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I Introduction

Time travel is a phenomenon which has been attracting interest in literature or in a general
discussion for a long time. However, only after a formulation of the theory of relativity such
considerations could be investigated on a more scientific and solid basis. Even the special relativity
shows that different observers experience different times and one of them can “travel” to the
future of the other by means of his relative motion (e.g., an astronaut returning from a trip to
the center of our galaxy after spending 40 years in a spaceship comes to the Earth where more
than 50,000 years have elapsed). The general theory of relativity describes the gravitation as a
curved spacetime and that opens a possibility to consider spacetimes with even more complicated
geometrical and topological structures. It allows one to study a possibility that an observer could
travel even to his own past — his worldline could pass through a geometrically or topologically
nontrivial area to a region where the worldline originally started. Worldlines which even cross
themselves are called closed timelike curves (CTCs) and it is customary to say that spacetimes
with CTCs contain time machines.

Spacetimes with time machines are causally nontrivial — in such spacetimes you can send a
signal to your own past or even try to influence the past — which immediately opens a question of
consistency of standard physical laws as we know them. On a formal level it is the question of the
existence of solutions of physical equations of motion and the question whether the initial value
problem is well possessed. On a less formal level these problems can be phrased as well-known
“grandfather paradox”: in spacetimes with time machines you have to face a logical riddle what
happens if you travel to your own past and kill your grand-father (just for scientific reasons). It
would cause that you would not be born and therefore you could not travel to the past — which
is clearly inconsistent.

However, a system containing live beings is too complicated with too many unknown physical
laws. For this reason in the last two decades physicists have considered various spacetimes with
CTCs and studied the consistency of different physical systems in these spacetimes. Surprisingly,
such studies showed that for a simple physical system pathology of spacetimes is not so severe
and the equations of motion can be consistently solved.

Let us formulate this point more precisely. We consider a spacetime containing a time machine
and we want to study a system with well known local physical laws (e.g.,a point particle, or
electromagnetic field). We do not change these local laws, i.e., we require that they hold locally
in any small spacetime domain. However, in addition to the local laws we also require so-called
principle of consistency: there must exist a global consistent solution of local laws. It means that
we allow the system to propagate itself to its own past, however, it must be done in a consistent
way with the original evolution in the past.
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The key question of studies of time machines is whether such globally consistent evolutions
exist for given local laws and whether these global evolutions are sufficiently generic. If the local
laws did not have any consistent global solution, the spacetime would be clearly pathological and
we could rule it out from our consideration. Similarly, the pathology would be serious if the local
physical laws had only few globally consistent solutions.

As we said, extensive studies of different systems showed that spacetimes with CTCs are not
necessarily causally pathological. Let us mention results for a system of interacting particles [1]
or the scalar field theory [2] where it was shown that standard local laws have globally consistent
solutions even in the presence of CTCs.

Another surprising result of such studies is that the existence of time machines does not
usually restrict a number of consistent solution, but in opposite, it leads to a possibility of more
than one globally consistent solutions for given initial values. In spacetimes with time machines
we thus usually lose the uniqueness of the evolution.

In our work, we consider a very simple toy model of an elastically interacting point particle
in non-relativistic spacetime with a simple time machine. In this model we demonstrate just
discussed features. We show that any initial conditions have globally consistent evolutions, that
this solution of local laws is not unique, and that a number of solutions is the same even for
the initial conditions which lead to an apparently inconsistent solution which mimics discussed
“grandfather” paradox. Namely, we consider a situation in which we send a particle through the
time machine to its past in such a way that the particle hits itself and prevents thus itself from
entering the time machine.

In the next section we shortly discuss the wormhole based time machines and we specify the
details of our toy model. In section III we formulate equations of motion for a point particle and
discuss globally consistent solutions. In the last section before Summary we shortly discuss the
behavior of balls of finite radii. We present only the main results, their derivations

will be presented in a more thorough publication [3].

II Conical spacetime with time machine

The simplest way how to construct spacetimes with CTCs is to consider a wormhole which can
be then deformed to a time machine — such a procedure is described in detail , e.g., in reference [4].
The wormhole can be viewed as a shortcut between two spatial places. A simple spatial wormhole
can be obtained by cutting out two spheres in a three dimensional space and gluing the surfaces
of these holes together, cf. figure 1a. We thus obtain a topologically and geometrically nontrivial
space — it is not a simply connected space and the geometry on the glued surface is not flat. In
the full spacetime picture, a nontrivial geometry according to Einstein equations corresponds to
a the presence of the stress-energy tensor — it means that the wormhole would be filled with some
kind of matter. However, it is possible to deform the wormhole in such a way that some of its
parts are flat, without matter.

The wormhole thus connects two places, which could be very distant in the surrounding space.
The entries into the wormhole are called mouths.

In the spacetime picture, we have to specify also the moments of time when both mouths are
identified. It seems natural to assume that they are identified at the same time, but it is not
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Figure 1: Spatial representation of two simple wormholes. (a) A wormhole formed by identifi-
cation of two spherical holes in surrounding Euclidian space. Surfaces of both spheres are isometrically
identified. Since the external curvature of these surfaces is non-vanishing, the geometry near the glued
spherical surface is not flat. (b) A wormhole obtained by gluing two planar sections (which, could be
obtained from (a) by squeezing the spheres into very thin planes). The external curvature is vanishing
with the exception of the boundary of the planar sections and the geometry through the wormbhole is
thus flat.

necessary. In the relativistic setup, it is even not clear what “at the same moment means.” Times
of identification of both mouths must be specified explicitly on both sides. Of course, we have the
restriction, that time must run continuously through the wormhole, i.e., locally, for the observer
sitting in the wormhole, clocks on both sides must tick at the same rate without any jumps.

Let us assume as an example two mouths in the Minkowski spacetime which are at rest with
respect to the same inertial frame,but they are identified with a time shift At equal, say, to one
hour. Time on both sides of the wormhole runs in the same rate, so going through the wormhole
does not affect an observer in any specific way. However, going through the wormhole, the observer
arrives one hour to the future (or to the past, depending on the direction) with respect to the
global inertial frame. Depending on the distance of both mouths in the surrounding space such
a configuration may form the time machine: if the observer travelling through the wormhole one
hour into the past is able to return through the surrounding space to his original position in less
than one hour, he can form CTC, i.e., he can return to his own past and meet himself.

In our work we will consider even a simpler model of a time machine. We assume only non-
relativistic situation, i.e., we assume that the speed of light is infinite and it determines a unique
notion of simultaneity and if we use it we can define a global time — at least, before introducing
a time machine. We also assume that the space is locally Euclidian.

The wormhole can be constructed in the non-relativistic spacetime in the same way as we
discussed above — only in this case, thanks to the global simultaneity, we uniquely know what
it means when both mouths of the wormhole are identified at the same time. If we identify
them with any nonvanishing time shift At we immediately obtain the time machine, since the
passage through the wormhole takes us to a different moment of time with respect to the global
time of the surrounding spacetime. Of course, it destroys the standard causal structure of the
non-relativistic spacetime (a clear distinction between future and past), but despite this we will
keep using and referring to the original notion of the simultaneity and to the global time of the
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e
Figure 2: A spacetime diagram of the conical time machine. The vertical direction is temporal,
horizontal planes correspond to the hypersurface of simultaneity of the original spacetime (the third
spatial direction is suppressed). Two half-planes on forming the boundary of the conical spacetime
represent the history of the mouths of the wormhole and they are identified with a time shift At.

surrounding space.

Our second simplification is that we use the wormhole with planar mouths instead of spherical
ones. Namely, we cut out from the space two planar sections which we identify as in figure 1b.
Since we use flat planar sections their identification is geometrically trivial — spacetime in them
is flat everywhere, the space is locally Euclidian, without matter. Here we ignored problematic
boundaries of our planar sections. The whole curvature of the mouths is squeezed to these borders
which can be understood as a kind of solid frames on which the traversable parts of the wormhole
are spanned.

To avoid a discussion of the wormhole boundary we assume that the planar sections are much
larger than the scales of our experiments. In this approximation we can even assume that the
planar sections are infinite. To simplify the geometry even more we consider the mouths of
our wormhole to be two half-planes with a common boundary line. These two half-planes form
an angle 7. If we identify them (first, say, at the same moment of time) the space between
them becomes a locally Euclidian space with a conical singularity localized on the axis — at the
intersection of the half-planes. Indeed, if we restrict ourselves to the two dimensional picture
and ignore the direction parallel to the axis, our space forms a cone with the angle v around the
vertex. Since we restrict our study only to particles moving perpendicularly to the axis, it will
be sufficient to consider only this two dimensional cone.

Of course, this is over-idealized situation. We should keep in mind that the mouths of the
wormhole are large but finite, so somewhere very far from the axis the conical part of the space
ends and goes over to the full Euclidian space. But in our consideration we restrict ourselves only
to the part of the space between the mouths of the wormhole. We thus effectively work in the
conical space with angle v around the axis.

Let us stress, that in our original construction the mouths of the wormhole are special and
privileged — given by the position of the wormhole. However, after enlarging them to the semi-
infinite size and restricting ourselves only to the conical space between mouths, we can no longer
localise the position of the mouths by local experiments. Geometry through the mouths is locally
Euclidian as everywhere else. We thus obtained a space which is axially symmetric with respect
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to the rotation around the axis (it has also translation symmetry along the axis). The position
of the wormhole can be identified only on scales larger than the wormhole, from the surrounding
globally Euclidian space — however, this region is very far and we do not consider it.

In the last three paragraphs we assumed the identification of both mouths at the same moment
of global time. Since we want to study a space with a time machine, we have to identify the
mouths of the wormhole with a time shift At. This can be visualized in the three-dimensional
spacetime diagram in figure 2 where we draw two important spatial directions in horizontal
directions. The vertical direction corresponds to time. Semi-planar mouths of the wormhole at
one moment are thus depicted as horizontal semi-lines, their time evolution as vertical half-planes.
The identification of such two half-planes is not on the same vertical level, but with the vertical
shift At. We assume that going through the wormhole in anticlockwise direction takes us time
At > 0 to the past, in clockwise direction to the future.

After such an identification the spacetime is still locally Euclidian, even through the wormhole,
(of course, except the axis), but endowed with a strange causal structure. Hypersurfaces of
simultaneity (originally horizontal planes) propagate through the wormhole and form “helical”
surfaces winding around the vertex. This explicitly demonstrates that the spacetime contains
CTCs.

In the just described conical spacetime with the time machine we investigate a motion of a
particle which can interact with a similar particle by elastic collisions described by the standard
non-relativistic local laws. Namely, we assume the validity of the local conservation of energy and
momentum. To study elastic collisions we consider finite solid spherical balls of radius R (this is
also the main reason for the restriction to the non-relativistic case). However, in this paper we
concentrate mainly on the simpler limit R — 0 for which the discussion simplifies considerably
since it turns out to be scale invariant. The case of finite balls will be shortly discussed at the
end and thoroughly presented elsewhere [3].

III Point particle

As we described above, we consider a point particle moving in two dimensional conical space
with a positive time shift At when going in the clockwise direction around the vertex of the cone.
We also assume that the angle v around the vertex of the cone is smaller than 7 since only for
such angles we obtain interesting situations of self-collisions of the particle. Indeed, on the cone
with v < 7 a straight line intersects itself at least once. Since a free particle is moving along the
straight line, after passing through the time machine its trajectory must intersect the trajectory
along which the same particle approached the time machine. If the trajectory crosses itself in
different times we will speak about self-intersection. If the particle intersects its trajectory exactly
at the same times, it hits itself and we speak about self-collision. In the following we will specify
the conditions for the self-collision and find consistent solutions of a particle motion with one
self-collision.

A trajectory of the particle is determined by two initial parameters: the impact parameter p
which gives the distance of the initial trajectory from the vertex of the cone, and the magnitude
of initial velocity u > 0, see figure 3a. We adopt the convention that the impact parameter p is
positive if the particle circles the cone in the counterclockwise direction and it is negative if it
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Figure 3: Geometry of self-colliding trajectory. (a) A typical self-colliding trajectory in the conical
space with a time machine. A point particle is approaching the wormhole from infinity with a velocity wu,
it collides with the version of itself which already passed through the time machine, and with a velocity
v moves toward the wormhole. After passing it and self-colliding with itself, it moves with the velocity u
back to infinity. The conical space is illustrated as an angle boundary of which represent mouths of the
wormhole and should be identified. (b) The trajectory between the self-collision is a straight line, which
can be clearly demonstrated if we cut the conical space not along the wormhole but along the radial line
going through the self-collision. The wormhole is than depicted as another radial line. Since the particle
passes the wormhole freely, its trajectory must be straight across the wormhole line. It starts and ends
at the self-collision which is represented as two points on the boundary semi-lines at the distance r from
the vertex. The same geometry applies also for a segment of the collision-free trajectory between its

self-intersection. We immediately see that length between the self-intersection is 2r sin 3.

circles the cone in the clockwise direction.

The parameters v and p do not determine the initial trajectory uniquely since these parameters
do not distinguish between trajectories which are just rotated around the vertex of the cone. We
should specify also an angle «; of the incoming trajectory with respect to some chosen “null”
direction. However, since the conical space is symmetric under rotations, the angle o; does not
affect a character of the motion and we can ignore it.

A generic physical solution to initial data is represented by a collision-free trajectory. A particle
which moves along such a trajectory intersects itself without a self-collision. The collision-free
trajectory can take the particle to the past, or to the future, according to the direction in which it
passes the wormhole. If the collision-free trajectory is determined by a negative impact parameter
p < 0 the time machine takes the particle to the future, if the collision-free trajectory is defined
by positive impact parameter p > 0 it takes the particle back in time by —At.

The length s of the straight trajectory between its self-intersection is given by the conical
geometry as can be seen in figure 3,

s=2p tan% : (1)

The time needed to circle the cone is thus s/u = W.
Now, there are two ways in which the particle can travel back in time without self-collision.
(a) Either the movement around the cone takes longer time than the time thus gained, namely
At < s/u, in which case the older version of the particle (i.e., the one that already passed the
wormbhole) gets late with respect to the younger version of the particle which moves through the
point of intersection as the first. (b) Or the orbit around the cone takes shorter time than time
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thus gained, At > s/u, in which case the older version of the particle moves through the point of
intersection as the first.

For a special choice of parameters p and u the particle self-interacts. In this case while the
older version of the particle passes through the time machine and leaves it, the younger version of
the same particle moves from a distant region toward the time machine exactly in such a way that
both versions of the particle collide. Such an initial condition is potentially dangerous since the
self-collision could prevent the particle from passing the wormhole which would be inconsistent.
However, for the same dangerous initial condition we could still find a consistent solution with a
self-collision which would be fine-tuned in such a way that the self-interacting particle consistently
moves through the time machine. To convince ourselves that it is really true we first investigate
a general particle motion with one self-collision.

Let us assume that the self-collision takes place on a radial ray at the distance r from the
vertex of the cone, see figure 3a. For a symmetry reason (justified also by a detailed study of
collision of finite balls [3]) the self-collision will be symmetric with respect to the radial line. We
will define the oriented angle w € [—7/2, /2] between the radial ray and the outgoing trajectory
— it is thus a half of the angle between ingoing and outgoing trajectories. We will see that the
initial parameters u and p are uniquely related to the quantities w and r and can be interchanged
mutually. We also denote v the magnitude of the particle velocity between the self-collision and
pin the impact parameter of the trajectory between the self-collision.

For the collision-free trajectories we can define analogous quantities » and w which refer to
the point of self-intersection instead of self-collision. In this case p;, = p and the angle w is given
just by the conical geometry, namely

7T_
W= Werit = 27. (2)

From the definition of p, r, and w we immediately find that for both self-interacting and
collision-free trajectories the radial distance r is related to p by

. . Y
p=rsinw, Pin = TSI Weriy = 1 €OS . (3)

For a trajectory between the self-collision the “inner” velocity v is given by the condition that
the particle has to travel the distance s in time At, i.e.,

in X in X
S _2r51n2_%sm2

“ At At Atsinw’ (4)

v

where we expressed the length s using the radial distance r, see figure 3, which is given in terms
of p and w by equation (3).

The remaining relation between parameters p, u, and r, w follows from the equations for the
self-collision, namely from the momentum and energy conservation during the self-collision. A
detailed study [3] of the self-collision of a finite ball of radius R shows that the particle can self-
collide in two ways and the type of the self-collision is determined by the angle w. For w < w;
the trajectory of the particle after the self-collision is directed to the wormhole closer to the
vertex than if it followed the collision-free trajectory. Thus the older version of the ball touches
the younger one by its rear part. Let us denote such a case as the self-collision of the type I. If

16-th Conference of Czech and Slovak Physicists 7



J. Dolansky Trajectories in presence of the time machine

w > werit then the trajectory of the particle is directed to the wormhole farther from the vertex
than if it moved along the collision-free trajectory and the older version touches the younger
version by its frontal part. We denote this case as the self-collision of the type II.

In the limit R — 0 of the point particle the self-collision of the first type changes continuously
into the self-collision of the second type and both types are described by the same equation.
It turns to be equivalent to the conservation of the radial momentum during the self-collision.
Comparing radial momentum of the particle between the self-collision given by vsin 3 and radial
momentum of the incoming trajectory ucosw we find

ucosw:vsin%. (5)

Substituting expression (4) we obtain w in terms of p and u

. 21
4psin” J

sin(2w) = AL (6)

Finally, inserting the expression for w into (3) we get r in terms of p and u.

Before a discussion of these relation let us return to the dangerous initial conditions mentioned
above. Clearly, the dangerous initial parameters would be those for which the self-intersection
becomes the self-collision. It means that w = w¢; and v = u. For the given initial velocity u we
denote the dangerous value of the impact parameters as ppc. Substituting w = weiy and v = u
into (4) we find

oo = 2L ™)

- 2tan 3

Let us reformulate equations (6) and (3) in such a way that the radial distance and the impact
parameter are expressed as functions of the angle w and of the velocity u

uwAt sin w cos w uAt cosw
w) = , rw) = ————. 8

Dividing these equations by uAt we obtain relations for dimensionless quantities (distances mea-
sured in units of uAt) which do not depend on the velocity u anymore. It means that point
particle configurations with different initial velocities u are related just by a simple rescaling.
Therefore, we will discuss only the relation between p, r, and w. This dependence is depicted
in figure 4. On the left we can see the function p = p(w), on the right the parametric curve
[p(w),r(w)] in the plane r-p, with w € [—7/2,7/2]. From these graphs we can easily read the
desired dependence w(p) and r(p).

The first equation of (8) also determines the interval of the impact parameter p for which the
self-interaction is possible. Clearly, p € [pmin, Pmax] With ppmin = Al and ppax = o

" 4sin?~/2 = 4sin®4/2°
Similarly for the radial distance of the self-collision r we find r € [0, %lﬁft’fm] Trajectories outside

this region cross themselves too far from the vertex with the time shift too short to self-interact.

Inspecting figure 4a we thus see that for p & [pmin, Pmax] We have exactly one solution for
w, r which corresponds to the collision-free trajectory. However, for p € (pmin, Pmax), £ 7 Ppx
we find three solutions for w, r — one corresponding again to the collision-free trajectory, and
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Figure 4: Relation between p, r, and w for a point particle. (a) The dependence p = p(w) and (b)
the parametric curve [p(w),r(w)]. Relations for a self-colliding particle are given by egs. (8). Relations
for collision-free trajectories are given by eqs. (2) and (3). The angle w runs in the interval [—7/2, 7/2].

two corresponding to trajectories with a self-collision. In the limiting cases p = pmin, Pmax tWO
self-colliding solutions coincide.

The special case of the dangerous initial conditions p = p,x seems to have only two solutions
with collision-free trajectory degenerating to the paradoxical case. The exact behavior of the
particle in this case cannot be solved on the level of a point particle model but can be found by
investigating finite balls as we will do in the next section.

IV Balls of a finite radius

In this section we would like to discuss shortly the motion of solid balls of a finite radius. We
review only the main results, technical details can be found in [3].

The discussion of this case goes along the same line as for a point particle — we can introduce
initial parameters p and u and parameters r and w related to the self-collision. However, the
finite radius of balls modifies the description of the self-collision. The radius R introduces a new
scale into the theory and a dependence on the initial velocity is not so simple. Moreover, as we
discussed above, there are two types of self-collision, however, for R > 0 the equations describing
them are different.

The solutions of these equations split into two classes — we have physically realistic solutions
which resemble those discussed in the case of point particle. Additionally, we also have unphysical
solutions for which the particle during the self-collision would have exchange a negative momen-
tum. So, if we do not consider “sticky” balls we have to rule these solutions out. The relation
among p, r and w with fixed u for finite balls is showen in figure 5 in a similar manner as we did for
a point particle in figure 4. Since the equation for collisions of type I and IT are different we have
two curves representing dependencies p(w) and r(w) (lines I and II in the figure). However, only a
part of these curves correspond to physical solutions (thick lines). Spurious solutions are depicted
by thin lines. Similarly as for the case of point particle we also included lines for collision-free
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Figure 5: Relation between p, r, and w for a particle of a finite radius R. (a) The dependence
p = p(w) and (b) the parametric curve [p(w), r(w)] with u fixed and w € [-F, §]. Curves corresponding
to the physical solutions are represented by thick solid (type I) and dashed (type II) lines while curves
corresponding to the spurious solutions are represented by thin lines.

trajectories given by w = we; and with p not corresponding to paradoxical values.

However, for a finite radius R, instead of only one paradoxical value pp,. as in the case of
a point particle we have an entire interval [ppx,, ppx,| of dangerous values of p (for fixed u) for
which a collision-free trajectory is inconsistent, see figure 5. Boundary values pyy, and pp,, of the
interval of dangerous values of p represent solutions for which both versions of the ball just touch
each other without exchanging any momentum. Thus they can be considered both collision-free
and self-interactiong trajectories.

Now, let us discuss a number of consistent solutions for different initial values p and u. For
fixed u it can be easily read from figure 5. For a large positive or negative p we have again only
one collision-free trajectory. For p sufficiently small but out of the range of dangerous values,
P & [Ppx;> Poxy)» We have one collision-free trajectory and two physical self-colliding trajectories.
Surprisingly, for dangerous values p € [ppy,, Ppx,,] We also have three solutions, all of them with
a self-collision. One of them is of type II, two other solutions are of type I. An inconsistent
collision-free trajectory thus changes to a new self-colliding solution.

The geometry of all these three consistent self-colliding solutions corresponding to a dangerous
initial data is explicitly shown in figure 6.

Summary

We have discussed the motion of a point particle and of a solid ball in the non-relativistic
conical space with a time machine. The point particle model documents a non-uniqueness of the
evolutions in the presence of time machines. However, this model is not rich enough to investigate
structure of trajectories corresponding to dangerous initial values. Such a discussion can be done
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Figure 6: Solutions for ”paradoxical” initial data. Figure shows three consistent solutions 1, 2,
and 3 for “paradoxical” or “dangerous” initial data. We can identify three solutions with a self-collision,
two of them are similar to the case of generic initial data. However, for the paradoxical initial data there
is no collision-free solution. Instead, it is compensated by the third self-colliding solution.

in the case of finite balls for which we found that a number of solutions for given initial data is
the same for dangerous initial data as for generic ones. An inconsistent collision-free trajectory
is replaced by a new self-colliding solution.

Finally, let us mention that we considered only trajectories with one self-collision or no collision
at all. In principle, it can and it does happen that the particle self-collides or self-intersects more
times. Such a possibility enlarges a number of solutions for given initial data and complicates a
discussion of all possible particle motions. For a point particle such the discussion is done in [3].
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