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Abstract

The observation that we are among the first 1011 or so humans reduces the

prior probability that we find ourselves in a species whose total lifetime num-

ber of individuals is much higher, according to arguments of Carter, Leslie,

Nielsen, and Gott. However, if we instead start with a prior probability that

a history has a total lifetime number which is very large, without assuming

that we are in such a history, this more basic probability is not reduced by

the observation of how early in history we exist.
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John Leslie [1-16], expanding upon largely unpublished lectures by Brandon
Carter [17], has argued that our observed position in history increases, perhaps
greatly, the probability that the human race will soon end. Variants of this argument
have also been discovered independently by Holgar Nielsen [18] and by J. Richard
Gott III [19].

The idea is that if humans were to continue at present or growing populations
for more than a few hundred additional years, it would be unlikely for us to have
found ourselves in the relatively small fraction alive by now. On the other hand,
if the human race were to end today (e.g., at the end of the Mayan 13th b’ak’tun
when this paper is being revised), we would not be so unusual, since about 5-10%
of all humans are alive today [20-22,19]. This possibility, or any doom within the
next few hundred years, does not make it nearly so unlikely for us to find ourselves
alive now.

Of course, what we are more interested in is the actual conditional probability
(often called a posterior probability) that the human race will end soon, given that
we are here, rather than the reverse conditional probability (often called a likelihood)
that we are here, given that the human race will end soon. To calculate the former
from the latter, we need the prior probabilities that the human race will end at
various times in the future (or after various total numbers N of people may have
lived), and then we can apply Bayes’ rule. However, we do not have universally
accepted prior probabilities, so we cannot actually calculate universally accepted
posterior probabilities.

Without agreeing on the prior probabilities for the various possibilities for the
total number N of humans in an entire human history, one can only use the obser-
vation of one’s position N0 within human history to say how the prior probabilities
would need to be adjusted to give the posterior probabilities. For example, suppose
the prior probability for an observer to be somewhere in a human race containing a
total of N people thoughout its history were P (N). For simplicity, we shall consider
only probabilities conditional upon the existence of a human race, so N ≥ 1 and
P (N) is normalized to unity when summed from N = 1 to ∞.

The näıve result of incorporating the observation of the position N0 of the ob-
server would be the probability of N , given that N is at least N0,

P (N |N ≥ N0) = θ(N −N0)P (N)/
∞∑

n=N0

P (n), (1)

where θ(N−N0) is 1 if N ≥ N0 and is 0 otherwise. P (N |N ≥ N0) is simply the prior
probability P (N) truncated for all impossible situations N < N0 and renormalized.

However, the point of the doomsday argument is to use the fact that, within
the range of the necessary condition N ≥ N0, the larger N is, the smaller is the
likelihood or conditional probability that the observer is the N0th person within
such a history. Here one adopts the following simplifying hypothesis:
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Assumption 1

In a given history of length N , the probability is equal for an observer to be in
any of the N possible positions (his or her possible birth order in the history, the
value of N0). That is, the normalized conditional probability for the observer to
have position N0, given the length N , is

P (N0|N) = θ(N −N0)/N. (2)

This is the assumption that the observer’s birth order is purely random in the
history. It would follow from the assumption that the observer is a purely random
human in the total history of N people, but it is weaker in that it does not require
that any of the other characteristics of the observer be random. It is admittedly
unrealistic if the observer has special characteristics that are correlated with his or
her position. For example, if the observer refers to a person reading this paper (e.g.,
you), he or she probably has a knowledge of the English language that would make
it less likely for him or her to be the first human than to be a much later human.
Nevertheless, Leslie’s argument against this type of objection, (IId) in [4], essentially
the argument that Carter is right to select an observer by characteristics that are
not correlated with birth order, seems plausible, and is perhaps even necessary in
order to be able to use anthropic reasoning at all, so we shall hereafter simply accept
Assumption 1, except when otherwise stated.

From Assumption 1 it follows that the joint probability that the total history
has N total people and that the observer is the N0th one is

P (N,N0) = P (N)P (N0|N) = θ(N −N0)P (N)/N. (3)

From this joint probability one can readily compute the marginal probability distri-
bution for N0 alone as

P (N0) =
∑

N

P (N,N0) =
∞∑

N=N0

P (N)

N
. (4)

Then the posterior or conditional probability for N , given an observed value of N0,
is, by Bayes’ rule,

P (N |N0) =
P (N,N0)

P (N0)
= θ(N −N0)N

−1P (N)/
∞∑

n=N0

n−1P (n). (5)

A comparison with Eq. (1) shows that the true posterior probability P (N |N0)
has the same form as the näıve probability P (N |N ≥ N0), except with P (N) re-
placed by N−1P (N), or by a normalized

P̃ (N) = N−1P (N)θ(N − 1)/
∞∑

n=1

n−1P (n), (6)
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which is weighted toward smaller values of N than P (N) is. For example, the näıve
expectation value of N , simply given that N ≥ N0, is

E(N |N ≥ N0) ≡
∑

N

NP (N |N ≥ N0) =




∞∑

N=N0

NP (N)



 /




∞∑

N=N0

P (N)



 , (7)

whereas the true posterior expectation value of N , given that one is the N0th person,
is

E(N |N0) ≡
∑

N

NP (N |N0) =




∞∑

N=N0

P (N)



 /




∞∑

N=N0

P (N)

N



 . (8)

Assuming that both of these expectation values are defined and that P (N) is nonzero
for more than one value of N ≥ N0, one can readily show from the Cauchy-Schwarz
inequality that

E(N |N0) < E(N |N ≥ N0). (9)

Thus the true posterior expectation value of the total number of humans is lower
than the näıve expectation value from the prior probability distribution P (N) for
histories containing the observer.

To illustrate these various quantities, suppose that P (N) has a power-law de-
pendence on N for N between 1 and some integer L, which we shall take to be much
larger than N0, which we shall also take to be large, as the historical record indi-
cates. (One way to get a power-law probability distribution is to assume that the
population grows exponentially with time at one rate until it is suddenly destroyed
by a disaster that occur randomly in time at some other expected rate. However,
we are simply using a power law for illustrative purposes, without implying that we
believe the true distribution has this form.) Then

P (N) = θ(N − 1)θ(L−N)N−s/
L∑

n=1

n−s, (10)

P (N |N ≥ N0) = θ(N −N0)θ(L−N)N−s/
L∑

N=N0

N−s

≃ (s− 1)θ(N −N0)θ(L−N)N−s/(N1−s

0
− L1−s), (11)

P (N,N0) = θ(N −N0)θ(L−N)N−s−1/
L∑

n=1

n−s, (12)

P (N |N0) = θ(N −N0)θ(L−N)N−s−1/
L∑

n=N0

n−s−1

≃ sθ(N −N0)θ(L−N)N−s−1/(N−s

0
− L−s), (13)
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E(N |N ≥ N0) =




L∑

N=N0

N1−s



 /




L∑

N=N0

N−s



 ≃
(
s− 1

s− 2

)
N2−s

0 − L2−s

N1−s

0 − L1−s
, (14)

E(N |N0) =




L∑

N=N0

N−s


 /




L∑

N=N0

N−s−1


 ≃

(
s

s− 1

)
N1−s

0 − L1−s

N−s

0 − L−s
. (15)

For example, if s > 2, the case in which both of these expectation values are
defined even in the limit L → ∞, they are both of order N0 (unless s − 2 is very
small), with the ratio

E(N |N0)

E(N ≥ N0)
≃ 1−

1

(s− 1)2
. (16)

This would be the case in which one would expect doom within the next few hundred
years, whether one used the näıve probability P (N ≥ N0) or the better posterior
probability P (N |N0). The latter would only shorten the time to the expected doom
by a factor of order unity (again, unless s− 2 is very small).

If 1 < s < 2, E(N |N0) remains about sN0/(s − 1), but E(N |N ≤ N0) is about
(s− 1)N s

0
Ls−1/(2− s) and hence is much larger for L ≫ N0. If 0 < s < 1, E(N |N0)

is about sN s

0
L1−s/(1 − s), but E(N |N ≤ N0) is roughly (1 − s)L/(2 − s), again

much larger. However, if s < 0, both E(N |N0) and E(N |N ≤ N0) are of order L,
with their ratio again being given by Eq. (16). Therefore, for a power-law prior
probability distribution P (N) up to L ≫ N0, with exponent −s, only for 0 <∼ s <∼ 2
is the actual posterior expectation value for N significantly lower than the näıve
expectation value. Only for s >∼ 1 is E(N |N ≤ N0) of order N0, but for most of this
possible range of s, i.e., for s >∼ 2, the näıve estimate E(N |N ≤ N0) is also of order
N0. That is, if P (N) has the power-law form (10) with L ≫ N0, only for 1 <∼ s <∼ 2
is the doomsday argument needed to conclude that doom is expected to loom soon.

Incidentally, Gott’s analysis [19] initially looks quite defective in avoiding men-
tion of P (N) altogether and in conflating P (N |N0) with P (N0|N) [23], but Gott
later explained [24] that he was adopting a specific “appropriate vague Bayesian
prior” analogous to assuming that P (N) has the power-law distribution (10) with
s = 1 and with the limit L → ∞. Although in this limit P (N) is not normalizable
except to zero, Eq. (13) does give a normalizable P (N |N0), though one with an
infinite expectation value for N . For example, for L finite but much larger than N0,
E(N |N0) ≃ N0 ln (L/N0), which grows indefinitely with L, though at a much slower
rate than E(N |N ≥ N0) ≃ L/ ln (L/N0).

We are not claiming that such an assumption for P (N) is necessarily unreason-
able, and indeed one can advance some reasons for preferring it if all that is known
about N is that it is positive [24, 25] (though even with that unrealistic assumption
it would seem more natural to apply it to the probability distribution P0(N) to be
defined below, rather than to P (N)). However, it is not obvious to us that this
assumption for P (N) follows from “only the assumption that you are a random in-
telligent observer” [19], unless one implicitly defines the latter assumption to mean
the former.
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Thus if one starts with a prior probability P (N) for the observer to exist within
a human history with a total of N people, the doomsday argument weights the
posterior probability distribution P (N |N0) toward lower values of N than the näıve
estimate P (N |N ≤ N0), but for this to have a significant effect, P (N) must have a
rather restricted form.

However, the main point of the present paper is that instead of starting with the
probability P (N) for a history containing N people that includes the observer in
question, it would be more natural to start with a probability P0(N) for a history
to contain N people, without requiring the observer’s existence within it. Certainly
P0(N) would be more basic and easier to calculate if one could ever get a theory
giving the probabilities for various human histories.

Again we shall only consider N ≥ 1 and normalize P0(N) over such values. That
is, P0(N) is actually the conditional probability that a human history has N people,
given the condition that a history of at least one person exists. This is obtained
by dropping the possibility of no human history (since this possibility is irrelevant
to our present arguments), and renormalizing the remaining probabilities we do
consider. Thus we actually use what we might write more precisely as p0(N |N ≥ 1),
but we shall simply call this conditional probability P0(N) for short. However, the
crucial point is that in P0(N), we do not require the condition that the observer in
question be included in the history.

(Incidentally, the subscript 0 on P0(N) here is intended to give the connotation
of a more basic probability distribution than P (N). It is not intended to have the
same connotation as the subscript 0 on N0, where it denotes the observer in the
history. The latter usage has a roughly similar connotation to the subscript 0 on
the t0 used in cosmology to denote the present age of the universe, if the observer
is taken to be a person at the present point in history, for example, you.)

If one does start with P0(N) rather than P (N), the näıve result of incorporating
the observation that the observer is the N0th person would be

P0(N |N ≥ N0) = θ(N −N0)P0(N)/
∞∑

n=N0

P0(n). (17)

We would now like to compare this näıve result with the result P (N |N0) of using
Bayes’ rule and the doomsday argument. Since that procedure led to Eq. (5), we
can continue to use it once we calculate P (N) in terms of P0(N).

In the same spirit in which we previously adopted Assumption 1, it is now
simplest to assume that for two different histories of equal probability (say with
N1 and N2 people respectively), the observer has an equal probability to be any
of the N1 + N2 people in both of these histories. Then even though in this case
P0(N1) = P0(N2), the probability that the history contains the observer would
be proportional to the number of people in the history, P (N1)/P (N2) = N1/N2.
Extending this reasoning to histories with different existence probabilities P0(N)
leads to the following hypothesis:
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Assumption 2

The probability for the observer to exist somewhere in a history of length N is
proportional to the probability for that history and to the number of people in that
history. That is, the normalized probability for a history containing the observer is

P (N) = NP0(N)/
∞∑

n=1

nP0(n) = NP0(N)/E0, (18)

where

E0 =
∞∑

n=1

nP0(n) (19)

is the prior expected length of a human history, assuming that one of some positive
length n ≥ 1 does exist.

(Of course, if the observer’s detailed individual characteristics were considered,
such as a knowledge of an estimate for N0, the probabilities for one to be at different
positions in various histories of equal existence probabilities would not be equal,
whether for a single history containing N people, as discussed above, or whether
for two histories, containing N1 and N2 respectively. Then the doomsday argument
would lose its simple applicability, but, as we discussed above for Assumption 1, we
shall assume that the characteristics defining the observer are uncorrelated with N0

and with N .)
Inserting Eq. (19) into Eq. (3), we find that the joint probability for the history

to have length N and for the individual to be the N0th person in the history is

P (N,N0) = θ(N −N0)P0(N)/
∞∑

n=1

nP0(n) = θ(N −N0)P0(N)E−1

0
, (20)

where E−1

0 may be considered as the prior probability for one to be the N0th person
in a history at least as long as N0, a constant under Assumptions 1 and 2.

Once we use Eq. (20) in Eq. (5), we find that it gives exactly the same result as
Eq. (17), the näıve consequence of P0(N). That is,

P (N |N0) = P0(N |N ≥ N0), (21)

as the weighting toward smaller N that the doomsday argument provides is pre-
cisely canceled by the greater probability of finding the observer within the larger
of two sets of people whose prior existence is equally probable. In other words, the
doomsday argument has no effect at all if, instead of starting with P (N), we start
with the more natural prior probability P0(N) for a history containing N humans.
Incidentally, one can readily see that P0(N) is the same as P̃ (N) defined by Eq. (6).

As a simple analogue to illustrate our main point, consider two north-south roads
with N1 and N2 houses along each respectively, say with N1 ≪ N2. If we choose
randomly between the two roads, P0(N1) = P0(N2) = 1/2. However, if we choose
randomly between the N1 +N2 houses, each has a probability 1/(N1 +N2), so the
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probability of having the first road along a random house is P (N1) = N1/(N1 +
N2) ≪ P (N2) = N2/(N1 +N2).

Now suppose we observe that the house is the N0th from the north end, with
N0 ≤ N1 ≪ N2. Starting from the unequal probabilities P (N1) and P (N2), we
would get the same two unequal numbers for the näıve probabilities P (N1|N1 ≥ N0)
and P (N2|N2 ≥ N0), but these are obviously not the true probabilities, since the
N0th house from the north end is certainly not a house chosen randomly from the
N1 +N2 houses.

For our example, the analogue of the doomsday argument corrects for this error.
The likelihood for a random house to be N0th from the north end is P (N0|N1) =
1/N1 if it is on the first road and P (N0|N2) = 1/N2 if it is on the second. Although
P (N0|N1) ≫ P (N0|N2), that does not imply P (N1|N0) ≫ P (N2|N0) as Gott’s
analysis [19] implicitly assumes, but it does combine with P (N1) and P (N2) to give
equal joint probabilities

P (N1, N2) ≡ P (N0|N1)P (N1) = P (N2, N0) ≡ P (N0|N2)P (N2) = 1/(N1+N2) (22)

and equal posterior probabilities

P (N1|N0) = P (N2|N0) = 1/2. (23)

However, these equal posterior probabilities are obviously the same as what Eq.
(17) would give directly for P0(N1|N1 ≥ N0) and P0(N2|N2 ≥ N0) without having
to bother with doomsday-like arguments.

In other words, if the two roads, with their N1 and N2 respective houses, have
equal prior probability, these probabilities are not affected by the observation that a
house chosen at random from all of the houses is at theN0th position (assuming N0 ≤
N1 and N0 ≤ N2). Each road has an equal number of houses at the N0th position
(namely, one), so the observation of this position does not affect the probabilities
for the two roads.

As a weaker alternative to Assumptions 1 and 2, one could start with the fol-
lowing hypothesis instead:

Assumption 3

The length N of a history and the observer’s position N0 in a history are inde-
pendent random variables, except for the trivial restriction 1 ≤ N0 ≤ N . That is,
the joint probability has the essentially product form

P (N,N0) = P0(N)p0(N0)θ(N −N0), (24)

where P0(N) may be considered to be the prior existence probability for a history of
length N , and where p0(N0) (using a lower case p for distinction) may be considered
to be the prior probability for the observer to be the N0th person in a history at
least as long as N0.
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A comparison of Eqs. (20) and (24) shows that Assumptions 1 and 2 give the
special case p0(N0) = E−1

0 , a constant, so Assumption 3 is indeed more general.
However, even it is ultimately unrealistic if one includes any special characteristics
in the definition of the observer in question. For example, if that observer is a
person who knows of the existence of nuclear weapons of mass destruction, one
might reasonably expect that not only does that characteristic makes p0(N0) larger
for N0 near 10

11, say, than for N0 near unity, but also it might reduce the probability
P (N,N0) for N ≫ N0 below what the product form (24) would give, due to the
greater probability of the ending of the human history by the weapons known to
the observer. Nevertheless, in the same spirit in which we considered Assumptions
1 and 2, we shall consider Assumption 3 here for the sake of argument.

From Eq. (24) one can readily calculate that the marginal distributions for N
and N0 are

P (N) = P0(N)
N∑

N0=1

p0(N0), (25)

P (N0) = p0(N0)
∞∑

n=N0

P0(N). (26)

Therefore, instead of Eq. (2), we get

P (N0|N) = P (N,N0)/P (N) = p0(N0)θ(N −N0)/
N∑

n0

p0(N0). (27)

However, we continue to get Eq. (21), P (N |N0) = P0(N |N ≥ N0), so even with the
weaker Assumption 3, the doomsday argument is not needed if we start with the
P0(N) in Eq. (24) and its näıve consequence P0(N |N ≥ N0) defined by Eq. (17).

This says that we cannot obtain any information about the length N of hu-
man history from the knowledge of an observer’s position N0 in history (except for
the trivial restriction N ≥ N0). This is an obvious consequence of Assumption 3,
which says that, except for the trivial restriction, the length and the position are
independent.

Of course, the advocate of the doomsday argument can still point out that if one
instead started with the marginal distribution P (N) given in Eq. (25), and then used
Eq. (1) to define the näıve P (N |N ≥ N0), that would not be the same as P (N |N0),
and so doomsday arguments would be needed to correct this alternate näıve result.
Because of that fact, we cannot claim to have proved that the doomsday argument
is absolutely wrong. We only claim that it is unnecessary if one starts with P0(N)
instead of P (N), and that both as a prior probability and as a component of Eq.
(25), P0(N) appears to be more basic than P (N).

After formulating the present objection against the necessity of using doomsday
arguments, we found that Leslie [4, 13] had already discussed it, though he was
unconvinced by this objection. He gives one form of the objection as (IIIa) in
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[4]: “The larger our race is in its temporal entirety, the more opportunities there
are of being born into it. This counterbalances the greater unlikelihood of being
born early.” Then he responds, “This seems to me false. We are not here dealing
with some ordinary lottery where we would have existed in numbers that remained
constant whether or not we had got tickets, so that possessing a ticket could itself
readily suggest that many were sold or thrown to the crowd; for it seems wrong to
treat ourselves as if we were once immaterial souls harbouring hopes of becoming
embodied, hopes that would have been greater, the greater the number of bodies
to be created. . . . ” However, this objection shifts the doomsday argument from
its simple setting towards the question of choosing in a sophisticated way P (N) or
P0(N)—a separate problem which we shall not discuss here, though one of us may
discuss it in a future publication.

We do not say that we believe that human history will necessarily continue long
into the future. There are many reasons, such as the history of perished species,
overpopulation, dwindling resources, pollution, disease, technological capabilities
for destruction, the aggressive nature of humans, and religious revelation, to suggest
that human history , at least as we know it, could well end rather soon. For example,
if P0(N) ∝ Nα with α = −s − 1 < −2, then given one’s position N0, the expected
total number of humans, E(N |N0), is of the same order as N0, and if α < −1, most
of the total probability is for N ∼ N0. We are also not saying that the end of human
history as we know it is necessarily best described as a gloomy “doom,” a semantic
objection that Carter also has [26] with the name Leslie says Frank Tipler gave to
the argument [27], but it was irresistible for us to be able to include four double o’s
in our title. However, what we have shown is that the Carter-Leslie-Nielsen-Gott
doomsday argument, at the level at which we discuss it, is inconclusive in predicting
how soon there may be “doom.”

Our consideration of this topic has been especially motivated by long discussions
with John Leslie, for which we are grateful. After our first draft was written, we
have benefited from lengthy responses from Brandon Carter, Leslie, and J. R. Gott
III, who continue to disagree with us but have not convinced us to abandon our
objection to the doomsday argument. We have also benefited from discussions with
Geoffrey Hayward, Werner Israel, and others at a CIAR conference in Lake Louise
and at the University of Alberta, where some of these ideas have been presented
in seminars. This work has been supported in part by the Natural Sciences and
Engineering Research Council of Canada. We have also been motivated by the
Mayans to submit this paper to a journal on this particular auspicious day.
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