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Outline

• Kerr–NUT–(A)dS metric
a generally rotating black hole in higher dimensions

• Explicit and hidden symmetries
objects describing symmetries

• Principal CCKY form and Killing tower
building symmetries from CCKY form

• Structure of Riemann tensor
alignment of curvature with CCKY form

• Consequences for the geometry
integrability and commutativity

• Related spaces
integrability without commutativity
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Metric of the Kerr–NUT–(A)dS spacetime

(for simplicity only in even dimensions D = 2N)

g =
∑
µ

[
Uµ
Xµ
dx2

µ +
Xµ

Uµ

(∑
k

A(k)
µ dψk

)2
]

xµ radial and latitudinal coordinates (µ = 1, . . . , N)

ψk temporal and longitudinal coordinates (k = 0, . . . , N−1)

Xµ = Xµ(xµ) metric functions to be determined by the Einstein equations

A(k) =
∑
ν1,...,νk
ν1<···<νk

x2
ν1
. . . x2

νk
A(k)
µ =

∑
ν1,...,νk

ν1<···<νk, νi 6=µ

x2
ν1
. . . x2

νk
Uµ =

∏
ν

ν 6=µ

(x2
ν − x2

µ)

• Myers R. C., Perry M. J.: Black Holes in Higher Dimensional Space-Times, Ann.Phys. 172 (1986) 304

• Gibbons G. W., L H., Page D. N., Pope C. N.: Rotating Black Holes in Higher Dimensions with a Cosmological Constant,
Phys.Rev.Lett. 93 (2004) 171102

• Chen W., L H., Pope C. N.: General Kerr-NUT-AdS Metrics in All Dimensions, Class.Quant.Grav. 23 (2006) 5323
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Properties

• Integrability of geodesic motion

• Separability of the Hamilton–Jacobi equations

• Commuting scalar symmetry operators

• Separability of the Klein–Gordon equations

• Commuting Dirac symmetry operators

• Separability of the Dirac equations
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Explicit and hidden symmetries

Explicit symmetries — N independent Killing vectors:

l(j) = ∂ψj j = 0, . . . , N − 1

Hidden symmetries — N independent Killing tensors of rank 2:

k(j) =
∑
µ

A(j)
µ

[
Uµ
Xµ
dx2

µ +
Xµ

Uµ

(∑
k

A(k)
µ dψk

)2
]

j = 0, . . . , N − 1

k(0) = g metric for j = 0
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Integrability of geodesic motion

Observables linear in momenta

L(j) = la(j)pa energy, angular momenta

Observables quadratic in momenta

K(j) = kab(j)papb Hamiltonian, Carter constants

Integrability — conserved quantities are in involution

{L(i) , L(j) } = 0
[
l(i) , l(j)

]
NS

= 0

{L(i) , K(j)} = 0 ⇐⇒
[
l(i) ,k(j)

]
NS

= 0

{K(i), K(j)} = 0
[
k(i), k(j)

]
NS

= 0

Nijenhuis–Schouten brackets: [a, b]n1...nr+s−1
NS

= s bn(n1...∇n a...nr+s−1) − r an(n1...∇n b...nr+s−1)

Proof:

• Polynomial constants of motion
Page D. N., Kubizňák D., Vasudevan M., Krtouš P.: Complete Integrability of Geodesic Motion in General Kerr-NUT-AdS

Spacetimes, Phys.Rev.Lett. 98 (2007) 061102

• Quadratic constants of motion and their equivalence with polynomial constants
Krtouš P., Kubizňák D., Page D. N., Vasudevan M.: Constants of Geodesic Motion in Higher-Dimensional Black-Hole Spacetimes,

Phys.Rev.D 76 (2007) 084034
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Principal CCKY form — origin of the symmetries

Principal closed conformal Killing-Yano form h:

• 2-form

• non-degeneracy

• functionally independent eigenvalues

• closed conformal Killing–Yano (CCKY) form

∇ahbc = gab ξc − gac ξb with ξa = 1
D−1∇

nhna

Kerr–NUT–(A)dS geometry:

h =
∑
µ

xµ dxµ ∧
(∑

k

A(k)
µ dψk

)
=

1

2

∑
j

dA(j+1) ∧ dψj

• Kubizňák D., Frolov V. P.: Hidden Symmetry of Higher Dimensional Kerr-NUT-AdS Spacetimes, Class.Quant.Grav. 24 (2007) F1
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Geometry admitting principal CCKY form

very strong restriction on the geometry which guarantees:

• existence of Killing tower of symmetries

• NS-commutativity of Killing vectors and Killing tensors

• integrability of geodesic motion

• commutativity of scalar operators

without reference to explicit form of the metric!

it determines the form of the metric:

• geometry is given by off-shell Kerr–NUT–(A)dS metric
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Symmetry objects

Killing tensor (KT)

∇(akbc... ) = 0 k symmetric

Conformal Killing tensor (CKT)

∇(aqbc... ) = g(abσc... ) q symmetric

σ = combination of traces of ∇q

Killing-Yano (KY) form

∇af bc... =∇[af bc... ] f antisymmetric

Closed conformal Killing-Yano (CCKY) form

∇ahbc... = p ga[b ξc... ] h antisymmetric p-form

ξc... = 1
D−p+1∇

nhnc...
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Killing tower

h — principal CCKY form
(
ξ = 1

D−1∇ · h
)

h(j) = 1
j!h
∧j CCKY 2j-forms

f (j) = ∗h(j) KY (D−2j)-forms

Qab
(j) = 1

(2j−1)! h
(j)a

mn...h
(j)bmn... CKTs of rank 2

kab(j) = 1
(D−2j−1)! f

(j)a
mn... f

(j)bmn... KTs of rank 2

la(j) = kan(j) ξn Killing vectors = KTs of rank 1

How to prove that k(j) and l(j) are KTs and have vanishing NS-brackets?

• Krtouš P., Kubizňák D., Page D. N., Frolov V. P.: Killing–Yano Tensors, Rank-2 Killing Tensors, and Conserved Quantities in
Higher Dimensions, JHEP02(2007)004
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Generating functional

Tensors depending on an auxiliary parameter β

q(β) = g − β2 h2

A(β) =
(Det q(β)

Det g

)1
2

k(β) = A(β) q(β)−1

l(β) = k(β) · ξ

⇒

A(β) =
∑
j

A(j)β2j

l(β) =
∑
j

l(j)β
2j

k(β) =
∑
j

k(j)β
2j

Vanishing NS-brackets[
l(β1) , l(β2)

]
NS

= 0[
l(β1) ,k(β2)

]
NS

= 0[
k(β1),k(β2)

]
NS

= 0

Since k(0) = g, it also implies that l(β) and k(β) are KTs.
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Canonical frame

Eigenvalue problem for principal CCKY form h with normalization given by metric g

⇓
Coordinates xµ and canonical normalized frames

eµ, êµ µ = 1, . . . , N vectors frame

eµ, êµ µ = 1, . . . , N dual frame of 1-forms

such that

h =
∑
µ

xµ e
µ ∧ êµ eµ ∝ dxµ

⇓
q(β) = g − β2h2 =

∑
ν

(1 + β2x2
ν)
(
eµeµ + êµêµ

)
A(β) =

(Det q(β)

Det g

) 1
2

=
∏
ν

(1 + β2x2
ν) =

∑
j

A(j)β2j

k(β) = A(β) q(β)−1 =
∑
µ

(∏
ν

ν 6=µ

(1 + β2x2
µ)
)(
eµeµ + êµêµ

)
=
∑
j

k(j) β
2j

where

k(j) =
∑
µ

A(j)
µ

(
eµeµ + êµêµ

)
A(j) =

∑
ν1,...,νj
ν1<···<νj

x2
ν1
. . . x2

νj
A(j)
µ =

∑
ν1,...,νj 6=µ
ν1<···<νj

x2
ν1
. . . x2

νj
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Generating functional for CCKY and KY forms

H(β) = ˆexp(βh) F (β) = ∗H(β)

non-homogeneus forms which satisfy

CCKY form condition

∇aH(β) = a ∧Ξ(β) where Ξ = β ξ ∧H ∇ ·H = (D−π) Ξ

KY form condition

∇aF (β) = a ·Φ(β) where Φ = −β ξ · F ∇ ∧ F = πΦ

they generate tower of CCKY and KY forms

H(β) =
∑
j

h(j)βj F (β) =
∑
j

f (j)βj
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Proof of vanishing NS-brackets

∇ahbc = gabξc − gacξb ⇐ CCKY form

∇cqab = 2β2
(
gc(ahb)n + hc(agb)n

)
ξn ⇐ q = g − β2h2

∇aA = 2β2hamk
mnξn ⇐ A = (Det q/Det g)

1
2

∇ckab =
2β2

A

(
kab kcnhn

m + hmnk
n(akb)c − km(akb)nhn

c
)
ξm ⇐ k = A q−1

la = kanξn

⇓ substituting into NS-brackets[
k1,k2

]abc
NS

= 3
(
k
n(a
1 ∇nk

bc)
2 − k

n(a
2 ∇nk

bc)
1 = 0[

k1, l2
]ab

NS
= 2 k

n(a
1 ∇nl

b)
2 − l

n
2∇nk

ab)
1 =

(
kam1 (∇mξn)knb2 + kam2 (∇nξm)knb1

)
[
l1 , l2

]a
NS

= ln1∇nl
a)
2 − l

n
2∇nl

a)
1 =

(
kam1 (∇mξn)knb2 − kam2 (∇mξn)knb1

)
ξb

⇑
S(∇ξ) = 0 and

[
∇ξ,k(β)

]
= 0 ⇐

[
∇ξ,h

]
= 0

where k1 = k(β1), k2 = k(β2), l1 = l(β1), etc.
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Integrability conditions for principal CCKY form

∇ahbc = gabξc − gacξb
⇓ taking second derivative 2∇[a∇b]hmn

Rab
c[m h

c
n] = 2δ

[a
[m∇

b]ξn](IC1)

⇓ Bianchi identities, contractions

(D−2)∇aξb = −Ricanh
n
b +

1

2
hmnR

mn
ab(IC2)

⇓ substituting (IC2) to (IC1)

(D−2)Rab
n[ch

n
d] − hmnRmn[a

[c δ
b]
d] − 2Ric[a

n δ
b]
[c h

n
d] = 0(IC3)

S(∇ξ) =
[
h,Ric

]
⇐ symmetrization of (IC2)

(D−2)
[∇ξ,h] =

[
h,Ric

]
· h +

1

2

[
Rh,h

]
⇐ [

(IC2),h
]
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Alignment of Riemann tensor with principal CCKY form

Taking various (anti)symmetrizations and contractions of (IC3) with h one can prove:

[
h , Rh(p)

]
= 0 where Rh(p)a

b = hpmnR
mna

b

Rh = Rh(1)

[
h , Rich(2p)

]
= 0 where Rich

(2p)
ab = hpmnR

m
a
n
b

Rich(0) = Ric

Any contraction of R with any power of h commutes with h
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Integrability of geodesic motion

Any contraction of R with any power of h commutes with h

⇒ S(∇ξ) =
[
h,Ric

]
= 0[

∇ξ,h
]

= 1
D−2

([
h,Ric

]
· h +

1

2

[
Rh,h

])
= 0

⇒ Vanishing NS-brackets[
k1,k2

]
NS

= 0
[
k1, l2

]
NS

= 0
[
l1, l2

]
NS

= 0[
k(i),k(j)

]
NS

= 0
[
k(i), l(j)

]
NS

= 0
[
l(i), l(j)

]
NS

= 0

⇒ Observables K(j) and L(j) are in involution
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Scalar field operators

p −→ − i∇

L(j) = la(j) pa −→ L(j) = − i
2

[
la(j)∇a +∇a l

a
(j)

]
K(j) = kab(j) pa pb −→ K(j) = −∇a k

ab
(j)∇b

Operators K(i), L(j) depend on a choice of ∇
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Commutativity of operators

[
L(i),L(j)

]
= 0

[
K(i),L(j)

]
= 0

[
K(i),K(j)

]
= 0

m

integrability conditions:[
l(i), l(j)

]
NS

= 0
[
k(i), l(j)

]
NS

= 0
[
k(i),k(j)

]
NS

= 0

+

anomalous conditions:

∇ak
ab
(i)∇b

(
∇c l

c
(j)

)
= 0 ∇nm

na = 0

where mab =
2

3

(
k
c[a
(i)∇d∇c k

b]d
(j) − k

c[a
(j)∇d∇c k

b]d
(i)

)
− 2

3

(
∇dk

c[a
(i)

)(
∇ck

b]d
(j)

)
− 2k

c[a
(i) Riccd k

b]d
(j)

• Kolář I., Krtouš P.: Weak electromagnetic field admitting integrability in Kerr-NUT-(A)dS spacetimes, Phys.Rev.D 91 (2015) ??????,
arXiv:1504.00524
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Wave operator and its symmetry operators

∇ is Levi-Civita covariant derivative of the metric g

K(0) = � wave operator

commutativity is satisfied

(thanks to a special structure of Ricci tensor for derivative ∇)

⇓

Operators K(i), L(j) are mutually commuting symmetry operators of �

• Sergyeyev A., Krtouš P.: Complete Set of Commuting Symmetry Operators for Klein–Gordon Equation in Generalized Higher-
Dimensional Kerr-NUT-(A)dS Spacetimes, Phys.Rev.D 77 (2008) 044033
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Separability

common eigenfunctions

L(k)φ = Ψk φ K(j)φ = Ξj φ

separability ansatz

φ =
∏
µ

Rµ(xµ)
∏
k

exp
(
iΨkψk

)

with Rµ(xµ) satisfying ODEs(
XµRµ

′)′ + (Ξ̃µ −
Ψ̃µ

2

Xµ

)
Rµ = 0

where
Ψ̃µ =

∑
k

Ψk (−x2
µ)N−1−k Ξ̃µ =

∑
k

Ξk (−x2
µ)N−1−k

• Frolov V. P., Krtouš P., Kubizňák D.: Separability of Hamilton–Jacobi and Klein-Gordon Equations in General Kerr-NUT-AdS
Spacetimes, JHEP02(2007)005

• Sergyeyev A., Krtouš P.: Complete Set of Commuting Symmetry Operators for Klein–Gordon Equation in Generalized Higher-
Dimensional Kerr-NUT-(A)dS Spacetimes, Phys.Rev.D 77 (2008) 044033
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Related geometries
— “cousins” to Kerr–NUT–(A)dS

2nd-rank Killing tensors k(i) can play a role of an inverse metric!

“cousin” geometry given by the metric

(i)g = k−1
(i)

defines covariant derivative and curvature

(i)g → (i)∇ → (i)R , (i)Ric
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Integrability and commutativity for related geometries

Commutativity of classical observables[
k(i),k(j)

]
NS

= 0
[
k(i), l(j)

]
NS

= 0
[
l(i), l(j)

]
NS

= 0

NS-brackets do not depend on the choice of the geometry!

⇓

• Complete integrability of geodesic motion for all geometries (i)g

• l(j) and k(j) are Killing vectors and tensors for all geometries (i)g

(Non)commutativity of scalar operators

Operators defined using covariant derivative (i)∇
Anomalous conditions are not satisfied for geometries (i)g, i > 0

⇓

• Scalar operators do not commute in spaces (i)g, i > 0

Obstructions for (i)g, i > 0:
• h is not the CCKY form

• curvature (i)R is not aligned with h, namely, [k(j),
(i)Ric] 6= 0
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Uniqueness of geometries admitting principal CCKY form

Geometry admits the principal CCKY form

⇓

The metric can be written in the off-shell Kerr–NUT–(A)dS form

g =

n∑
µ=1

[
Uµ
Xµ
dx2

µ +
Xµ

Uµ

(n−1∑
k=0

A(k)
µ dψk

)2
]

• Houri T., Oota T., Yasui Y.: Closed conformal Killing-Yano tensor and Kerr-NUT-de Sitter spacetime uniqueness, Phys.Lett.B
656 (2007) 214

• Krtouš P., Frolov V.P., Kubizňák D.: Hidden Symmetries of Higher Dimensional Black Holes and Uniqueness of the Kerr-NUT-
(A)dS spacetime, Phys.Rev.D 78 (2008) 064022
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Summary

Principal CCKY form:

• defines Killing tower of explicit and hidden symmetries

• implies alignment of the curvature tensors

• guarantees complete integrability of geodesic motion

• guarantees commutativity of scalar operators

• determines the geometry

• The existence of a tower of Killing vectors and tensors without the principal CCKY form

does not guarantee commutativity of scalar operators
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