Hidden symmetries of higher-dimensional black holes

Pavel Krtouš

Pavel.Krtous@utf.mff.cuni.cz
http://utf.mff.cuni.cz/~krtous/

Relativity Seminar of ITF

Prague, December 5, 2017

Black holes, hidden symmetries, and complete integrability Valeri P. Frolov, Pavel Krtouš, David Kubizňák Living Rev. Relat. 20 (2017) 6

р	
в in	lack holes, hidden symmetries, and complete itegrability
Va	aleri P. Frolov ¹ · Pavel Krtouš ² © · David Kubizňák ³
Re	eceived: 26 May 2017 / Accepted: 12 October 2017 The Author(s) 2017. This article is an open access publication
Al at th og	tracted vast interest. Perhaps one of the most surprising discoveries is a realization at the properties of higher-dimensional black holes with the spherical horizon topol- zy and described by the Kerr–NUT–(A)dS metrics are very similar to the properties f the well known four-dimensional Kerr metric. This remarkable result stems from
th ex sp se be fo cia se al: pc	the existence of a single object called the principal tensor. In our review we discuss cylicit and hidden symmetries of higher-dimensional Kern–NUT–(A)dS black hole bacetimes. We start with discussion of the Killing and Killing–Yano objects repre- nting explicit and hidden symmetries. We demonstrate that the principal tensor can the used as a "seed object" which generates all these symmetries. It determines the serm of the geometry, as well as guarantees its remarkable properties, such as spe- al algebraic type of the spacetime, complete integrability of geodesic motion, and parability of the Hamilton–Jacobi, Klein–Gordon, and Dirac equations. The review so contains a discussion of different applications of the developed formalism and its ssible generalizations.
th ex sp se fo cia se al: pc	e existence of a single object called the principal tensor. In our review we discuss cylicit and hidden symmetries of higher-dimensional Kerr–NUT–(A)dS black hole bacetimes. We start with discussion of the Killing and Killing–Yano objects repre- nting explicit and hidden symmetries. We demonstrate that the principal tensor can e used as a "seed object" which generates all these symmetries. It determines the erm of the geometry, as well as guarantees its remarkable properties, such as spe- al algebraic type of the spacetime, complete integrability of geodesic motion, and parability of the Hamilton–Jacobi, Klein–Gordon, and Dirac equations. The review so contains a discussion of different applications of the developed formalism and its parability effective.
thex sp be fo cia se al: pc	e existence of a single object called the principal tensor. In our review we discuss cylicit and hidden symmetries of higher-dimensional Kerr–NUT–(A)dS black hole bacetimes. We start with discussion of the Killing and Killing–Yano objects repre- nting explicit and hidden symmetries. We demonstrate that the principal tensor can e used as a "seed object" which generates all these symmetries. It determines the rrm of the geometry, as well as guarantees its remarkable properties, such as spe- al algebraic type of the spacetime, complete integrability of geodesic motion, and parability of the Hamilton–Jacobi, Klein–Gordon, and Dirac equations. The review so contains a discussion of different applications of the developed formalism and its basible generalizations.
th ex sp be fo cia se ali po	e existence of a single object called the principal tensor. In our review we discuss cplicit and hidden symmetries of higher-dimensional Kerr–NUT–(A)dS black hole bacetimes. We start with discussion of the Killing and Killing–Yano objects repre- nting explicit and hidden symmetries. We demonstrate that the principal tensor can e used as a "seed object" which generates all these symmetries. It determines the rrm of the geometry, as well as guarantees its remarkable properties, such as spe- al algebraic type of the spacetime, complete integrability of geodesic motion, and parability of the Hamilton–Jacobi, Klein–Gordon, and Dirac equations. The review so contains a discussion of different applications of the developed formalism and its basible generalizations.
th ex sp se be fo cia se al: pc	e existence of a single object called the principal tensor. In our review we discuss cylicit and hidden symmetries of higher-dimensional Kerr–NUT–(A)dS black hole bacetimes. We start with discussion of the Killing and Killing–Yano objects repre- nting explicit and hidden symmetries. We demonstrate that the principal tensor can e used as a "seed object" which generates all these symmetries. It determines the brown of the geometry, as well as guarantees its remarkable properties, such as spe- al algebraic type of the spacetime, complete integrability of geodesic motion, and parability of the Hamilton–Jacobi, Klein–Gordon, and Dirac equations. The review so contains a discussion of different applications of the developed formalism and its bassible generalizations. Valeri P. Frolov vfrolov@ualberta.ca Pavel.Krtous [®] Pavel.Krtous [®] Pavel.Krtous [®] Pavel.Krtous [®] Department of Physics, Theoretical Physics Institute, University of Alberta, Edmonton, AB T6G 2G7, Canada Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Hoelsovickách 2.Prague, Czech Republic
th ex sp se be fo cia se all po 1 2 3	e existence of a single object called the principal tensor. In our review we discuss cylicit and hidden symmetries of higher-dimensional Kerr–NUT–(A)dS black hole acetimes. We start with discussion of the Killing and Killing–Yano objects repre- nting explicit and hidden symmetries. We demonstrate that the principal tensor can e used as a "seed object" which generates all these symmetries. It determines the prm of the geometry, as well as guarantees its remarkable properties, such as spe- al algebraic type of the spacetime, complete integrability of geodesic motion, and parability of the Hamilton–Jacobi, Klein–Gordon, and Dirac equations. The review so contains a discussion of different applications of the developed formalism and its pstible generalizations.

Contents

1	Intr	oduction	
2	2 Hidden symmetries and Killing objects		
	2.1	Particle in a curved spacetime	
	2.2	Explicit and hidden symmetries	
	2.3	Separability structures	
	2.4	Defining the Killing–Yano family 22	
	2.5	Basic properties of conformal Killing–Yano forms	
	2.6	Integrability conditions and method of prolongation	
	2.7	Killing–Yano tensors in maximally symmetric spaces	
	2.8	Principal tensor	
3	Kerr	metric and its hidden symmetries	
	3.1	Kerr metric	
	3.2	Carter's canonical metric	
	3.3	Uniqueness of the Kerr metric	
	3.4	Geodesics	
	3.5	Separation of variables in the canonical metric	
	3.6	Special limits of the Kerr metric	
	3.7	Kerr–Schild form of the Kerr metric	
	3.8	Remarks on the choice of angle variable	
	3.9	Hidden symmetries of the Plebański–Demiański metric	
4	Higl	ner-dimensional Kerr–NUT–(A)dS metrics	
	4.1	Canonical form of the metric	
	4.2	Parameters and alternative form of the metric	
	4.3	Euclidean signature: instantons	
	4.4	Lorentzian signature: black holes	
	4.5	Multi-Kerr-Schild form	
5	Hide	den symmetries of Kerr–NUT–(A)dS spacetimes	
	5.1	Principal tensor	
	5.2	Killing tower	
	5.3	Uniqueness theorem	
	5.4	Proof of commutation relations	
	5.5	Principal tensor as a symplectic structure	
6	Part	icles and fields: Integrability and separability	
	6.1	Complete integrability of geodesic motion	
	6.2	Separation of variables in the Hamilton–Jacobi equation	
	6.3	Separation of variables in the wave equation	
	6.4	Dirac equation	
	6.5	Tensor perturbations	
	6.6	Maxwell equations	
7	Furt	her developments	
	7.1	Parallel transport	
	7.2	Classical spinning particle	
	7.3	Stationary strings and branes	
	7.4	Generalized Kerr–NUT–(A)dS spacetimes	
	7.5	Lifting theorems; hidden symmetries on a warped space	
	7.6	Generalized Killing–Yano tensors	
	7.7	Final remarks	
Ac	know	dedgements	
		5	

Black holes, hidden symmetries, and complete integral	oility
---	--------

А	Nota	tion and conventions $\ldots \ldots \ldots$
	A.1	Tensor notation
	A.2	Exterior calculus
В	Phas	e space formalism and complete integrability
	B.1	Symplectic geometry
	B.2	Complete integrability 168
	B.3	Hamilton–Jacobi equation
	B.4	Covariant formalism on a cotangent hundle
С	Integ	rability conditions for conformal Killing–Vano forms
0	C 1	Laplace operator and conformal Killing–Vano forms
	C_2	Integrability conditions
р	U.2 Korr	NUT (A)dS metric related quantities
D	D 1	Properties of metric functions
	D.1	
-	D.Z	Spin connection
E	Myei	s-Perry metric
	E.1	Tangherlini solution
	E.2	Myers–Perry solution
	E.3	Kerr–Schild form
	E.4	Special spinning black holes
F	Spine	prs in curved space
	F.1	Dirac spinors 191
	F.2	Symmetry operators of the Dirac operator 19
	F 3	Killing-Vano tensors and Killing spinors
Re	forond	200°
- 1 U C	TOTOIL	/00

3

Symmetries

Symmetries on configuration space

configuration space M = space of positions

- 1-parameter family of diffeomorphisms on M
- relevant quantities unchanged by the symmetry

generated by vector field \boldsymbol{l} on M $\pounds_{\boldsymbol{l}}\boldsymbol{g} = 0$ $\pounds_{\boldsymbol{l}}\boldsymbol{A} = 0$ $\pounds_{\boldsymbol{l}}V = 0$

Symmetries

Symmetries on configuration space

configuration space M = space of positions

- 1-parameter family of diffeomorphisms on M
- relevant quantities unchanged by the symmetry

generated by vector field \boldsymbol{l} on M $\pounds_{\boldsymbol{l}}\boldsymbol{g} = 0$ $\pounds_{\boldsymbol{l}}\boldsymbol{A} = 0$ $\pounds_{\boldsymbol{l}}V = 0$

Symmetries on phase space

phase space Γ = space of positions and momenta

- 1-parameter family of diffeomorphisms on Γ
- symplectomorphism: $\pounds_{\mathbf{Z}} \mathbf{\Omega} = 0$
- Hamiltonian unchanged by the symmetry:
- F is a conserved quantity

generated by vector field \mathbf{Z} on Γ generator is Hamiltonian flow $Z = \mathbf{X}_F$ $\pounds_{\mathbf{Z}}H = 0 \quad \Leftrightarrow \quad \{F, H\} = 0$ $\pounds_{\mathbf{X}_H}F = 0$

Symmetries

Symmetries on configuration space

configuration space M = space of positions

- 1-parameter family of diffeomorphisms on M
- relevant quantities ui

Symmetries on r

phase space $\Gamma = \operatorname{spac}$

- 1-parameter family of diffeomorphisms on Γ
- symplectomorphism: $\pounds_{\mathbf{Z}} \mathbf{\Omega} = 0$
- Hamiltonian unchanged by the symmetry:
- F is a conserved quantity

generated by vector field \mathbf{Z} on Γ generator is Hamiltonian flow $Z = \mathbf{X}_F$ $\pounds_{\mathbf{Z}}H = 0 \iff \{F, H\} = 0$ $\pounds_{\mathbf{X}_H}F = 0$

generated by vector field \boldsymbol{l} on M

V = 0

Symmetry is generated by

a conserved quantity

Symmetries of geodesic motion

Symmetries on configuration space

configuration space M = space of positions

- generator of the symmetry \boldsymbol{l}
- metric conserved by the symmetry isometry $\pounds_l g = 0$

Symmetries on phase space

phase space Γ = space of positions and momenta

- generator of the symmetry \boldsymbol{X}_K
- $\{K,H\}=0$
- Hamiltonian given by the metric

$$H = rac{1}{2m} \boldsymbol{g}^{ab} \, \boldsymbol{p}_a \boldsymbol{p}_b$$

Symmetries of geodesic motion

Symmetries on configuration space configuration space M = space of positions

- generator of the symmetry \boldsymbol{l}
- metric conserved by the symmetry isometry $\pounds_l g = 0$

\Rightarrow Explicit symmetries

conserved quantity linear in momentum \boldsymbol{p}

$$L = l^a p_a$$

l – Killing vector

Symmetries on phase space

phase space Γ = space of positions and momenta

- generator of the symmetry \boldsymbol{X}_K
- $\{K,H\}=0$
- Hamiltonian given by the metric

$$H = rac{1}{2m} \boldsymbol{g}^{ab} \, \boldsymbol{p}_a \boldsymbol{p}_b$$

Symmetries of geodesic motion

Symmetries on configuration space configuration space M = space of positions

- generator of the symmetry \boldsymbol{l}
- metric conserved by the symmetry isometry $\pounds_l g = 0$

\Rightarrow Explicit symmetries

conserved quantity linear in momentum \boldsymbol{p}

$$L = l^a p_a$$

l – Killing vector

Symmetries on phase space

phase space Γ = space of positions and momenta

- generator of the symmetry \boldsymbol{X}_K
- $\{K,H\}=0$
- Hamiltonian given by the metric

 $H = \frac{1}{2m} \boldsymbol{g}^{ab} \boldsymbol{p}_a \boldsymbol{p}_b$

\Rightarrow Hidden symmetries

conserved quantity monomial in momentum \boldsymbol{p} $K = \boldsymbol{k}^{a_1 \dots a_p} \boldsymbol{p}_{a_1} \cdots \boldsymbol{p}_{a_p}$ $\boldsymbol{k} - \textbf{Killing tensor}$

Killing vectors

l is a Killing vector iff

$$\pounds_{\boldsymbol{l}} \boldsymbol{g} = 0 \quad \Leftrightarrow \quad \boldsymbol{\nabla}^{(a} \boldsymbol{l}^{b)} = 0$$

Killing tensors

 \boldsymbol{k} is a Killing tensor of rank p iff

$$\boldsymbol{k}^{a_1...a_p} = \boldsymbol{k}^{(a_1...a_p)}$$
$$\boldsymbol{\nabla}^{(a_0} \boldsymbol{k}^{a_1...a_p)} = 0$$

Killing vectors

l is a Killing vector iff

 $\pounds_{\boldsymbol{l}} \boldsymbol{g} = 0 \quad \Leftrightarrow \quad \boldsymbol{\nabla}^{(a} \boldsymbol{l}^{b)} = 0$

Killing tensors

 \boldsymbol{k} is a Killing tensor of rank p iff

$$\boldsymbol{k}^{a_1...a_p} = \boldsymbol{k}^{(a_1...a_p)}$$
$$\boldsymbol{\nabla}^{(a_0}\boldsymbol{k}^{a_1...a_p)} = 0$$

• Killing vector is a Killing tensor of rank 1

Killing vectors

l is a Killing vector iff

£

$$\boldsymbol{\nabla}_{\boldsymbol{l}} \boldsymbol{g} = 0 \quad \Leftrightarrow \quad \boldsymbol{\nabla}^{(a} \boldsymbol{l}^{b)} = 0$$

Killing tensors

 \boldsymbol{k} is a Killing tensor of rank p iff

 $oldsymbol{k}^{a_1...a_p} = oldsymbol{k}^{(a_1...a_p)}$ $\boldsymbol{\nabla}^{(a_0}\boldsymbol{k}^{a_1\dots a_p)} = 0$

- Killing vector is a Killing tensor of rank 1
- Existence of Killing tensors is highly non-trivial restriction on the geometry

Killing vectors

l is a Killing vector iff

Killing tensors

 \boldsymbol{k} is a Killing tensor of rank p iff

 $oldsymbol{k}^{a_1...a_p} = oldsymbol{k}^{(a_1...a_p)}$

 $\boldsymbol{\nabla}^{(a_0}\boldsymbol{k}^{a_1\dots a_p)} = 0$

$$\pounds_{l} g = 0 \quad \Leftrightarrow \quad \nabla^{(a} l^{b)} = 0$$

- Killing vector is a Killing tensor of rank 1
- Existence of Killing tensors is highly non-trivial restriction on the geometry
- Killing tensors can be build from more elementary building blocks

Killing vectors

l is a Killing vector iff

Killing tensors

 \boldsymbol{k} is a Killing tensor of rank p iff

 $oldsymbol{k}^{a_1...a_p} = oldsymbol{k}^{(a_1...a_p)}$

 $\boldsymbol{\nabla}^{(a_0}\boldsymbol{k}^{a_1\dots a_p)} = 0$

 $\pounds_{\boldsymbol{l}} \boldsymbol{g} = 0 \quad \Leftrightarrow \quad \boldsymbol{\nabla}^{(a} \boldsymbol{l}^{b)} = 0$

- Killing vector is a Killing tensor of rank 1
- Existence of Killing tensors is highly non-trivial restriction on the geometry
- Killing tensors can be build from more elementary building blocks

Conformal Killing–Yano forms

Pavel Krtouš, Charles University

Splitting covariant derivative of a form

$$oldsymbol{
abla} oldsymbol{\omega} = \mathcal{A}oldsymbol{
abla} oldsymbol{\omega} + \mathcal{C}oldsymbol{
abla} oldsymbol{\omega} + \mathcal{T}oldsymbol{
abla} oldsymbol{\omega}$$

$$(\mathcal{A}\sigma)_{aa_1\dots a_p} = \sigma_{[aa_1\dots a_p]}$$
$$(\mathcal{C}\sigma)_{aa_1\dots a_p} = \frac{p}{D-p+1}g_{a[a_1}\sigma^a{}_{|a|a_2\dots a_p]}$$
$$(\mathcal{T}\sigma)_{aa_1\dots a_p} = \sigma_{aa_1\dots a_p} - \sigma_{[aa_1\dots a_p]} - \frac{p}{D-p+1}g_{a[a_1}\sigma^a{}_{|a|a_2\dots a_p]}$$

. . .

Splitting covariant derivative of a form

 $abla \omega = \mathcal{A} \nabla \omega + \mathcal{C} \nabla \omega + \mathcal{T} \nabla \omega$

$d\omega$	antisymmetric part
$\delta \omega$	divergence part
$\mathrm{T}\omega$	twistor operator

$$(\mathcal{A}\sigma)_{aa_1\dots a_p} = \sigma_{[aa_1\dots a_p]}$$
$$(\mathcal{C}\sigma)_{aa_1\dots a_p} = \frac{p}{D-p+1}g_{a[a_1}\sigma^a{}_{|a|a_2\dots a_p]}$$
$$(\mathcal{T}\sigma)_{aa_1\dots a_p} = \sigma_{aa_1\dots a_p} - \sigma_{[aa_1\dots a_p]} - \frac{p}{D-p+1}g_{a[a_1}\sigma^a{}_{|a|a_2\dots a_p]}$$

Splitting covariant derivative of a form

$$oldsymbol{
abla} oldsymbol{
abla} oldsymbol{\omega} = \mathcal{A} oldsymbol{
abla} oldsymbol{\omega} + \mathcal{C} oldsymbol{
abla} oldsymbol{\omega} + \mathcal{T} oldsymbol{
abla} oldsymbol{\omega}$$
 $oldsymbol{d} oldsymbol{\omega} oldsymbol{\Delta} oldsymbol{\omega} oldsymbol{ abla} oldsymbol{ abla}$

$$(\mathcal{A}\sigma)_{aa_1\dots a_p} = \sigma_{[aa_1\dots a_p]}$$
$$(\mathcal{C}\sigma)_{aa_1\dots a_p} = \frac{p}{D-p+1}g_{a[a_1}\sigma^a{}_{|a|a_2\dots a_p]}$$
$$(\mathcal{T}\sigma)_{aa_1\dots a_p} = \sigma_{aa_1\dots a_p} - \sigma_{[aa_1\dots a_p]} - \frac{p}{D-p+1}g_{a[a_1}\sigma^a{}_{|a|a_2\dots a_p]}$$

General form	$oldsymbol{ abla} oldsymbol{ abla} oldsymbol{\omega} = \mathcal{A} oldsymbol{ abla} oldsymbol{\omega} + \mathcal{C} oldsymbol{ abla} oldsymbol{\omega} + \mathcal{T} oldsymbol{ abla} oldsymbol{\omega}$	
Closed form	$oldsymbol{ abla} oldsymbol{arphi} oldsymbol{\omega} = \mathcal{C}oldsymbol{ abla}oldsymbol{\omega} + \mathcal{T}oldsymbol{ abla}oldsymbol{\omega}$	$d\omega = 0$
Divergence-free co-closed form	$oldsymbol{ abla} oldsymbol{ abla} oldsymbol{\omega} = \mathcal{A} oldsymbol{ abla} oldsymbol{\omega} + \mathcal{T} oldsymbol{ abla} oldsymbol{\omega}$	$\boldsymbol{\delta \omega} = 0$
Conformal Killing–Yano form	$oldsymbol{ abla} oldsymbol{\omega} = \mathcal{A}oldsymbol{ abla} oldsymbol{\omega} + \mathcal{C}oldsymbol{ abla} oldsymbol{\omega}$	$\mathbf{T}\boldsymbol{\omega}=0$
Killing–Yano form	$oldsymbol{ abla} oldsymbol{\omega} = \mathcal{A}oldsymbol{ abla} oldsymbol{\omega}$	$\mathbf{T}\boldsymbol{\omega}=0,\boldsymbol{\delta}\boldsymbol{\omega}=0$
Closed conformal Killing–Yano form	$oldsymbol{ abla} oldsymbol{\omega} = \mathcal{C}oldsymbol{ abla}oldsymbol{\omega}$	$\mathbf{T}\boldsymbol{\omega}=0,\boldsymbol{d}\boldsymbol{\omega}=0$
Harmonic form	$oldsymbol{ abla} oldsymbol{\omega} = \mathcal{T}oldsymbol{ abla}oldsymbol{\omega}$	$\boldsymbol{d\omega}=0,\;\boldsymbol{\delta\omega}=0$
Covariantly constant form	$\nabla \boldsymbol{\omega} = 0$	$\boldsymbol{d\omega}=0,\;\boldsymbol{\delta\omega}=0,\;\mathbf{T}\boldsymbol{\omega}=0$

form ω is a *conformal Killing–Yano form* iff for any vector **X** there exist forms κ and ξ such that

$$abla_X\,\omega = X\cdot\kappa + X\wedge oldsymbol{\xi}$$

$$\boldsymbol{\kappa} = rac{1}{p+1} \, \boldsymbol{\nabla} \wedge \boldsymbol{\omega} \qquad \qquad \boldsymbol{\xi} = rac{1}{D-p+1} \, \boldsymbol{\nabla} \cdot \boldsymbol{\omega}$$

Killing–Yano forms

Closed conformal Killing–Yano forms

 $abla_X \, oldsymbol{f} = oldsymbol{X} \cdot oldsymbol{\kappa} \qquad
abla_X \, oldsymbol{h} = oldsymbol{X} \wedge oldsymbol{\xi}$

$$oldsymbol{
alpha}_a oldsymbol{f}_{a_1...a_p} = oldsymbol{
alpha}_{[a} oldsymbol{f}_{a_1...a_p]} = rac{p}{D-p-1} oldsymbol{g}_{a[a_1} oldsymbol{
alpha}^n oldsymbol{h}_{[n|a_2...a_p]}$$

Basic properties of conformal Killing–Yano forms

Killing–Yano forms

Closed conformal Killing–Yano forms

$$\boldsymbol{k}^{ab} = \boldsymbol{f}_1{}^{(a}{}_{c_2...c_p} \, \boldsymbol{f}_2{}^{b)c_2...c_p}$$

is Killing tensor

 $oldsymbol{h}=oldsymbol{h}_1\wedgeoldsymbol{h}_2$

is closed conformal Killing–Yano form

Basic properties of conformal Killing–Yano forms

Killing–Yano forms

Closed conformal Killing–Yano forms

$$oldsymbol{k}^{ab}=oldsymbol{f}_1{}^{(a}{}_{c_2...c_p}oldsymbol{f}_2{}^{b)c_2...c_p}$$

is Killing tensor

 $oldsymbol{h}=oldsymbol{h}_1\wedgeoldsymbol{h}_2$

is closed conformal Killing–Yano form

Basic properties of conformal Killing–Yano forms

Killing–Yano forms

Closed conformal Killing–Yano forms

$$oldsymbol{k}^{ab}=oldsymbol{f}_1{}^{(a}{}_{c_2...c_p}oldsymbol{f}_2{}^{b)c_2...c_p}$$

is Killing tensor

 $oldsymbol{h}=oldsymbol{h}_1\wedgeoldsymbol{h}_2$

is closed conformal Killing–Yano form

Principal tensor

Principal tensor h is non-degenerate closed conformal Killing–Yano 2-form

$$\boldsymbol{
abla}_{c} \, \boldsymbol{h}_{ab} = \boldsymbol{g}_{ca} \, \boldsymbol{\xi}_{b} - \boldsymbol{g}_{cb} \, \boldsymbol{\xi}_{a} \qquad \qquad \boldsymbol{\xi}_{a} = rac{1}{D-1} \boldsymbol{
abla}^{b} \boldsymbol{h}_{ba}$$

Darboux frame (e^{μ}, \hat{e}^{μ})

non-degeneracy: x_{μ} are functionally independent functions

$$oldsymbol{h} = \sum_{\mu=1}^N x_\mu \, oldsymbol{e}^\mu \wedge \hat{oldsymbol{e}}^\mu
onumber \ oldsymbol{g} = \sum_{\mu=1}^N ig(oldsymbol{e}^\mu oldsymbol{e}^\mu + \hat{oldsymbol{e}}^\mu \hat{oldsymbol{e}}^\mu ig)$$

 $dx_{\mu} \propto e^{\mu}$ $\hat{e}_{\mu} \cdot dx_{\mu} = 0$ even dimension D = 2N $\mu = 1, \dots, N$

Principal tensor

Principal tensor h is non-degenerate closed conformal Killing–Yano 2-form

$$\boldsymbol{\nabla}_{c} \boldsymbol{h}_{ab} = \boldsymbol{g}_{ca} \boldsymbol{\xi}_{b} - \boldsymbol{g}_{cb} \boldsymbol{\xi}_{a}$$
 $\boldsymbol{\xi}_{a} = \frac{1}{D-1} \boldsymbol{\nabla}^{b} \boldsymbol{h}_{ba}$

Darboux frame (e^{μ}, \hat{e}^{μ})

non-degeneracy: x_{μ} are functionally independent functions

$$oldsymbol{h} = \sum_{\mu=1}^N x_\mu \, oldsymbol{e}^\mu \wedge \hat{oldsymbol{e}}^\mu
onumber \ oldsymbol{g} = \sum_{\mu=1}^N ig(oldsymbol{e}^\mu oldsymbol{e}^\mu + \hat{oldsymbol{e}}^\mu \hat{oldsymbol{e}}^\mu ig)$$

$$dx_{\mu} \propto e^{\mu}$$
 $\hat{e}_{\mu} \cdot dx_{\mu} = 0$ even dimension $D = 2N$
 $\mu = 1, \dots, N$

Principal tensor

Principal tensor h is non-degenerate closed conformal Killing–Yano 2-form

$$\boldsymbol{\nabla}_{c} \boldsymbol{h}_{ab} = \boldsymbol{g}_{ca} \boldsymbol{\xi}_{b} - \boldsymbol{g}_{cb} \boldsymbol{\xi}_{a}$$
 $\boldsymbol{\xi}_{a} = \frac{1}{D-1} \boldsymbol{\nabla}^{b} \boldsymbol{h}_{ba}$

Darboux frame (e^{μ}, \hat{e}^{μ})

non-degeneracy:

 x_{μ} are functionally independent functions

$$oldsymbol{h} = \sum_{\mu=1}^N x_\mu \, oldsymbol{e}^\mu \wedge \hat{oldsymbol{e}}^\mu
onumber \ oldsymbol{g} = \sum_{\mu=1}^N ig(oldsymbol{e}^\mu oldsymbol{e}^\mu + \hat{oldsymbol{e}}^\mu \hat{oldsymbol{e}}^\mu ig)$$

$$dx_{\mu} \propto e^{\mu}$$
 $\hat{e}_{\mu} \cdot dx_{\mu} = 0$ even dimension $D = 2N$
 $\mu = 1, \dots, N$

Primary Killing vector

Principal tensor h

$$\boldsymbol{\nabla}_{c} \boldsymbol{h}_{ab} = \boldsymbol{g}_{ca} \boldsymbol{\xi}_{b} - \boldsymbol{g}_{cb} \boldsymbol{\xi}_{a}$$

Primary Killing vector $\boldsymbol{\xi}$

$$\boldsymbol{\xi}_a = rac{1}{D-1} \boldsymbol{
abla}^b \boldsymbol{h}_{ba}$$

 $\pounds_{\boldsymbol{\xi}} \, \boldsymbol{g} = 0$
 $\boldsymbol{\xi}$ is a Killing vector

↑

a highly non-trivial consequence of integrability conditions for the principal tensor equation

- $\pounds_{\pmb{\xi}} \, \pmb{h} = 0$
- $\pmb{\xi}$ preserves the principal tensor

↑

a direct consequence of the principal tensor equation

• Closed conformal Killing–Yano forms $h^{(j)}$ of rank 2j:

$$oldsymbol{h}^{(j)} = rac{1}{j!} oldsymbol{h}^{\wedge j}$$

• Killing–Yano forms
$$f^{(j)}$$
 of rank $(D-2j)$:

$$oldsymbol{f}^{(j)} = *oldsymbol{h}^{(j)}$$

• Rank-2 Killing tensors $k_{(j)}$:

$$\boldsymbol{k}_{(j)}^{ab} = \frac{1}{(D-2j-1)!} \, \boldsymbol{f}^{(j)a}{}_{c_1...c_{D-2j-1}} \, \boldsymbol{f}^{(j)bc_1...c_{D-2j-1}}$$

$$oldsymbol{l}_{(j)}=oldsymbol{k}_{(j)}oldsymbol{\cdot}oldsymbol{\xi}$$

• Closed conformal Killing–Yano forms $h^{(j)}$ of rank 2j:

$$oldsymbol{h}^{(j)}=rac{1}{j!}oldsymbol{h}^{\wedge j}$$

- Killing–Yano forms $f^{(j)}$ of rank (D 2j): $f^{(j)} = *h^{(j)}$
- Rank-2 Killing tensors $k_{(j)}$:

$$\boldsymbol{k}_{(j)}^{ab} = \frac{1}{(D-2j-1)!} \, \boldsymbol{f}^{(j)a}{}_{c_1...c_{D-2j-1}} \, \boldsymbol{f}^{(j)bc_1...c_{D-2j-1}}$$

$$oldsymbol{l}_{(j)}=oldsymbol{k}_{(j)}oldsymbol{\cdot}oldsymbol{\xi}$$

• Closed conformal Killing–Yano forms $h^{(j)}$ of rank 2j:

$$\boldsymbol{h}^{(j)} = rac{1}{j!} \boldsymbol{h}^{\wedge j}$$

• Killing–Yano forms $f^{(j)}$ of rank (D-2j):

$$oldsymbol{f}^{(j)}=*oldsymbol{h}^{(j)}$$

• Rank-2 Killing tensors $k_{(j)}$:

$$\boldsymbol{k}_{(j)}^{ab} = \frac{1}{(D-2j-1)!} \, \boldsymbol{f}^{(j)a}{}_{c_1...c_{D-2j-1}} \, \boldsymbol{f}^{(j)bc_1...c_{D-2j-1}}$$

$$oldsymbol{l}_{(j)} = oldsymbol{k}_{(j)} \cdot oldsymbol{\xi}$$

• Closed conformal Killing–Yano forms $h^{(j)}$ of rank 2j:

$$oldsymbol{h}^{(j)}=rac{1}{j!}oldsymbol{h}^{\wedge j}$$

• Killing–Yano forms $f^{(j)}$ of rank (D-2j):

$$oldsymbol{f}^{(j)}=*oldsymbol{h}^{(j)}$$

• Rank-2 Killing tensors $k_{(j)}$:

$$\boldsymbol{k}_{(j)}^{ab} = \frac{1}{(D-2j-1)!} \, \boldsymbol{f}^{(j)a}{}_{c_1...c_{D-2j-1}} \, \boldsymbol{f}^{(j)bc_1...c_{D-2j-1}}$$

$$oldsymbol{l}_{(j)} = oldsymbol{k}_{(j)} \cdot oldsymbol{\xi}$$

• Closed conformal Killing–Yano forms $h^{(j)}$ of rank 2j:

$$\boldsymbol{h}^{(j)} = rac{1}{j!} \boldsymbol{h}^{\wedge j}$$

• Killing–Yano forms $f^{(j)}$ of rank (D-2j):

$$oldsymbol{f}^{(j)}=*oldsymbol{h}^{(j)}$$

• Rank-2 Killing tensors $k_{(j)}$:

Hidden symmetries

$$\boldsymbol{k}_{(j)}^{ab} = \frac{1}{(D-2j-1)!} \, \boldsymbol{f}^{(j)a}{}_{c_1...c_{D-2j-1}} \, \boldsymbol{f}^{(j)bc_1...c_{D-2j-1}}$$

• Killing vectors $\boldsymbol{l}_{(j)}$:

Explicit symmetries

$$oldsymbol{l}_{(j)} = oldsymbol{k}_{(j)} \cdot oldsymbol{\xi}$$

- Rank-2 Killing tensors $\boldsymbol{k}_{(j)}$
- Killing vectors $\boldsymbol{l}_{(j)}$

Hidden symmetries Explicit symmetries

$$j=0,\ldots,N-1$$

Symmetries Nijenhuis–Schouten commute

$$\left[\boldsymbol{k}_{(i)},\boldsymbol{k}_{(j)}\right]_{\rm NS} = 0 \qquad \left[\boldsymbol{k}_{(i)},\boldsymbol{l}_{(j)}\right]_{\rm NS} = 0 \qquad \left[\boldsymbol{l}_{(i)},\boldsymbol{l}_{(j)}\right]_{\rm NS} = 0$$

↑

a non-trivial consequence of the Killing tower definition, of the principal tensor equation and its integrability conditions

Principal tensor geometry

- eigenvalues of the principal tensor h \Rightarrow coordinates x_{μ}
- Killing vectors $l_{(j)}$ commute and tangent to $x_{\mu} = \text{const} \implies \text{Killing coordinates } \psi_j$

Uniqueness of the geometry

it is possible to reconstruct the metric up to N free metric functions X_{μ}

these functions are determined by the Einstein equations

Off-shell Kerr–NUT–(A)dS geometry

for simplicity even dimension D = 2N

$$\boldsymbol{g} = \sum_{\mu=1}^{N} \left[\frac{U_{\mu}}{X_{\mu}} \boldsymbol{d} x_{\mu}^2 + \frac{X_{\mu}}{U_{\mu}} \left(\sum_{j=0}^{N-1} A_{\mu}^{(j)} \boldsymbol{d} \psi_j \right)^2 \right]$$

explicit function polynomial in coordinates x_{μ} (symmetric polynomials)

$$A^{(k)} = \sum_{\substack{\nu_1, \dots, \nu_k = 1 \\ \nu_1 < \dots < \nu_k}}^N x_{\nu_1}^2 \dots x_{\nu_k}^2 \qquad A^{(j)}_{\mu} = \sum_{\substack{\nu_1, \dots, \nu_j = 1 \\ \nu_1 < \dots < \nu_j \\ \nu_i \neq \mu}}^N x_{\nu_1}^2 \dots x_{\nu_j}^2 \qquad U_{\mu} = \prod_{\substack{\nu = 1 \\ \nu \neq \mu}}^N (x_{\nu}^2 - x_{\mu}^2)$$

unspecified N metric functions of one variable

$$X_{\mu} = X_{\mu}(x_{\mu})$$

Off-shell Kerr–NUT–(A)dS geometry

for simplicity even dimension D = 2N

$$\boldsymbol{g} = \sum_{\mu=1}^{N} \left[\frac{U_{\mu}}{X_{\mu}} \boldsymbol{d} x_{\mu}^{2} + \frac{X_{\mu}}{U_{\mu}} \left(\sum_{j=0}^{N-1} A_{\mu}^{(j)} \boldsymbol{d} \psi_{j} \right)^{2} \right]$$

Darboux frame

forms:

vectors:

$$\boldsymbol{e}^{\mu} = \left(\frac{U_{\mu}}{X_{\mu}}\right)^{\frac{1}{2}} \boldsymbol{d}x_{\mu} \qquad \hat{\boldsymbol{e}}^{\mu} = \left(\frac{X_{\mu}}{U_{\mu}}\right)^{\frac{1}{2}} \sum_{j=0}^{N-1} A_{\mu}^{(j)} \boldsymbol{d}\psi_{j} \qquad \qquad \boldsymbol{e}_{\mu} = \left(\frac{X_{\mu}}{U_{\mu}}\right)^{\frac{1}{2}} \boldsymbol{\partial}_{x_{\mu}} \qquad \hat{\boldsymbol{e}}_{\mu} = \left(\frac{U_{\mu}}{X_{\mu}}\right)^{\frac{1}{2}} \sum_{k=0}^{N-1} \frac{(-x_{\mu}^{2})^{N-1-k}}{U_{\mu}} \boldsymbol{\partial}_{\psi_{k}}$$

Off-shell Kerr–NUT–(A)dS geometry

for simplicity even dimension D = 2N

$$\boldsymbol{g} = \sum_{\mu=1}^{N} \left[\frac{U_{\mu}}{X_{\mu}} \boldsymbol{d} x_{\mu}^2 + \frac{X_{\mu}}{U_{\mu}} \left(\sum_{j=0}^{N-1} A_{\mu}^{(j)} \boldsymbol{d} \psi_j \right)^2 \right]$$

Darboux frame

forms:

vectors:

$$\boldsymbol{e}^{\mu} = \left(\frac{U_{\mu}}{X_{\mu}}\right)^{\frac{1}{2}} \boldsymbol{d}x_{\mu} \qquad \hat{\boldsymbol{e}}^{\mu} = \left(\frac{X_{\mu}}{U_{\mu}}\right)^{\frac{1}{2}} \sum_{j=0}^{N-1} A_{\mu}^{(j)} \boldsymbol{d}\psi_{j} \qquad \qquad \boldsymbol{e}_{\mu} = \left(\frac{X_{\mu}}{U_{\mu}}\right)^{\frac{1}{2}} \boldsymbol{\partial}_{x_{\mu}} \qquad \hat{\boldsymbol{e}}_{\mu} = \left(\frac{U_{\mu}}{X_{\mu}}\right)^{\frac{1}{2}} \sum_{k=0}^{N-1} \frac{(-x_{\mu}^{2})^{N-1-k}}{U_{\mu}} \boldsymbol{\partial}_{\psi_{k}}$$

Curvature

$$\begin{split} \mathbf{Ric} &= -\sum_{\mu=1}^{N} r_{\mu} \left(\boldsymbol{e}^{\mu} \boldsymbol{e}^{\mu} + \hat{\boldsymbol{e}}^{\mu} \hat{\boldsymbol{e}}^{\mu} \right) \\ R &= -\sum_{\nu=1}^{N} \frac{X_{\nu}''}{U_{\nu}} \end{split}$$
On-shell Kerr–NUT–(A)dS geometry

for simplicity even dimension D = 2N

$$\boldsymbol{g} = \sum_{\mu=1}^{N} \left[\frac{U_{\mu}}{X_{\mu}} \boldsymbol{d} x_{\mu}^{2} + \frac{X_{\mu}}{U_{\mu}} \left(\sum_{j=0}^{N-1} A_{\mu}^{(j)} \boldsymbol{d} \psi_{j} \right)^{2} \right]$$

Einstein equations \Rightarrow

$$X_{\mu} = \lambda \prod_{\nu=1}^{N} (a_{\nu}^{2} - x_{\mu}^{2}) - 2b_{\mu} x_{\mu} = \lambda \mathcal{J}(x_{\mu}^{2}) - 2b_{\mu} x_{\mu}$$

Parameters:

 λ

 b_{μ}

cosmological parameter related to the cosmological constant $\Lambda = (2N - 1)(N - 1)\lambda$ mass and NUT parameters

 a_{μ} rotational parameters

freedom in scaling of coordinates \Rightarrow one parameter can be fixed by a gauge condition exact interpretation of parameters depends on coordinate ranges, signature, and gauge choices

On-shell Kerr–NUT–(A)dS geometry

for simplicity even dimension D = 2N

$$\boldsymbol{g} = \sum_{\mu=1}^{N} \left[\frac{U_{\mu}}{X_{\mu}} \boldsymbol{d} x_{\mu}^2 + \frac{X_{\mu}}{U_{\mu}} \left(\sum_{j=0}^{N-1} A_{\mu}^{(j)} \boldsymbol{d} \psi_j \right)^2 \right]$$

Coordinate ranges:

• x_{μ} between roots of X_{μ}

 $X_{\mu} = \lambda \, \mathcal{J}(x_{\mu}^2) - 2b_{\mu}x_{\mu}$

On-shell Kerr–NUT–(A)dS geometry

for simplicity even dimension D = 2N

$$\boldsymbol{g} = \sum_{\mu=1}^{N} \left[\frac{U_{\mu}}{X_{\mu}} \boldsymbol{d} x_{\mu}^{2} + \frac{X_{\mu}}{U_{\mu}} \left(\sum_{j=0}^{N-1} A_{\mu}^{(j)} \boldsymbol{d} \psi_{j} \right)^{2} \right]$$

Coordinate ranges:

• x_{μ} between roots of X_{μ} [for $b_{\mu} = 0$ roots roots of X_{μ} are $a_{\mu} \Rightarrow x_{\mu} \in (a_{\mu-1}, a_{\mu})$]

• ψ_j – Killing coordinates ϕ_{μ} – any liner combination of ψ_j form also Killing coordinates

a periodic character of properly chosen coordinates ϕ_{μ} guarantees a regularity of rotation axes

regularity of whole rotational axes can be achieved only for vanishing NUT parameters

Kerr–NUT–(A)dS geometry – Lorentzian signature

$$\boldsymbol{g} = \sum_{\mu=1}^{N} \left[\frac{U_{\mu}}{X_{\mu}} \boldsymbol{d} x_{\mu}^2 + \frac{X_{\mu}}{U_{\mu}} \left(\sum_{j=0}^{N-1} A_{\mu}^{(j)} \boldsymbol{d} \psi_j \right)^2 \right]$$

Wick rotation:

time: $\tau = \psi_0$ radial coordinate: $x_N = ir$ mass: $b_N = im$

Gauge condition:

$$a_N^2 = -\frac{1}{\lambda}$$
 (suitable for limit $\lambda \to 0$)

New Killing coordinates:

$$t = \tau + \sum_{\bar{k}} \bar{\mathcal{A}}^{(\bar{k}+1)} \bar{\psi}_{\bar{k}} \qquad \qquad \frac{\phi_{\bar{\mu}}}{a_{\bar{\mu}}} = \lambda \tau - \sum_{\bar{k}} \left(\bar{\mathcal{A}}^{(\bar{k})}_{\bar{\mu}} - \lambda \bar{\mathcal{A}}^{(\bar{k}+1)}_{\bar{\mu}} \right) \bar{\psi}_{\bar{k}}$$

barred quantities refer to ranges of indices given by $N \to \overline{N} = N - 1$

(i.e.,
$$\bar{\mu} = 1, ..., \bar{N}$$
 and $\bar{j} = 0, ..., \bar{N} - 1$, etc.)

Kerr–NUT–(A)dS geometry – Lorentzian signature

$$\begin{split} \boldsymbol{g} &= -\frac{\Delta_r}{\Sigma} \left(\prod_{\bar{\nu}} \frac{1 + \lambda x_{\bar{\nu}}^2}{1 + \lambda a_{\bar{\nu}}^2} \, \boldsymbol{d}t - \sum_{\bar{\nu}} \frac{\bar{J}(a_{\bar{\nu}}^2)}{a_{\bar{\nu}}(1 + \lambda a_{\bar{\nu}}^2) \bar{\mathcal{U}}_{\bar{\nu}}} \boldsymbol{d}\phi_{\bar{\nu}} \right)^2 + \frac{\Sigma}{\Delta_r} \, \boldsymbol{d}r^2 \\ &+ \sum_{\bar{\mu}} \frac{(r^2 + x_{\bar{\mu}}^2)}{\Delta_{\bar{\mu}}/\bar{\mathcal{U}}_{\bar{\mu}}} \, \boldsymbol{d}x_{\bar{\mu}}^2 + \sum_{\bar{\mu}} \frac{\Delta_{\bar{\mu}}/\bar{\mathcal{U}}_{\bar{\mu}}}{(r^2 + x_{\bar{\mu}}^2)} \left(\frac{1 - \lambda r^2}{1 + \lambda x_{\bar{\mu}}^2} \prod_{\bar{\nu}} \frac{1 + \lambda x_{\bar{\nu}}^2}{1 + \lambda a_{\bar{\nu}}^2} \, \boldsymbol{d}t + \sum_{\bar{\nu}} \frac{(r^2 + a_{\bar{\nu}}^2) \bar{\mathcal{J}}_{\bar{\mu}}(a_{\bar{\nu}}^2)}{a_{\bar{\nu}}(1 + \lambda a_{\bar{\nu}}^2) \bar{\mathcal{U}}_{\bar{\nu}}} \boldsymbol{d}\phi_{\bar{\nu}} \right)^2 \end{split}$$

$$\Delta_{r} = -X_{N} = (1 - \lambda r^{2}) \prod_{\bar{\nu}} (r^{2} + a_{\bar{\nu}}^{2}) - 2mr \qquad \Sigma = U_{N} = \prod_{\bar{\nu}} (r^{2} + x_{\bar{\nu}}^{2})$$
$$\Delta_{\bar{\mu}} = -X_{\bar{\mu}} = (1 + \lambda x_{\bar{\mu}}^{2}) \bar{\mathcal{J}}(x_{\bar{\mu}}^{2}) + 2b_{\bar{\mu}} x_{\bar{\mu}} \qquad \bar{U}_{\bar{\mu}} = \prod_{\bar{\nu} \neq \bar{\mu}} (x_{\bar{\nu}}^{2} - x_{\bar{\mu}}^{2})$$

Pavel Krtouš, Charles University

Kerr–NUT–(A)dS geometry – Lorentzian signature

$$\begin{split} \boldsymbol{g} &= -\frac{\Delta_r}{\Sigma} \left(\prod_{\bar{\nu}} \frac{1 + \lambda x_{\bar{\nu}}^2}{1 + \lambda a_{\bar{\nu}}^2} \, \boldsymbol{d}t - \sum_{\bar{\nu}} \frac{\bar{J}(a_{\bar{\nu}}^2)}{a_{\bar{\nu}}(1 + \lambda a_{\bar{\nu}}^2) \bar{\mathcal{U}}_{\bar{\nu}}} \boldsymbol{d}\phi_{\bar{\nu}} \right)^2 + \frac{\Sigma}{\Delta_r} \, \boldsymbol{d}r^2 \\ &+ \sum_{\bar{\mu}} \frac{(r^2 + x_{\bar{\mu}}^2)}{\Delta_{\bar{\mu}}/\bar{U}_{\bar{\mu}}} \, \boldsymbol{d}x_{\bar{\mu}}^2 + \sum_{\bar{\mu}} \frac{\Delta_{\bar{\mu}}/\bar{U}_{\bar{\mu}}}{(r^2 + x_{\bar{\mu}}^2)} \left(\frac{1 - \lambda r^2}{1 + \lambda x_{\bar{\mu}}^2} \prod_{\bar{\nu}} \frac{1 + \lambda x_{\bar{\nu}}^2}{1 + \lambda a_{\bar{\nu}}^2} \, \boldsymbol{d}t + \sum_{\bar{\nu}} \frac{(r^2 + a_{\bar{\nu}}^2) \bar{J}_{\bar{\mu}}(a_{\bar{\nu}}^2)}{a_{\bar{\nu}}(1 + \lambda a_{\bar{\nu}}^2) \, \bar{\mathcal{U}}_{\bar{\nu}}} \boldsymbol{d}\phi_{\bar{\nu}} \right)^2 \end{split}$$

Horizon function:

 $\Delta_r = \left(1 - \lambda r^2\right) \prod_{\bar{\nu}} \left(r^2 + a_{\bar{\nu}}^2\right) - 2mr$

Kerr–NUT geometry:

$$\Lambda = 0$$

$$\begin{split} \boldsymbol{g} &= -\frac{\Delta_r}{\Sigma} \Big(\boldsymbol{d}\tau + \sum_{\bar{k}} \bar{A}^{(\bar{k}+1)} \boldsymbol{d}\bar{\psi}_{\bar{k}} \Big)^2 + \frac{\Sigma}{\Delta_r} \boldsymbol{d}r^2 \\ &+ \sum_{\bar{\mu}} \frac{(r^2 + x_{\bar{\mu}}^2)}{\Delta_{\bar{\mu}}/\bar{U}_{\bar{\mu}}} \boldsymbol{d}x_{\bar{\mu}}^2 + \sum_{\bar{\mu}} \frac{\Delta_{\bar{\mu}}/\bar{U}_{\bar{\mu}}}{(r^2 + x_{\bar{\mu}}^2)} \Big(\boldsymbol{d}\tau + \sum_{\bar{k}} \big(\bar{A}^{(\bar{k}+1)}_{\bar{\mu}} - r^2 \bar{A}^{(\bar{k})}_{\bar{\mu}} \big) \boldsymbol{d}\bar{\psi}_{\bar{k}} \Big)^2 \end{split}$$

$$\Delta_{r} = -X_{N} = \prod_{\bar{\nu}} \left(r^{2} + a_{\bar{\nu}}^{2} \right) - 2mr \qquad \Sigma = U_{N} = \prod_{\bar{\nu}} \left(r^{2} + x_{\bar{\nu}}^{2} \right)$$
$$\Delta_{\bar{\mu}} = -X_{\bar{\mu}} = \bar{\mathcal{J}}(x_{\bar{\mu}}^{2}) + 2b_{\bar{\mu}}x_{\bar{\mu}} \qquad \bar{U}_{\bar{\mu}} = \prod_{\bar{\nu}\neq\bar{\mu}} \left(x_{\bar{\nu}}^{2} - x_{\bar{\mu}}^{2} \right)$$

Myers–Perry metric:

$$\Lambda = 0 \quad b_{\bar{\mu}} = 0$$

$$\boldsymbol{g} = -\boldsymbol{d}t^2 + \frac{2mr}{\Sigma} \Big(\boldsymbol{d}t + \sum_{\bar{\nu}} a_{\bar{\nu}} \mu_{\bar{\nu}}^2 \boldsymbol{d}\phi_{\bar{\nu}} \Big)^2 + \frac{\Sigma}{\Delta_r} \boldsymbol{d}r^2 + r^2 \boldsymbol{d}\mu_0^2 + \sum_{\bar{\nu}} (r^2 + a_{\bar{\nu}}^2) \Big(\boldsymbol{d}\mu_{\bar{\nu}}^2 + \mu_{\bar{\nu}}^2 \boldsymbol{d}\phi_{\bar{\nu}}^2 \Big)$$

$$\Delta_r = \prod_{\bar{\nu}} (r^2 + a_{\bar{\nu}}^2) - 2mr \qquad \Sigma = \left(\mu_0^2 + \sum_{\bar{\nu}} \frac{r^2 \mu_{\bar{\nu}}^2}{r^2 + a_{\bar{\nu}}^2}\right) \prod_{\bar{\mu}} (r^2 + a_{\bar{\mu}}^2) ,$$

new latitudinal coordinates:

 $\bar{N} \text{ coordinates } x_1, \dots, x_{\bar{N}} \longrightarrow N+1 \text{ constrained coordinates } \mu_0, \mu_1, \dots, \mu_{\bar{N}}$ $\mu_{\bar{\nu}}^2 = \frac{\bar{J}(a_{\bar{\nu}}^2)}{-a_{\bar{\nu}}^2 \bar{\mathcal{U}}_{\bar{\nu}}} = \frac{\prod_{\bar{\alpha}} (x_{\bar{\alpha}}^2 - a_{\bar{\nu}}^2)}{-a_{\bar{\nu}}^2 \prod_{\bar{\alpha} \neq \bar{\nu}} (a_{\bar{\alpha}}^2 - a_{\bar{\nu}}^2)} , \quad \mu_0^2 = \frac{\bar{\mathcal{A}}^{(\bar{N})}}{\bar{\mathcal{A}}^{(\bar{N})}} = \frac{\prod_{\bar{\alpha}} x_{\bar{\alpha}}^2}{\prod_{\bar{\alpha}} a_{\bar{\alpha}}^2} ,$

constrain:

$$\sum_{\bar{\nu}=0}^{\bar{N}}\mu_{\bar{\nu}}^2=1$$

Schwarzschild–Tangherlini–(A)dS metric: $b_{\bar{\mu}} = 0$ $a_{\mu} = 0$

$$g = -(1 - \lambda r^2 - 2mr^{3-2N}) dt^2 + \frac{1}{1 - \lambda r^2 - 2mr^{3-2N}} dr^2 + r^2 d\Omega_{\bar{N}}^2$$

- Spherical symmetric black hole of mass m
- Horizons given by roots of the metric function
- Asymptotic character given by λ
- Radial dependence changes with the dimension

Principal tensor geometry = off-shell Kerr-NUT-(A)dS

$$\boldsymbol{g} = \sum_{\mu=1}^{N} \left[\frac{U_{\mu}}{X_{\mu}} \boldsymbol{d} x_{\mu}^2 + \frac{X_{\mu}}{U_{\mu}} \left(\sum_{j=0}^{N-1} A_{\mu}^{(j)} \boldsymbol{d} \psi_j \right)^2 \right]$$

explicit function polynomial in coordinates x_{μ} (symmetric polynomials)

$$A^{(k)} = \sum_{\substack{\nu_1, \dots, \nu_k = 1\\\nu_1 < \dots < \nu_k}}^N x_{\nu_1}^2 \dots x_{\nu_k}^2 \qquad A^{(j)}_{\mu} = \sum_{\substack{\nu_1, \dots, \nu_j = 1\\\nu_1 < \dots < \nu_j\\\nu_i < \dots < \nu_j}}^N x_{\nu_1}^2 \dots x_{\nu_j}^2 \qquad U_{\mu} = \prod_{\substack{\nu = 1\\\nu \neq \mu}}^N (x_{\nu}^2 - x_{\mu}^2)$$

unspecified N metric functions of one variable

$$X_{\mu} = X_{\mu}(x_{\mu})$$

Principal tensor geometry = off-shell Kerr-NUT-(A)dS

$$\begin{split} \boldsymbol{g} &= \sum_{\mu=1}^{N} \left[\frac{U_{\mu}}{X_{\mu}} \, \boldsymbol{d}x_{\mu}^{2} + \frac{X_{\mu}}{U_{\mu}} \left(\sum_{j=0}^{N-1} A_{\mu}^{(j)} \boldsymbol{d}\psi_{j} \right)^{2} \right] \\ & \text{explicit} \\ A^{(k)} &= \left[\sum_{\substack{\nu_{1}, \cdots \\ \nu_{1} < \\ \nu_{2} < \\ \nu_{1} < \\ \nu_{1} < \\ \nu_{2} < \\ \nu_{1} < \\ \nu_{1} < \\ \nu_{2} < \\ \nu_{2} < \\ \nu_{1} < \\ \nu_{2} < \\ \nu_{2} < \\ \nu_{1} < \\ \nu_{2} < \\ \nu_$$

Principal tensor geometry = off-shell Kerr-NUT-(A)dS

$$\boldsymbol{g} = \sum_{\mu=1}^{N} \left[\frac{U_{\mu}}{X_{\mu}} \boldsymbol{d} x_{\mu}^2 + \frac{X_{\mu}}{U_{\mu}} \left(\sum_{j=0}^{N-1} A_{\mu}^{(j)} \boldsymbol{d} \psi_j \right)^2 \right]$$

explicit function polynomial in coordinates x_{μ} (symmetric polynomials)

$$A^{(k)} = \sum_{\substack{\nu_1, \dots, \nu_k = 1\\\nu_1 < \dots < \nu_k}}^N x_{\nu_1}^2 \dots x_{\nu_k}^2 \qquad A^{(j)}_{\mu} = \sum_{\substack{\nu_1, \dots, \nu_j = 1\\\nu_1 < \dots < \nu_j\\\nu_i < \dots < \nu_j}}^N x_{\nu_1}^2 \dots x_{\nu_j}^2 \qquad U_{\mu} = \prod_{\substack{\nu = 1\\\nu \neq \mu}}^N (x_{\nu}^2 - x_{\mu}^2)$$

unspecified N metric functions of one variable

$$X_{\mu} = X_{\mu}(x_{\mu})$$

Non-trivial limits of Kerr–NUT–(A)dS geometry

- Limit of vanishing rotations
- Deformed black hole
- Nutty spacetimes
- Near horizon limits
- Limit of equal rotations

Limit of vanishing rotations

- setting $a_{\bar{\mu}} = 0$ yields degenerate ranges of coordinates
- setting $a_{\bar{\mu}} = 0$ yields degenerate metric
- a suitable scaling of coordinates necessary!

Limit of vanishing rotations

regular sector	unspined sector
$a_{\bar{N}+\tilde{\mu}} = \tilde{a}_{\tilde{\mu}}$	$a_{ar{\mu}} = arepsilon ar{a}_{ar{\mu}}$
$x_{\bar{N}+\tilde{\mu}} = \tilde{x}_{\tilde{\mu}}$	$x_{\bar{\mu}} = \varepsilon \bar{x}_{\bar{\mu}}$
$\phi_{ar{N}+ ilde{\mu}}= ilde{\phi}_{ ilde{\mu}}$	$\phi_{ar{\mu}} = ar{\phi}_{ar{\mu}}$
$ ilde{\mu}=1,\ldots, ilde{N}$	$ar{\mu}=1,\ldots,ar{N}$

 $\varepsilon \to 0$

Limit of vanishing rotations

vanishing rotations in \overline{N} directions

 $a_{\bar{\mu}} \rightarrow 0$ for these directions

regular sectorunspined sector $a_{\bar{N}+\tilde{\mu}} = \tilde{a}_{\tilde{\mu}}$ $a_{\bar{\mu}} = \varepsilon \bar{a}_{\bar{\mu}}$ $x_{\bar{N}+\tilde{\mu}} = \tilde{x}_{\tilde{\mu}}$ $x_{\bar{\mu}} = \varepsilon \bar{x}_{\bar{\mu}}$ $\phi_{\bar{N}+\tilde{\mu}} = \tilde{\phi}_{\tilde{\mu}}$ $\phi_{\bar{\mu}} = \phi_{\bar{\mu}}$ $\tilde{\mu} = 1, \dots, \tilde{N}$ $\bar{\mu} = 1, \dots, \bar{N}$

 $\varepsilon \to 0$

$$\boldsymbol{g} = \tilde{\boldsymbol{g}} + \tilde{w}^2 \bar{\boldsymbol{g}}$$

$$\begin{split} \tilde{\boldsymbol{g}} &= \sum_{\tilde{\mu}} \left[\frac{\tilde{U}_{\tilde{\mu}}}{\tilde{X}_{\tilde{\mu}}} \boldsymbol{d} \tilde{x}_{\tilde{\mu}}^2 + \frac{\tilde{X}_{\tilde{\mu}}}{\tilde{U}_{\tilde{\mu}}} \left(\sum_{\tilde{\nu}} \frac{\tilde{J}_{\tilde{\mu}}(\tilde{a}_{\tilde{\nu}}^2)}{\tilde{\mathcal{U}}_{\tilde{\nu}}} \boldsymbol{d} \phi_{\tilde{\nu}} \right)^2 \right] \qquad \qquad \bar{\boldsymbol{g}} = \sum_{\bar{\mu}} \left[\frac{\bar{U}_{\bar{\mu}}}{\bar{X}_{\bar{\mu}}} \boldsymbol{d} \bar{x}_{\bar{\mu}}^2 + \frac{\bar{X}_{\bar{\mu}}}{\bar{U}_{\bar{\mu}}} \left(\sum_{\bar{\nu}} \frac{\bar{J}_{\bar{\mu}}(\bar{a}_{\tilde{\nu}}^2)}{\bar{\mathcal{U}}_{\bar{\nu}}} \boldsymbol{d} \phi_{\bar{\nu}} \right)^2 \right] \\ \tilde{X}_{\tilde{\mu}} = \lambda \, \tilde{\mathcal{J}}(\tilde{x}_{\tilde{\mu}}^2) - 2 \, \tilde{b}_{\tilde{\mu}} \, \tilde{x}_{\tilde{\mu}}^{1-2\tilde{N}} \qquad \qquad \bar{X}_{\bar{\mu}} = \lambda \, \bar{\mathcal{J}}(\bar{x}_{\bar{\mu}}^2) - 2 \, \bar{b}_{\bar{\mu}} \, \bar{x}_{\bar{\mu}} \end{split}$$

off-shell Kerr–NUT–(A)dS Lorentzian part on-shell Kerr–NUT–(A)dS Euclidian instanton

Deformed black hole

switching-off all rotations by repeating the limiting procedure

$$oldsymbol{g} = -foldsymbol{d}t^2 + rac{1}{f}oldsymbol{d}r^2 + r^2 \Big[oldsymbol{q}_{N-1} + \xi_{N-1}^2 \Big(oldsymbol{q}_{N-2} + \dots + \xi_3^2 \Big(oldsymbol{q}_2 + \xi_2^2 oldsymbol{q}_1\Big)\Big)\Big] \ f = 1 - \lambda r^2 - rac{2m}{r^{2N-3}} \ oldsymbol{q}_{ar{\mu}} = rac{1}{\Delta_{ar{\mu}}}oldsymbol{d}\xi_{ar{\mu}}^2 + \Delta_{ar{\mu}}oldsymbol{d}\phi_{ar{\mu}}^2 \qquad \Delta_{ar{\mu}} = 1 - \xi_{ar{\mu}}^2 - 2\,eta_{ar{\mu}}\,\xi_{ar{\mu}}^{-2ar{\mu}+3}$$

- \bullet non-rotating
- spatially deformed

static deformed black hole

Nutty spacetimes

generalization of Taub–NUT–(A)dS

Nutty spacetimes

generalization of Taub–NUT–(A)dS

tangent points \hat{x}_{μ} are double roots of X_{μ} for suitable values $b_{\mu} = \hat{b}_{\mu}$

 $X_{\mu} = \lambda \mathcal{J}(x_{\bar{\mu}}^2) - 2\hat{b}_{\bar{\mu}}x_{\bar{\mu}}$

Nutty spacetimes

generalization of Taub–NUT–(A)dS

spacetimes with near-critical NUTs x-coordinate ranges near double roots $\hat{x}_{\bar{\mu}}$

$$\begin{split} \boldsymbol{g} &= -\frac{\Delta}{\Sigma} \Big(\boldsymbol{d}t + \sum_{\bar{\mu}} \frac{2\hat{x}_{\bar{\mu}}}{\delta_{\bar{\mu}}} \left(\xi_{\bar{\mu}} - \mathring{\xi}_{\bar{\mu}} \right) \boldsymbol{d}\varphi_{\bar{\mu}} \Big)^2 + \frac{\Sigma}{\Delta} \boldsymbol{d}r^2 + \sum_{\bar{\mu}} \frac{r^2 + \hat{x}_{\bar{\mu}}^2}{\delta_{\bar{\mu}}} \left(\frac{1}{1 - \xi_{\bar{\mu}}^2} \, \boldsymbol{d}\xi_{\bar{\mu}}^2 + \left(1 - \xi_{\bar{\mu}}^2 \right) \boldsymbol{d}\varphi_{\bar{\mu}}^2 \right) \\ \Delta &= -\lambda \mathcal{J}(-r^2) - 2mr \qquad \Sigma = \prod_{\bar{\nu}} (r^2 + \hat{x}_{\bar{\nu}}^2) \qquad \delta_{\mu} = \lambda (2N - 1)(\hat{r}^2 + \hat{x}_{\bar{\mu}}^2) \end{split}$$

Near horizon limits

analogy for radial coordinate

spacetimes with near-critical mass

coordinate range of r near double root \hat{r}

Near horizon limits

analogy for radial coordinate

spacetimes with near-critical mass

coordinate range of r near double root \hat{r}

Limit of equal rotations

enhancement of symmetry in the equal-rotation sector

NS-commutation of the Killing tower

$$\boldsymbol{g} = \sum_{\mu=1}^{N} \left[\frac{U_{\mu}}{X_{\mu}} \boldsymbol{d} x_{\mu}^2 + \frac{X_{\mu}}{U_{\mu}} \left(\sum_{j=0}^{N-1} A_{\mu}^{(j)} \boldsymbol{d} \psi_j \right)^2 \right]$$

Primary Killing vector

 $oldsymbol{\xi} = oldsymbol{\partial}_{\psi_0}$

Hidden symmetries – Killing tensors

 $oldsymbol{h} = \sum_{\mu} x_{\mu} \, oldsymbol{e}^{\mu} \wedge \hat{oldsymbol{e}}^{\mu}$

 $oldsymbol{k}_{(j)} = \sum_{\mu} A^{(j)}_{\mu} \left(oldsymbol{e}_{\mu} oldsymbol{e}_{\mu} + \hat{oldsymbol{e}}_{\mu} \hat{oldsymbol{e}}_{\mu}
ight)$

Explicit symmetries – Killing vectors

 $oldsymbol{l}_{(j)} = oldsymbol{\partial}_{\psi_j}$

$$\left[\boldsymbol{k}_{(i)}, \boldsymbol{k}_{(j)}\right]_{\rm NS} = 0 \qquad \left[\boldsymbol{k}_{(i)}, \boldsymbol{l}_{(j)}\right]_{\rm NS} = 0 \qquad \left[\boldsymbol{l}_{(i)}, \boldsymbol{l}_{(j)}\right]_{\rm NS} = 0$$

Darboux frame

forms:

vectors:

$$\boldsymbol{e}^{\mu} = \left(\frac{U_{\mu}}{X_{\mu}}\right)^{\frac{1}{2}} \boldsymbol{d}x_{\mu} \qquad \hat{\boldsymbol{e}}^{\mu} = \left(\frac{X_{\mu}}{U_{\mu}}\right)^{\frac{1}{2}} \sum_{j=0}^{N-1} A^{(j)}_{\mu} \boldsymbol{d}\psi_{j} \qquad \qquad \boldsymbol{e}_{\mu} = \left(\frac{X_{\mu}}{U_{\mu}}\right)^{\frac{1}{2}} \boldsymbol{\partial}_{x_{\mu}} \qquad \hat{\boldsymbol{e}}_{\mu} = \left(\frac{U_{\mu}}{X_{\mu}}\right)^{\frac{1}{2}} \sum_{k=0}^{N-1} \frac{(-x_{\mu}^{2})^{N-1-k}}{U_{\mu}} \boldsymbol{\partial}_{\psi_{k}}$$

Pavel Krtouš, Charles University

Hidden symmetries of higher-dimensional black holes, Prague, December 5, 2017

NS-commutation of the Killing tower 37

Generating functions for Killing objects

Tensors depending on an auxiliary parameter β

$$\begin{aligned} \boldsymbol{q}(\beta) &= \boldsymbol{g} - \beta^2 \, \boldsymbol{h}^2 \\ A(\beta) &= \left(\frac{\operatorname{Det} \boldsymbol{q}(\beta)}{\operatorname{Det} \boldsymbol{g}}\right)^{\frac{1}{2}} & A(\beta) &= \sum_j A^{(j)} \beta^{2j} \\ \boldsymbol{k}(\beta) &= A(\beta) \, \boldsymbol{q}(\beta)^{-1} & \boldsymbol{k}(\beta) &= \sum_j \boldsymbol{k}_{(j)} \beta^{2j} \\ \boldsymbol{l}(\beta) &= \boldsymbol{k}(\beta) \cdot \boldsymbol{\xi} & \boldsymbol{l}(\beta) &= \sum_j \boldsymbol{l}_{(j)} \beta^{2j} \end{aligned}$$

Vanishing NS-brackets

$$\begin{bmatrix} \boldsymbol{l}(\beta_1), \, \boldsymbol{l}(\beta_2) \end{bmatrix}_{\rm NS} = 0$$
$$\begin{bmatrix} \boldsymbol{l}(\beta_1), \, \boldsymbol{k}(\beta_2) \end{bmatrix}_{\rm NS} = 0$$
$$\begin{bmatrix} \boldsymbol{k}(\beta_1), \, \boldsymbol{k}(\beta_2) \end{bmatrix}_{\rm NS} = 0$$
Since $\boldsymbol{k}(0) = \boldsymbol{g}$, it also implies that $\boldsymbol{l}(\beta)$ and $\boldsymbol{k}(\beta)$ are KTs

Proof of vanishing NS-brackets

where
$$k_1 = k(\beta_1), k_2 = k(\beta_2), l_1 = l(\beta_1),$$
 etc.

Integrability conditions for principal CCKY form

$$\nabla_{a}\boldsymbol{h}_{bc} = \boldsymbol{g}_{ab}\boldsymbol{\xi}_{c} - \boldsymbol{g}_{ac}\boldsymbol{\xi}_{b}$$

$$\downarrow \qquad \text{taking second derivative } 2\nabla_{[a}\nabla_{b]}\boldsymbol{h}_{mn}$$

$$\boldsymbol{R}^{ab}_{\ c[m} \boldsymbol{h}^{c}_{\ n]} = 2\delta^{[a}_{[m}\nabla^{b]}\boldsymbol{\xi}_{n]} \qquad (\text{IC1})$$

$$\downarrow \qquad \text{Bianchi identities, contractions}$$

$$(D-2)\nabla_{a}\boldsymbol{\xi}_{b} = -\mathbf{Ric}_{an}\boldsymbol{h}^{n}_{\ b} + \frac{1}{2}\boldsymbol{h}_{mn}\boldsymbol{R}^{mn}_{\ ab} \qquad (\text{IC2})$$

$$\downarrow \qquad \text{substituting (IC2) to (IC1)}$$

$$(D-2)\boldsymbol{R}^{ab}_{\ n[c}\boldsymbol{h}^{n}_{\ d]} - \boldsymbol{h}_{mn}\boldsymbol{R}^{mn[a}_{\ [c}\delta^{b]}_{\ d]} - 2\mathbf{Ric}^{[a}_{\ n}\delta^{b]}_{\ [c}\boldsymbol{h}^{n}_{\ d]} = 0 \qquad (\text{IC3})$$

$$\mathcal{S}(\nabla \boldsymbol{\xi}) = \begin{bmatrix} \boldsymbol{h}, \operatorname{Ric} \end{bmatrix} \qquad \Leftarrow \qquad \text{symmetrization of (IC2)}$$
$$(D-2)[\nabla \boldsymbol{\xi}, \boldsymbol{h}] = \begin{bmatrix} \boldsymbol{h}, \operatorname{Ric} \end{bmatrix} \cdot \boldsymbol{h} + \frac{1}{2} [\operatorname{Rh}, \boldsymbol{h}] \qquad \Leftarrow \qquad [(\operatorname{IC2}), \boldsymbol{h}]$$

Alignment of Riemann tensor with principal CCKY form

Taking various (anti)symmetrizations and contractions of (IC3) with h one can prove:

$$\begin{bmatrix} \boldsymbol{h} , \mathbf{R} \mathbf{h}^{(p)} \end{bmatrix} = 0 \qquad \text{where} \quad \mathbf{R} \mathbf{h}^{(p)a}{}_{b} = \boldsymbol{h}^{p}{}_{mn} \, \boldsymbol{R}^{mna}{}_{b} \\ \mathbf{R} \mathbf{h} = \mathbf{R} \mathbf{h}^{(1)} \\ \end{bmatrix}$$
$$\begin{bmatrix} \boldsymbol{h} , \mathbf{Rich}^{(2p)} \end{bmatrix} = 0 \qquad \text{where} \quad \mathbf{Rich}^{(2p)}_{ab} = \boldsymbol{h}^{p}{}_{mn} \, \boldsymbol{R}^{m}{}_{a}{}^{n}{}_{b} \end{cases}$$

Any contraction of R with any power of h commutes with h

 $\operatorname{Rich}^{(0)} = \operatorname{Ric}$

NS-commutation of Killing tower

Any contraction of ${m R}$ with any power of ${m h}$ commutes with ${m h}$

$$\Rightarrow \qquad \mathcal{S}(\nabla \boldsymbol{\xi}) = \left[\boldsymbol{h}, \mathbf{Ric}\right] = 0$$
$$\left[\nabla \boldsymbol{\xi}, \boldsymbol{h}\right] = \frac{1}{D-2} \left(\left[\boldsymbol{h}, \mathbf{Ric}\right] \cdot \boldsymbol{h} + \frac{1}{2} \left[\mathbf{Rh}, \boldsymbol{h}\right] \right) = 0$$

\Rightarrow Vanishing NS-brackets

$$\begin{bmatrix} \boldsymbol{k}_1, \boldsymbol{k}_2 \end{bmatrix}_{\text{NS}} = 0 \qquad \begin{bmatrix} \boldsymbol{k}_1, \boldsymbol{l}_2 \end{bmatrix}_{\text{NS}} = 0 \qquad \begin{bmatrix} \boldsymbol{l}_1, \boldsymbol{l}_2 \end{bmatrix}_{\text{NS}} = 0$$
$$\begin{bmatrix} \boldsymbol{k}_{(i)}, \boldsymbol{k}_{(j)} \end{bmatrix}_{\text{NS}} = 0 \qquad \begin{bmatrix} \boldsymbol{k}_{(i)}, \boldsymbol{l}_{(j)} \end{bmatrix}_{\text{NS}} = 0 \qquad \begin{bmatrix} \boldsymbol{l}_{(i)}, \boldsymbol{l}_{(j)} \end{bmatrix}_{\text{NS}} = 0$$

Consequences for physical systems: integrability and separability

- Integrability of the geodesic motion
- Separability of the Hamilton–Jacobi equation
- Separability of the wave equation
- Separability of the Dirac equation

Integrability of the geodesic motion

hidden and explicit symmetries define observables quadratic and linear in momenta

$$\boldsymbol{k}_{(j)} \quad \Rightarrow \quad K_j = \boldsymbol{k}_{(j)}^{ab} \, \boldsymbol{p}_a \boldsymbol{p}_b \qquad \boldsymbol{l}_{(j)} \quad \Rightarrow \quad L_j = \boldsymbol{l}_{(j)}^a \, \boldsymbol{p}_a$$

$$\begin{bmatrix} \boldsymbol{k}_{(i)}, \boldsymbol{k}_{(j)} \end{bmatrix}_{\rm NS} = 0 \qquad \begin{bmatrix} \boldsymbol{k}_{(i)}, \boldsymbol{l}_{(j)} \end{bmatrix}_{\rm NS} = 0 \qquad \begin{bmatrix} \boldsymbol{l}_{(i)}, \boldsymbol{l}_{(j)} \end{bmatrix}_{\rm NS} = 0$$

$$\begin{cases} K_i, K_j \end{bmatrix} = 0 \qquad \begin{cases} K_i, L_j \end{bmatrix} = 0 \qquad \begin{cases} L_i, L_j \end{bmatrix} = 0$$

$$oldsymbol{k}_{(0)} = oldsymbol{g} \qquad \Rightarrow \qquad K_0 \propto H$$

 K_j and L_j are conserved quantities in involution

Geodesics

geodesics labeled by constants K_j , L_j and initial positions

Solving for momenta

$$p_{\mu} = \pm \frac{\sqrt{X_{\mu}\tilde{K}_{\mu} - \tilde{L}_{\mu}^2}}{X_{\mu}}$$
$$p_j = L_j$$

Solving for coordinates

$$\dot{x}_{\mu} = \pm \frac{1}{U_{\mu}} \sqrt{X_{\mu} \tilde{K}_{\mu} - \tilde{L}_{\mu}^2}$$
$$\dot{\psi}_j = \sum_{\mu} \frac{(-x_{\mu}^2)^{N-1-j}}{U_{\mu}} \frac{\tilde{L}_{\mu}}{X_{\mu}}$$

can be solved numerically or analytically using action–angle variables

Separability of the Hamilton–Jacobi equation

Static Hamilton–Jacobi equation

$$H(x, dS) = E$$

Hamilton–Jacobi equations for conserved quantities

$$dS \cdot k_{(j)} \cdot dS = K_j$$
 $l_{(j)} \cdot dS = L_j$

Separability of the Hamilton–Jacobi equation

Static Hamilton–Jacobi equation

$$H(x, \mathbf{d}S) = E$$

Hamilton–Jacobi equations for conserved quantities

$$dS \cdot k_{(j)} \cdot dS = K_j$$
 $l_{(j)} \cdot dS = L_j$

Additive separability ansatz

$$S = \sum_{\mu} S_{\mu} + \sum_{j} L_{j} \psi_{j} \qquad S_{\mu} = S_{\mu}(x_{\mu}; K_{j}, L_{j})$$

Separated ordinary differential equations

$$(S'_{\mu})^{2} = \frac{\tilde{K}_{\mu}}{X_{\mu}} - \frac{\tilde{L}_{\mu}^{2}}{X_{\mu}^{2}} \qquad \Rightarrow \qquad S_{\mu} = \int^{x_{\mu}} \frac{\sqrt{X_{\mu}\tilde{K}_{\mu} - \tilde{L}_{\mu}^{2}}}{X_{\mu}} dx_{\mu}$$

Separability of the wave equation

Wave equation

$$\Box \phi = 0 \qquad \qquad \Box = -\boldsymbol{g}^{ab} \boldsymbol{\nabla}_a \boldsymbol{\nabla}_b$$

Operators corresponding to conserved quantities

$$\mathcal{K}_j = -oldsymbol{
abla}_a \, oldsymbol{k}_{(j)}^{ab} \, oldsymbol{
abla}_b \qquad \qquad \mathcal{L}_j = -i \, oldsymbol{l}_{(j)}^a oldsymbol{
abla}_a$$

Separability of the wave equation

Wave equation

$$\Box \phi = 0$$
 $\Box = -g^{ab} \nabla_a \nabla_b$

Operators corresponding to conserved quantities

$$\mathcal{K}_j = -oldsymbol{
abla}_a \, oldsymbol{k}_{(j)}^{ab} \, oldsymbol{
abla}_b \qquad \qquad \mathcal{L}_j = -i \, oldsymbol{l}_{(j)}^a oldsymbol{
abla}_a$$

Commutativity of the symmetry operators

$$\left[\mathcal{K}_k, \mathcal{K}_l\right] = 0$$
 $\left[\mathcal{K}_k, \mathcal{L}_l\right] = 0$ $\left[\mathcal{L}_k, \mathcal{L}_l\right] = 0$

Common eigenvalue problem

$$\mathcal{K}_j \phi = K_j \phi$$
 $\mathcal{L}_j \phi = L_j \phi$

Separability of the wave equation

Operators corresponding to conserved quantities

$$\mathcal{K}_j = - oldsymbol{
abla}_a \, oldsymbol{k}_{(j)} \, oldsymbol{
abla}_b \qquad \qquad \mathcal{L}_j = -i \, oldsymbol{l}_{(j)}^a oldsymbol{
abla}_a$$

Common eigenvalue problem

$$\mathcal{K}_j \phi = K_j \phi$$
 $\mathcal{L}_j \phi = L_j \phi$

Multiplicative separability ansatz

$$\phi = \prod_{\mu} R_{\mu} \prod_{k=0}^{N-1+\varepsilon} \exp(iL_k \psi_k) \qquad \qquad R_{\mu} = R_{\mu}(x_{\mu}; K_j, L_j)$$
Separability of the wave equation

Operators corresponding to conserved quantities

$$\mathcal{K}_j = - oldsymbol{
abla}_a \, oldsymbol{k}_b \, \mathcal{L}_j = -i \, oldsymbol{l}_{(j)}^a oldsymbol{
abla}_a$$

Common eigenvalue problem

$$\mathcal{K}_j \phi = K_j \phi$$
 $\mathcal{L}_j \phi = L_j \phi$

Multiplicative separability ansatz

$$\phi = \prod_{\mu} R_{\mu} \prod_{k=0}^{N-1+\varepsilon} \exp(iL_k\psi_k) \qquad \qquad R_{\mu} = R_{\mu}(x_{\mu}; K_j, L_j)$$

Separated ordinary differential equations

$$\left(X_{\mu}R'_{\mu}\right)' + \left(\frac{\tilde{K}_{\mu}}{X_{\mu}} - \frac{\tilde{L}_{\mu}^2}{X_{\mu}^2}\right)R'_{\mu} = 0$$

$$\tilde{K}_{\mu} = \sum_{j} K_{j} (-x_{\mu}^{2})^{N-1-j}$$
$$\tilde{L}_{\mu} = \sum_{j} L_{j} (-x_{\mu}^{2})^{N-1-j}$$

- Explicit and hidden symmetries \Leftrightarrow Killing vectors and Killing tensors
- Killing tensors can be build from conformal Killing–Yano forms
- Principal tensor \Leftrightarrow non-degenerate closed conformal Killing–Yano 2-form
- Killing tower \Rightarrow a sequence of Killing tensors and vectors
- Uniqueness of the geometry compatible with the principal tensor
- Kerr–NUT–(A)dS metric
- Rich symmetry structure \Rightarrow Integrability and Separability

- Explicit and hidden symmetries \Leftrightarrow Killing vectors and Killing tensors
- Killing tensors can be build from conformal Killing–Yano forms
- Principal tensor \Leftrightarrow non-degenerate closed conformal Killing–Yano 2-form
- Killing tower \Rightarrow a sequence of Killing tensors and vectors
- Uniqueness of the geometry compatible with the principal tensor
- Kerr–NUT–(A)dS metric
- Rich symmetry structure \Rightarrow Integrability and Separability

- Explicit and hidden symmetries \Leftrightarrow Killing vectors and Killing tensors
- Killing tensors can be build from conformal Killing–Yano forms
- Principal tensor \Leftrightarrow non-degenerate closed conformal Killing–Yano 2-form
- Killing tower \Rightarrow a sequence of Killing tensors and vectors
- Uniqueness of the geometry compatible with the principal tensor
- Kerr–NUT–(A)dS metric
- Rich symmetry structure \Rightarrow Integrability and Separability

- Explicit and hidden symmetries \Leftrightarrow Killing vectors and Killing tensors
- Killing tensors can be build from conformal Killing–Yano forms
- Principal tensor \Leftrightarrow non-degenerate closed conformal Killing–Yano 2-form
- Killing tower \Rightarrow a sequence of Killing tensors and vectors
- Uniqueness of the geometry compatible with the principal tensor
- Kerr–NUT–(A)dS metric
- Rich symmetry structure \Rightarrow Integrability and Separability

- Explicit and hidden symmetries \Leftrightarrow Killing vectors and Killing tensors
- Killing tensors can be build from conformal Killing–Yano forms
- Principal tensor \Leftrightarrow non-degenerate closed conformal Killing–Yano 2-form
- Killing tower \Rightarrow a sequence of Killing tensors and vectors
- Uniqueness of the geometry compatible with the principal tensor
- Kerr–NUT–(A)dS metric
- Rich symmetry structure \Rightarrow Integrability and Separability

- Explicit and hidden symmetries \Leftrightarrow Killing vectors and Killing tensors
- Killing tensors can be build from conformal Killing–Yano forms
- Principal tensor \Leftrightarrow non-degenerate closed conformal Killing–Yano 2-form
- Killing tower \Rightarrow a sequence of Killing tensors and vectors
- Uniqueness of the geometry compatible with the principal tensor
- Kerr–NUT–(A)dS metric
- Rich symmetry structure \Rightarrow Integrability and Separability

- Explicit and hidden symmetries \Leftrightarrow Killing vectors and Killing tensors
- Killing tensors can be build from conformal Killing–Yano forms
- Principal tensor \Leftrightarrow non-degenerate closed conformal Killing–Yano 2-form
- Killing tower \Rightarrow a sequence of Killing tensors and vectors
- Uniqueness of the geometry compatible with the principal tensor
- Kerr–NUT–(A)dS metric
- Rich symmetry structure \Rightarrow Integrability and Separability

- Explicit and hidden symmetries \Leftrightarrow Killing vectors and Killing tensors
- Killing tensors can be build from conformal Killing–Yano forms
- Principal tensor \Leftrightarrow non-degenerate closed conformal Killing–Yano 2-form
- Killing tower \Rightarrow a sequence of Killing tensors and vectors
- Uniqueness of the geometry compatible with the principal tensor
- Kerr–NUT–(A)dS metric
- Rich symmetry structure \Rightarrow Integrability and Separability

for details see

Living Rev. Relat. 20 (2017) 6

Black holes, hidden symmetries, and complete integrability

V. Frolov, P. Krtouš, D. Kubizňák

Thank you!