (called primary Killing
vector) from the ‘Killing tower’ of symmetry generating objects which exists in the background
geometry. A free constant in the definition of the adopted electromagnetic potential is proportional
to the electric charge of the higher dimensional black hole. The full set of independent conserved
quantities in involution is found. It is demonstrated, that Hamilton–Jacobi equations are separable,
as well as the corresponding Klein–Gordon equation and its symmetry operators.
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I. INTRODUCTION

In this paper we describe an interesting class of space-
times where the equations of motion of charged particles
allows a complete separation of variables. Namely we
study weakly charged rotating higher dimensional black
holes. We assume that a background geometry is a so-
lution of the (vacuum) Einstein equations and include
the electromagnetism as a test field which does not af-
fect the geometry. It is well known that in the four di-
mensional case this approach can be useful. The reason
is that for known charged elementary particles the ratio
of the charge to mass is very large. As a result, a test
electromagnetic field, which does not change the black
hole geometry, can dramatically change the motion of
charged particles (see e.g. [1, 2] and references therein).
Another application of the test electromagnetic field ap-
proximation is study of the gyromagnetic ratio of higher
dimensional rotating black hole [3].
We study charged particle motion in a spacetime with

a test electromagnetic field. We focus on the case when
the background geometry describes a rotating higher-
dimensional black hole [4], and its generalization with
‘NUT’ parameters and/or with a non-trivial cosmolog-
ical constant [5, 6]. The Kerr-NUT-(A)dS metrics in
the higher dimensions have been extensively studied re-
cently. In particular it was demonstrated that they have
a number of ‘miraculous’ properties which make then
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similar to their four-dimensional ‘cousin’. In particular,
it was found that the most general solution of the Ein-
stein equations with the cosmological constant, describ-
ing higher dimensional rotating black holes with NUT
parameters (Kerr-NUT-(A)dS metric) possesses a non-
degenerate closed 2-form of the conformal Killing-Yano
tensor (principal Killing-Yano tensor) [7, 8]. It was shown
that this object generates a ‘tower’ of conserved quan-
tities [9–12] which makes the geodesic equations com-
pletely integrable in these spacetimes [9, 12, 13]. Later it
was shown that the Hamilton–Jacobi and Klein–Gordon
equations are separable [14]. Analogous results on sep-
arability for another field equations in this background
have been obtained in [15–20]. For a general review, see
[7]. The presence of a principal Killing-Yano tensor im-
poses restrictions on the form of the metric. Namely,
the metric of the spacetime can be written in the form,
where the only freedom is a set of functions of one vari-
ables. This result was proved in [13, 21, 22].
In this paper we demonstrate that weak charges of

the higher dimensional black hole solution do not change
their remarkable property: the equations of a charged
particle motion remains completely integrable. In the
four dimensional case this result is not surprising: Mo-
tion of charged particles in the Kerr-Newman spacetime
has the same property [23] and our result can be thus
obtained by linearization. In five dimensions our re-
sults might be related to the complete integrability of
the particle motion equations in black hole solutions of
the Chern-Simon version of Maxwell-Einstein equations
[24, 25]. In the higher dimensions the obtained results
are much less trivial.
The paper is organized as follows. Section II con-
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tains some preliminary material. Required information
concerning spacetimes with a non-degenerate principal
Killing-Yano tensor is collected in Section III. Adopted
ansatz for a test electromagnetic field in this geometry is
described in Section IV. In Section V, we prove that the
motion of a charged particle in the electromagnetic field,
generated by the primary Killing vector, is complete inte-
grable. In Sections VI and VII we prove the separability
of the Hamilton–Jacobi equations and of all symmetry
operators of the Klein–Gordon operator. For simplicity
we give the proofs in the even dimensional case, but they
are valid in any number of dimensions. The changes re-
quired in the odd dimensional case are discussed in Sec-
tion VIII. The results of the paper are briefly summa-
rized in the last Section.

II. PRELIMINARIES

Consider a particle with a mass µ, a charge q, which is
moving in the electromagnetic field F = dA. Its equa-
tion of motion is

µ
D2xa

dτ2
= qF ab

Dxb

dτ
. (1)

Here, D/dτ is the covariant derivative with respect to
the proper time τ . It is useful to introduce the affine
parameter λ = τ/µ. Denoting by the dot a covariant
derivative with respect to parameter λ, the equation of
motion can be rewritten as

ẍa = qF ab ẋ
b . (2)

It is well known that the symmetries of the background
geometry guarantee the existence of conserved quanti-
ties even for motion under influence of the electromag-
netic field, provided that the electromagnetic field sat-
isfies some consistency conditions. Let us recall that a
Killing vector ξ and a rank two Killing tensor k satisfy
the equations

∇(aξb) = 0 ,

kab = k(ab) , ∇(akbc) = 0 .
(3)

If the spacetime possesses a Killing vector ξ, the compo-
nent of the canonical momentum along the Killing vector,
i.e., the quantity

pξ = ξa(gab ẋ
b + qAa) (4)

is conserved if the vector potential A is Lie-conserved
along ξ,

£ξA = [ξ,A] = 0 . (5)

The component of the velocity along ξ,

uξ = ξa ẋ
a , (6)

is conserved if

ξnFan = 0 . (7)

This second condition can be generalized to quantities
quadratic in velocities if the background geometry has a
rank two Killing tensor k.1 Namely, the quantity

ẋakab ẋ
b (8)

is conserved if2

k(a
n Fb)n = 0 . (9)

Since the metric g is the Killing tensor satisfying trivially
this condition, we get obvious conservation of the norm
of the velocity ẋagabẋ

b.
It will be useful to work also with Hamiltonian for-

malism. The equation of motion (2) follows from the
Lagrangian

L =
1

2
gabẋ

aẋb + qAaẋ
a . (10)

To write a Hamiltonian one defines the momentum

pa =
∂L

∂ẋa
= gabẋ

b + qAa , (11)

and the corresponding Hamiltonian reads

H =
1

2
gab(pa − qAa)(pb − qAb) . (12)

Since it does not depend on λ, the Hamiltonian is the in-
tegral of motion. For our choice of the affine parameter λ
one finds that its value is given by

H = −
1

2
µ2 . (13)

The conservation law (13) with Hamiltonian (12) im-
plies the following Hamilton–Jacobi equation for the clas-
sical action S = − 1

2λµ
2 + S(xa):

− µ2 = gab
(

∂aS − qAa
)(

∂bS − qAb
)

. (14)

From the same Hamiltonian one obtains the equation for
a charged massive field ϕ by substituting pa → −i∇a.
The corresponding Klein-Gordon equation is

[

[∇a − iqAa] g
ab [∇b − iqAb]− µ2

]

ϕ = 0 . (15)

Consider now a Ricci-flat spacetime, Ric = 0. In
the Lorentz gauge ∇nA

n = 0, the Maxwell equations

1 Analogy of condition (5) for quadratic quantity generalizing (4) is
not so straightforward. It involves Schouten–Nijenhuis brackets
[k,A]SN, as could be expected, but also some additional non-
trivial conditions on k, A, and their first derivatives.

2 A related condition in terms of Killing-Yano tensor generating k

can be found in [26].
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∇nF
an = 0 reads ∇n∇

nAa = 0. The Killing vector ξ

obeys the same equation ∇n∇
nξa = 0. This means that

the Killing vector field can be used as a potential of a
special test electromagnetic field A

A = Q ξ . (16)

Here, Q is a normalization constant parameterizing the
strength of the field.
Let us assume that the background spacetime is even

more special, namely, that it allows the separability of un-
charged Hamilton–Jacobi and Klein–Gordon equations.
It is natural to ask, what happens with these equations
when one consider the system with the test Killing elec-
tromagnetic field (16).
If the separation takes place with respect to the Killing

coordinate corresponding to the Killing vector ξ,

ξa∂aS = Ψ , ξa∂aϕ = Ψϕ , (17)

with Ψ being the separation constant, the charged
Hamilton–Jacobi (14) and Klein–Gordon equations (15)
take the form

gab ∂aS ∂bS +M2 = 0 , (18)
[

gab∇a∇b −M2
]

ϕ = 0 . (19)

Here, the function M2 is given by

M2 = µ2 − 2eΨ+ e2ξ2 , (20)

with e = qQ.
These equations clearly resemble the uncharged case.

Thus in the presence of the test Killing electromagnetic
field the Hamilton–Jacobi and Klein–Gordon equations
preserve their form with the only change of the constant
µ2 by a function M2. Evidently, the constant shift −2eΨ
does not affect the complete separability property of the
initial equations. Non-trivial obstacle to the separability
can create the term ξ2. We shall describe now a phys-
ically interesting case when the complete separability is
not broken by the external Killing electromagnetic field.

III. HIGHER-DIMENSIONAL BLACK HOLE

GEOMETRY

Rotating black hole solution in higher dimension be-
long to broader class of spacetimes studied in [5, 6, 21,
22]. In even dimension D = 2n, geometry of such space-
times is described by the metric

g =

n
∑

µ=1

[

Uµ
Xµ

dx 2
µ +

Xµ

Uµ

(

n−1
∑

j=0

A(j)
µ dψj

)2
]

. (21)

Here xµ, µ = 1, . . . , n, correspond to radial and ‘az-
imuthal’ directions and ψk, k = 0, . . . , n− 1 to temporal
and longitudinal directions, namely ψ0 = t. The radial
coordinate and some other quantities are rescaled by the

imaginary unit i in order to bring the metric into a more
symmetric form, cf. e.g. [5]; however, the metric is real.
The signature of the metric depends on the signs of the
metric functions. We use Latin indices from the begin-
ning of the alphabet to label the whole coordinate set:
{xa} = {xµ, ψk}.

The functions Uµ and A
(k)
µ are defined as follows

A(k)
µ =

n
∑

ν1,...,νk=1
ν1<···<νk, νi 6=µ

x2ν1 · · · x
2
νk

, Uµ =

n
∏

ν=1
ν 6=µ

(x2ν − x2µ) . (22)

These functions satisfy the important relations [14]

n
∑

µ=1

A(i)
µ

(−x2µ)
n−1−j

Uµ
= δij ,

n−1
∑

j=0

A(j)
µ

(−x2ν)
n−1−j

Uν
= δνµ ,

(23)
for i, j = 0, . . . , n− 1 and µ, ν = 1, . . . , n.
The quantities Xµ, µ = 1, . . . , n, are functions of a sin-

gle variable, that is each Xµ depends only on the variable
xµ, Xµ = Xµ(xµ). However, when these functions are
not specified, the metric (21) does not satisfy the vacuum
Einstein equations. Without choosing a concrete form of
functions Xµ we speak about, so called, “off-shell” geom-
etry. The vacuum (with a cosmological constant) black
hole geometry is recovered [5, 6] by setting

Xµ = bµ xµ +

n
∑

k=0

ck x
2k
µ . (24)

The constants ck and bµ are then related to angular
momenta, mass, NUT parameters, and the cosmological
constant (which is proportional to cn).
We can write the metric (21) in the diagonal form

g =
n
∑

µ=1

(

Uµ
Xµ

ǫµǫµ +
Xµ

Uµ
ǫµ̂ǫµ̂

)

. (25)

introducing the non-normalized one-forms {ǫµ, ǫµ̂},

ǫµ = dxµ , ǫµ̂ =

n−1
∑

j=0

A(j)
µ dψj . (26)

In this frame, the Ricci tensor for the off-shell geometry
is diagonal,

Ric =
n
∑

µ=1

rµ

(

Uµ
Xµ

ǫµǫµ +
Xµ

Uµ
ǫµ̂ǫµ̂

)

, (27)

where

rµ = −
1

2xµ

[ n
∑

ν=1

x2ν
(

x−1
ν Xν

)

,ν

Uν

]

,µ

. (28)

For the Einstein spacetime, polynomials (24) lead to a
constant value rµ = −(2n− 1)cn = Λ/(n− 1).
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The off-shell geometry (21) is endowed with a lot of
symmetries. The symmetry set, forming a ‘Killing tower’,
is generated by a single object called a principal confor-

mal Killing-Yano tensor [7, 10]. This is a non-degenerate
closed conformal Killing-Yano 2-form h,

h =
n
∑

k=1

xµ ǫµ ∧ ǫµ̂ . (29)

The explicit symmetries are encoded by the Killing vec-
tors l(k), k = 0, . . . , n− 1,

l(k) = ∂ψk
. (30)

The geometry possesses also hidden symmetries encoded
by the 2nd rank Killing tensors k(j), j = 0, . . . , n− 1
which in their covariant form read

k(j) =

n
∑

µ=1

A(j)
µ

(

Uµ
Xµ

ǫµǫµ +
Xµ

Uµ
ǫµ̂ǫµ̂

)

. (31)

In particular, for j = 0, the Killing tensor reduces to the
metric, k(0)ab = gab.
The Killing vector ξ,

ξa =
1

D − 1
∇nh

na , (32)

is called primary Killing vector, since it turns out that
it is the first in the tower of the Killing vectors defined
above, ξ = l(0) = ∂ψ0

. All Killing vectors can be actually
obtained from the primary Killing vector using, for our
purposes, important relations

la(k) = kan(k) ξn . (33)

IV. TEST ELECTROMAGNETIC FIELD

In higher dimensions, a generalization of the above de-
scribed geometry to the case of arbitrary rotating charged
black hole is not known. However, we can investigate at
least the weakly charged black hole, i.e., the neutral black
hole spacetime with a test electromagnetic filed satisfy-
ing the Maxwell equations in such a background. Such an
approximation is plausible since even the electromagnetic
field small enough not to influence the background geom-
etry can cause significant changes in the particle motion
thanks to a large charge-to-mass ration q/µ for typical
particles.
Test electromagnetic fields on the background (21)

have been studied, e.g., in [27]. However, in this paper we
concentrate on the special Killing electromagnetic field,
i.e., we assume the electromagnetic field with the vector
potential (16) given by a Killing vector ξ. In general, the
electric current generating such a field is Ja = 2QRicabξ

b

For Ricci-flat spacetimes the Killing electromagnetic field
is thus source-free, and for the Einstein spaces the electric
current is aligned along the generating Killing vector.

In the following we will investigate the electromagnetic
field generated by the primary Killing vector ξ on the
black hole background (21). Since we are interested in the
motion of the particle with charge q, we use the following
parametrization:

qA = e ξ . (34)

The constant e/q parametrize the field strength and it is
proportional to the test charge of the black hole.

The results derived in the following sections do not
depend on a nature of the source J of the primary Killing
electromagnetic field. They hold for a general off-shell
geometry (21). In such a general case, the corresponding
electric current is

qJ = 2e

n
∑

µ=1

rµǫµ̂ . (35)

It represents the source distributed, in general, in the
whole spacetime, which is not very reasonable. There-
fore, physically the most interesting case is when the
vacuum Einstein equations Ric = 0 are satisfied, so that
J = 0.

In this case, the electromagnetic field (34) belongs to
the class of the electromagnetic fields studied in [27].
Namely, the potential (34) is gauge equivalent to the
choice eµ = e/q bµ of the constants eµ parameterizing the
field in [27], with bµ from (24). In four dimension, it can
be also obtained from the electromagnetic field of the
Kerr-Newman solution by linearization.

V. PHASE SPACE DESCRIPTION OF THE

PARTICLE MOTION

The motion of the particle in the spacetimeM with the
metric (21) can be described in phase space represented
as the cotangent bundle T

∗M. The basic variable is
the one-form of canonical momenta p, components pa of
which are canonically conjugate to xa, a = 1, . . . , D.

The motion in the absence of the electromagnetic field
was studied in [9, 12] and it was shown that the Killing
vectors (30) and tensors (31) generate functionally in-
dependent and mutually Poisson-commuting observables
which are linear and quadratic in momentum p, namely,

0L(k) = la(k) pa , 0K(j) = kab(j) papb . (36)

The commutations relations of the observables (36) are
equivalent to nontrivial geometrical relations among the
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Killing vectors and tensors:3,

ln(k)∇nl
a
(l) − ln(l)∇nl

a
(k) = 0 , (37)

ln(k)∇nk
ab
(j) = kan(j) ∇nl

b
(k) + kbn(j) ∇nl

a
(k) , (38)

k
n(a
(i) ∇nk

bc)
(j) − k

n(a
(j) ∇nk

bc)
(i) = 0 . (39)

The geodesic motion of an uncharged particle is gen-
erated by the Hamiltonian 0H which is essentially one of
these observables,

0H =
1

2
0K(0) =

1

2
pag

abpb . (40)

All the observables 0L(k) and 0K(j) are thus conserved
quantities (i.e., integrals of motion) for the geodesic mo-
tion. They are independent and in involution. As a
result, according to the Liouville theorem the geodesic
motion is completely integrable.
However, in this paper we want to investigate a motion

of a charged particle modified by the electromagnetic field
(34). Such a motion is described by the Hamiltonian (12),
i.e.,

eH =
1

2
(pa − eξa) g

ab (pb − eξb) . (41)

We demonstrate now that the corresponding equations
also complete integrable. However, in this case the in-
tegrals of motion must be modified. Namely, we define
new observables

eL(k) = la(k) pa , eK(j) = kab(j) (pa − ela)(pb − elb) . (42)

We show that these observables are in involution

{eL(l),
eL(k)}=0 , {eL(l),

eK(j)}=0 , {eK(i),
eK(j)}=0 .

(43)
And since eH = 1

2
eK(0), they form a complete set of con-

served quantities for motion of the particle under an in-
fluence of the electromagnetic field.
The modified observables (42) can be related to the

observables (36) as

eL(k) =
0L(k) ≡L(k) ,

eK(j) =
0K(j) − 2eL(j) + e2kab(j) ξaξb .

(44)

After plugging these expressions into equations (43) and
using the fact that quantities (36) commute with each
other, it remains to prove that {L(k), k

ab
(j) ξaξb} = 0 and

{0K(i), k
ab
(j) ξaξb}+ {kab(i) ξaξb,

0K(j)} = 0. Evaluating the

Poisson brackets4 we can translate these equalities to the

3 These relation correspond to vanishing Schouten–Nijenhuis
brackets among all tensors l(k) and k(j).

4 In covariant formalism we have {A,B} = ∇nA ∂nB − ∂nA ∇nB,
where ∇n is the covariant derivative “ignoring” the momentum
dependence of the phase space observables A, B (taking a par-
allelly transported p as a constant) and ∂n is derivative with
respect to the momentum p. Cf., for example, the Appendix
of [9].

language of tensors on the spacetime

ln(k)∇n
(

kab(j) ξaξb
)

= 0 ,

kcn(i)∇n
(

kab(j) ξaξb
)

− kcn(j)∇n
(

kab(i) ξaξb
)

= 0 .
(45)

The first equality can be easily proved realizing that
thanks to (33) kab(j) ξaξb = gab l

a
(j)ξ

b and all the quantities

l(j), ξ, and g are Lie-conserved along l(k).
In the second equality one has to perform the covariant

derivatives on the tensor products in their argument and
use the identity

kcn(i)∇nk
ab
(j) − kcn(j)∇nk

ab
(i) =

=−
(

kan(i)∇nk
bc
(j)+k

bn
(i)∇nk

ac
(j)

)

+
(

kan(j)∇nk
bc
(i)+k

bn
(j)∇nk

ac
(i)

)

,

(46)

which follows from Eq. (39). Substituting
(

∇nk
ac
(j)

)

ξa =

∇nl
c
(j) −

(

∇nξa
)

kac(j) (cf. (33)), we finally get

2kca(i)
(

∇aξb
)

kbn(j)ξn + 2kca(j)
(

∇aξb
)

kbn(i)ξn

− (terms with i and j exchanged) = 0 .
(47)

At the end we used the definition (3) of the Killing vector.
We thus concluded the proof that the observables (42)

are in involution and therefore they also commute with
Hamiltonian. They are functionally independent, which
follows from the independence of variables (36) which was
proven in [10, 12]. Therefore, the Hamiltonian describe
completely integrable motion with linear and quadratic
integrals of motion.

VI. HAMILTON-JACOBI EQUATIONS

Alternatively, instead of the phase space descriptions
we can use Hamilton–Jacobi theory to describe the par-
ticle motion. Namely, for each conserved quantity we
can write down the Hamilton–Jacobi equation for the
Hamilton–Jacobi function (classical action) S. It is ob-
tained by substituting dS for the momentum p in defi-
nitions of conserved quantities:

la(k) ∂aS = Ψk , (48)

kab(j) (∂aS − e ξa)(∂bS − e ξb) = Ξj . (49)

Here, Ψk and Ξj are constants of the motion.
Now we show that all these equations can be simulta-

neously solved by the separability ansatz for S

S =

n
∑

µ=1

Sµ(xµ) +

n−1
∑

k=0

Ψkψk , (50)

where the functions Sµ(xµ) are functions of a single vari-
able xµ.
For e = 0 such a separability of the Hamilton–Jacobi

equations was proved in [14] and [17]. Adding electro-
magnetic field, generated by the primary Killing vector,
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does not change the first set of equations (48). It is triv-
ially solved by the ansatz (50). The equations quadratic
in dS can be written as (cf. Eq. (44))

kab(j) ∂aS ∂bS − 2e ξa∂aS + e2kab(j)ξaξb = Ξj . (51)

Plugging in the separability ansatz (50) and using the
relation

kab(j) ξaξb =

n
∑

µ=1

A
(j)
µ

Uµ
Xµ , (52)

one obtains

n
∑

µ=1

A
(j)
µ

Uµ
Xµ

(

S′2
µ +X−2

µ

(

n−1
∑

k=0

Ψk
(

−x2µ
)n−1−k

)2

+ e2
)

=

= Ξj + 2eΨj , (53)

where, the prime denotes the derivative of Sµ with re-
spect to its single argument. We multiply both sides of
Eq. (53) by (−x2µ)

n−1−j and sum over j. Since Eq. (23)

tell us that the matrix (−x2µ)
n−1−j is inverse to A

(j)
µ /Uµ,

we obtain

Xµ

(

S′2
µ +X−2

µ Ψ̃2
µ + e2

)

= Ξ̃µ + 2e Ψ̃µ . (54)

Here we introduced the polynomial functions Ψ̃µ and Ξ̃µ
of one variable xµ with coefficients given by Ψk and Ξj ,
respectively:

Ψ̃µ =

n−1
∑

k=0

Ψk(−x
2
µ)
n−1−k , Ξ̃µ =

n−1
∑

k=0

Ξk(−x
2
µ)
n−1−k .

(55)
Eq. (54) gives an ordinary differential equation for each
Sµ

(

S′
µ

)2
=

Ξ̃µ
Xµ

−
( Ψ̃µ
Xµ

− e
)2

. (56)

Hence, the functions Sµ, satisfying these equations, gen-
erate through (50) the solution of all Hamilton–Jacobi
equations.

VII. SEPARABILITY AND SYMMETRY

OPERATORS OF KLEIN–GORDON EQUATION

A field analogue of the spinless particle motion is a
scalar field governed by the Klein–Gordon equation. In
the presence of the electromagnetic field it must be mod-
ified into (15). For the electromagnetic field (34) we thus
get

[

[∇a − ieξa] g
ab [∇b − ieξb]− µ2

]

ϕ = 0 . (57)

The Klein-Gordon operator has been obtained from the
Hamiltonian by the substitution p → −i∇. In a simi-
lar manner we introduce a set of operators generated by

observables (42)

eL(k) = −ila(k) ∇a ,

eK(j) = −[∇a − ie ξa] k
ab
(j) [∇b − ie ξb] ,

(58)

which turns out to be commuting with each other.

[eL(k),
eL(k)] = 0 , [eL(k),

eK(j)] = 0 , [eK(i),
eK(j)] = 0 .

(59)
Since the charged Klein–Gordon operator in (57) is sim-
ply related to eK(0), it also means that these operators
are symmetry operators of this Klein–Gordon operator.
In the absence of the electromagnetic field the com-

mutation relation (59) were proved in [17]. The electro-
magnetic field modifies only operators eK(j) and we can
write

eL(k) =
0L(k) ≡L(k) ,

eK(j) =
0K(j) − 2eL(j) + e2 kab(j) ξaξb .

(60)

Here we used (33) and that the Killing vectors have van-
ishing divergence, ∇al

a
(j) = 0.

We can write operators (58) as a linear combination of

another of operators L̃(k) and
eK̃(j):

L(k) =
n
∑

µ=1

A
(k)
µ

Uµ
L̃(µ) ,

eK(j) =
n
∑

µ=1

A
(j)
µ

Uµ
eK̃(µ) , (61)

with

L̃(µ) =

n−1
∑

j=0

(−x2µ)
n−1−jL(j) ,

eK̃(µ) =

n−1
∑

j=0

(−x2µ)
n−1−j eK(j) .

(62)

It was shown in [17], that the operators 0K̃(j) have a form:

0K̃(µ) =
[

X̃(j) +
1

Xµ

L̃2
(j)

]

, (63)

with

X̃(µ) = −
∂

∂xµ

[

Xµ

∂

∂xµ

]

. (64)

The relations (60) and (52) allow us to rewrite the mod-

ified operators eK̃(j) in a similar way

eK̃(µ) =
[

X̃(µ) +
1

Xµ

[

L̃(µ) − eXµ

]2
]

. (65)

None of the above operators depend on the Killing co-
ordinates ψk. Operators with a label µ, eK̃(µ), L̃(µ), and

X̃(µ), besides ∂/∂ψk depend only on the corresponding
coordinate xµ and the derivative ∂/∂xµ. They do not
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contain xν or ∂/∂xν for ν 6= µ. As a result the operators
commute among themselves

[L̃(µ), L̃(ν)] = 0 , [L̃(µ),
eK̃(ν)] = 0 , [eK̃(µ),

eK̃(ν)] = 0 ,
(66)

for µ 6= ν. Using (62) and the fact, that the coefficients
in front of the operators depends just on xµ, a simple
argument shows that (66) implies the commutation (59),
cf. [17].
Having the set of commuting operators, we can look

for common eigenfunctions.

L(k)ϕ = Ψkϕ , eK(j)ϕ = Ξjϕ (67)

with eigenvalues Ψk and Ξj . These eigenfunctions can
be found using the separability ansatz [14]

ϕ =

n
∏

µ=1

Rµ(xµ)

n−1
∏

k=0

exp
(

iΨkψk
)

, (68)

where the functions Rµ(xµ) depend on a single vari-
able xµ. Indeed, substituting (68) into (67), the equa-
tions for L(k) are trivially satisfied and the equations for
eK(j) give

n
∑

ν=1

A
(j)
ν

Uν

(

1

Rν
X̃(ν)Rν +

1

Xν

(

Ψ̃ν − eXν

)2
)

= Ξj (69)

Here Ψ̃µ (and Ξ̃µ below) are again given by (55). Sum-
ming these equations with coefficients (−x2µ)

n−1−j leads
to equivalent set of conditions:

(

XµR
′
µ

)′
+
(

Ξ̃µ −
1

Xµ

(

Ψ̃ν − eXν

)2
)

Rµ = 0 . (70)

These are ordinary differential equations in variable xµ
for the functions Rµ which guarantee that (68) solves the
eigenvalue problem (67).
In particular, for eK(0) we obtain the separability of

the Klein–Gordon equation, which was, in the absence of
the electromagnetic filed, shown in [14].
It is straightforward to check that the semiclassical

(geometrical-optic) approximation of the eigenvalue con-
ditions (67) leads to the Hamilton–Jacobi equations (48)
and (49), where we have to identify

ϕ = exp(iS) , i.e., Rµ = exp(iSµ) . (71)

VIII. ODD SPACETIME DIMENSIONS

Till now we considered even dimensional spacetimes.
However the obtained results are valid in any number
of dimensions. This can be easy shown by performing
similar calculations. Only some of the equations has to
be slightly changed. Here we present a short overview of
the required changes.

In spacetime dimensionD = 2n+ 1, there exists an ad-
ditional angular coordinate ψn and the metric (21) con-
tains additional term [5, 6, 21, 22].

g =
n
∑

µ=1

[

Uµ
Xµ

dx 2
µ +

Xµ

Uµ

(

n−1
∑

j=0

A(j)
µ dψj

)2
]

+
c

A(n)

(

n
∑

k=0

A(k)dψk

)2

.

(72)

Here, A(k) is defined as

A(k) =

n
∑

ν1,...,νk=1
ν1<···<νk

x2ν1 · · · x
2
νk

, (73)

and c is an auxiliary constant which can be modified by
a coordinate transformation.
The geometry has an additional Killing vector l(n)

(given again by (30)), but the same 2nd rank Killing
tensors. The additional symmetry generates additional
conserved quantity L(n) linear in momentum. It clearly
Poisson-commutes with all other conserved observables.
Similarly we have additional symmetry operator L(n)

commuting with other symmetry operators.
The separability ansatz for the Hamilton-Jacobi equa-

tions (50) and for the eigenvalue problem of the symme-
try operators (68) changes just by including term Ψnψn.
The ordinary differential equations for Sµ and Rµ, how-
ever, acquire non-trivial additional terms which can be
partially hidden into redefinition of the polynomials Ψ̃µ
and Ξ̃µ. Namely, Sµ and Rµ have to satisfy

(

S′
µ

)2
=

Ξ̃µ
Xµ

−
( Ψ̃µ
Xµ

− e
)2

, (74)

(

XµR
′
µ

)′
+
Xµ

xµ
R′
µ +

(

Ξ̃µ −
1

Xµ

(

Ψ̃ν − eXν

)2
)

Rµ = 0 ,

with

Ψ̃µ =

n
∑

k=0

Ψk(−x
2
µ)
n−1−k , Ξ̃µ =

n
∑

k=0

Ξk(−x
2
µ)
n−1−k ,

(75)
where we set Ξn = c−1Ψ2

n (cf. [14, 17]).

IX. SUMMARY

To summarize, we proved that the dynamical equations
for a charged particle in a weakly charged Kerr-NUT-
(A)dS spacetime are completely integrable. We also
demonstrated the Hamilton–Jacobi and Klein–Gordon
equations are completely separable in such a space. The
proof essentially used the remarkable properties of the ge-
ometry, namely the existence of the principal conformal
Killing-Yano tensor, which generates the ‘Killing tower’
of symmetries. It should be emphasized, that the devel-
oped formalism works only for the test electromagnetic
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field generated by the primary Killing vector. The test
fields connected with other Killing vectors do no pos-
sesses these nice properties.
Let us make some general remarks, connected with our

results. Complete integrability of dynamical equations
is quite a rare case. Liouville integrability implies that
a solution can be written by applying a finite number
of steps which include algebraic operations and integra-
tion. In such a case the phase space is regularly foliated
by trajectories. The geodesic motion in the Kerr-NUT-
(A)dS spacetimes is a new physically interesting exam-
ple of completely integrable systems. In this paper we
demonstrated that these nice properties remain valid if
one includes a special type of test electromagnetic field
generated by a primary Killing vector. This generaliza-
tion allows one to study motion of charged particles in the
weakly charged higher dimensional black holes. The re-
sults might also be interesting for ‘physical’ applications,

for example, for study the Hawking radiation of charged
rotating black holes in higher dimensions. They might
also give some hints for the search of more general, pos-
sibly self-consistent solutions of electrovacuum Einstein
equations, and their supersymmetric generalizations.
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