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Global structure of Robinson-Trautman radiative space-times with cosmological constant
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Robinson-Trautman radiative space-times of Petrov type Il with a nonvanishing cosmological canstant
and mass parametar>0 are studied using analytical methods. They are shown to approach the corresponding
spherically symmetric Schwarzschild—de Sitter or Schwarzschild—anti-de Sitter solution at large retarded
times. Their global structure is analyzed, and it is demonstrated that the smoothness of the extension of the
metrics across the horizon, as compared with the cased, can increase foh>0 and decreases for
A<0. For the extreme value/m?=1, the extension is smooth but nonanalytic. This case appears to be the
first example of a smooth but nonanalytic horizon. The models Wwith0 exhibit explicitly the cosmic no-hair
conjecture under the presence of gravitational wal@&8556-282(97)02504-9

PACS numbd(s): 04.20.Jb, 98.80.Hw

I. INTRODUCTION not asymptotically flat. They also represent the only known
exact analytic demonstration of the cosmic no-hair conjec-
Robinson-Trautman vacuum space-tinjds2] have at- ture (see, e.g.[12—15) under the presence of gravitational
tracted increased attention in the last decade, in particular, iwaves.
the works by Lukaset al.[3], Schmidi{4], Rendall[5], and, The analysis iff11], however, covers only the cases with
most recently, by Chrusel and Singletorj6—9]. (We refer A andm such that 629Am?< 1, implying the existence of
the reader to the last papers for further referendesthese  both the black-hole and cosmological horizons. The purpose
studies the Robinson-Trautman space-times were shown wf this work is to study the “extreme” case with
exist globally for all positive “times,” and to converge as- 9Am?=1, in which the two horizons coincide, and the cases
ymptotically to a Schwarzschild metric. This global time be-with 9Am?>1, when the naked singularity arises. We also
havior is true for generic, arbitrarily strong, smooth initial analyze the global structure of the Robinson-Trautman
data within the class of the Robinson-Trautman space-timespace-times witth <0, which admit one black-hole horizon.
Interestingly, the extension of these space-times across the The formation of an extreme Reissner-Nordstrblack
“Schwarzschild-like” event horizon can only be made with hole in collapse with small nonspherical perturbations
a finite degree of smoothness. [16,17, as well as motion of particles in extreme black-hole
The Robinson-Trautman metrics can easily be generalizegpace-time§18], exhibit features qualitatively different from
to solve the vacuum Einstein equations with a nonvanishinghose of generic black holes. Perturbations of extreme black
A [10]. The results proving the global existence and converholes seem to be stable with respect to both classical and
gence of the Robinson-Trautman solutions can be taken ovejuantum processes, and there are attempts to interpret them
from previous studies sinc& does not explicitly enter the as solitong19,20. Extreme black holes with cosmological
basic Robinson-Trautman equation. However, the presenasonstant were discussed by Lake and Rod@dt, Mellor
of A has a considerable effect on the global structure of thand Mosg 22,23, Romang 24], Brill and Hayward 25], and
space-times. In our previous wofl1], we demonstrated others. They were also studied in the context of the Einstein-
that the Robinson-Trautman space-times of the Petrov type Nang-Mills-Higgs theory(see, e.g.[26,27 and references
with A>0 such that dAm’<1 settle down to the therein.
Schwarzschild—de Sitter space-time at large retarded times. Very recently, Kastor and Trasch¢B8] have given the
They admit a smooth future spacelike infinity and continua-solutions with a cosmological constart>0, containing
tion of the metric across the “Schwarzschild—de Sitter-like” many extreme black holes. The solutions were used for ana-
black-hole horizon can be made with a higher degree ofytic studies of black-hole collisions and cosmic censorship
smoothness than those in the corresponding cases withypothesis[29]. Horizons of these space-times were ana-
A=0. These space-times may serve as exact models d¢fzed in detail in[29-31.
black-hole formation in nonspherical space-times which are It is noteworthy that multi-black-hole solutions consisting
of the analogues of extremal Reissner-Nordstidack holes
in asymptotically de Sitter space-time have horizons that are
*Electronic address: bicak@hp03.troja.mff.cuni.cz not smootH 29]. In contrast with such black holes in asymp-
TElectronic address: podolsky@hp03.troja.mff.cuni.cz totically flat space-times which have smooth horizons and
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are static, the cosmological multi-black-hole solutions arevhereR is the curvature scalar anky the Laplacian of the
dynamic with gravitational and electromagnetic radiation.metricg,,. UsingR, and A, to denote the curvature scalar
The fact that horizons are not smooth is interpreted as due tand the Laplacian of2,, one has
the existence of radiation which does not have a “smooth
distribution.” It would then seem natural to interpret the R=f?(Ry+2AInf), Ag=f2Ao. (6)
nonsmoothness of the horizons of the Robinson-Trautman
black holes in a similar way. On the other hand, one shouldchoosing standard coordinates on the spherg,
bear in mind that in five or more dimensions some multi-=\2e'“tané/2, we obtain
black-hole solutions tal-dimensional Einstein gravity have _
horizons that are not smooth although these solutions are 2P, 2d{d¢=d#?+sirP0d?p, AgnPy=1, Ry=+2.
static[31]. Their lack of smoothness thus cannot be attrib- (7
uted to the presence of radiation.

In the next section we briefly summarize results of recent herefore, the metri¢l) with P=Py is just the Schwarz-
studies of the Robinson-Trautman vacuum space-times witfchild metric
A =0, and, in Sec. lll, we review results for the Robinson-
Trautman space-times with <(_)9Am2< 1_, including thei_r _ ds?= — ( 1— 2_m) du?—2dudr+r2(d6?+ sirf6do?)
global structure and asymptotic properties at future infinity. r
Sections IV and V are devoted to analysis of the “extreme”

-1
case (AA\m?=1) and “naked-singularity” cases (9m? - ( 1— 2_m) di2+ ( 1— 2m dr2
>1). In Sec. VI the Robinson-Trautman space-times with r r
A <0 are studied. The results are summarized and some gen- +r(de?+ sirfade?), ®)

eral remarks added in Sec. VII.

whereu=t—r*, andr* =f® Y(r)dr=r+2min(r/2m—1)
Il. THE ROBINSON-TRAUTMAN SPACE-TIMES is the usual “tortoise” coordinate.

WITH A=0 The most general analysis of the existence and behavior

of solutions of the Robinson-Trautman equation was recently
Myiven by Chrusiel [7,8] and by Chrisiel and Singletori9]
(cf. also [4,6,37). The main result is that when
fo=f(u=ugy,x?) is an arbitrary, sufficiently smooth, initial-
value function forf, thenf satisfying Eqs(5) and(6) exists
_ for all timesu=u,; an asymptotic expansion ¢fu,x?) for
where P=P(u,{,{), { is a complex spatial coordinate, largeu has the form
e[0p0) is the affine parameter along the rays- const,
{=const, and

In the standard form the Robinson-Trautman vacuu
metric readgsee[1,2,10)

d?=— ddu?—2dudr+2r2P~2dzds, (1)

— ja—2iu/m
f=2 fiule
i,j=0

2m
<I>=AInP—2r(InP)'u—T. (2) :1+flyoe*2U/m+f210e*4u/m+'_.+f14’&72&1/m

— +fi5ue MM f e 30my ©)

Here, A=2P?3?/9{3{ andm is a constant related to the ’ ’

Bondi mass of the system. The functidh satisfies the where f;; are smooth functions ors?. Therefore, as

Robinson-Trautman equation u— +o, Robinson-Trautman metrics approach exponen-
tially fast a Schwarzschild metricf=1. (In general,

f—fsenw: Where fgg,, corresponds to a boosted Schwarz-

(InP) y=- EAA(InP). (3 schild solution; performing this boost, we can without loss of

generality assume thdt.,,=1. The analogous assumption

This equation can be formulategee, e.g.[7-9) by intro-  Will be made in the cases with#0 in the following) Some
ducing a smooth metrig®,(x°) on a two-dimensional mani- of the functionsf; ; may vanish, but Chriggel and Singleton
fold (here we shall concentrate on the physical ®eand  [9] Prove that there exist space-times for whigh, is non-
a u-dependent family of two—metricgabz[f(u,xc)]*zggb va_nlshmg. T_hls implies a surprising fact that, alth_ough there
which, with respect to the coordinatg takes the form exist extenslons thr?ggh the null hypersurf&té given by
2P‘2d§dZWriting u=+.oo which areC**/, in general the Roblnson—Trautman
metrics cannot be extended smoothdso, there exists an
infinite number ofC® extensions through{ ™. In particular,
P=fP,, Py=1+ lg_ (4) we may join the radiative metrics to the Schwarzschild met-
2 ric so that the Robinson-Trautman space-time ‘“settles
down” to the Schwarzschild space-time including the inte-

we find Eq.(3) becomes rior of the black hole, as shown in Fig. 1. In order to see the
smoothness acrog¢", one introduces an advanced time co-
af f AR 5 ordinate v by v=u+2r*=u+2r+4min(r/2m-1), and
ou 24m-9" ®) Kruskal-type coordinates,v by (see, e.g.[32])
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2m A
<I)A=AInP—2r(InP)Yu—T—§r2. (15)

We may still writeP= f Py, as in Eq.(4), whereP, gives Eq.

(7) and f satisfies Eqs(5) and (6). Since A does not enter
the equation forf, we may take over the results far=0
described in Sec. Il. Therefore, as-, the metric(14) will

now approach the Schwarzschild—de Sitter metric given by
f=1, corresponding t@%=1—2m/r— Ar?/3:

A
dSZZ —(1— T— grz)duz—Zdudr

204921 2
FIG. 1. Starting with arbitrary, smooth initial datawat ug, the +re(de +S'n29d"’ )

radiative Robinson-Trautman metrics with=0 converge expo- 2 A -1
nentially fast to a Schwarzschild metric as-«. However, exten- = —( - — —r2|dt3+ ( 1— —— —rz) dr?
sion beyond the null hypersurfa@é* (u=+«) can only be done 3
with a finite degree of smoothness. + r2(d02+sir12 0d<p2). (16)
U= —exp(—u/dm), ov=exp(v/4m). (100  Again,u=t—r*, but the “tortoise-type” coordinate* for
0<9AmM?<1 is
The hypersurfaca= + o now becomes a boundary given by
u=0. The metric(1) becomes . dr
r~= —o
3 3 . CI)A(I’)
— _ _ A 2 ~2
ds?= ; exp( —r/2m)dudv — 16m-ddu s Ir=r,| s [
- B e T
+2r2P2dsd¢, (11 T T
ry . 1
where +54]In 2] (17)
(i):euIZm ER—l-}—LA R (12) where
2 12m~9")"
; PN S L 18
with R and A4 being given by Eq(6) (for f=1=®=0 it TT1-Ar2 Tt 1-ArZ (18)
reduces to the Schwarzschild space-time in standard Kruskal
coordinates In terms ofu, the expansiorf9) becomes Here, r.=(2/\J/A)cos@/3+4m/3), with cosx=—3myA,
~ R R describes  the  black-hole  horizon, andr,.
=14 f B+ Fp oot oo+ g it =(2/JA)cos@/3) is the cosmological horizon, see, e.g.,
Al A 190 ~ 190 [11] for more details about dependence of parameters on
—amfys(Infu)(u) P+ fig ™+ (13) A (Analytic continuation of the Schwarzschild—de Sitter
. o metric is discussed, for example, [ia1] and in[33-36.)
Because of the presence of thu|rterms, the functiorf is The presence of a cosmological constant does not affect

not smooth ati=0; indeed, it isC**°if fi5,#0. The full  the smoothness of future infinity* in these space-times;

metric (11) is C*7 at1=0, sinced contains the additional Nowever,Z™ becomes spacelike fok>0 in contrast with

factor eU2m— 1 /2 the cases with\ =0 (cf. Fig. 2. Moreover, the presence of

' A has a considerable effect on the smoothness of extensions

through H* given by u=+«. The approach off to its

Schwarzschild—de Sitter forin=1 is again characterized by

the expansiori9) but the transformation to Kruskal-type co-
When a Robinson-Trautman space-time with=0 is  ordinates is now given by

known, it is straightforward to generalize it to the case of a R .

nonvanishingA (cf. [10,11]). The metric still keeps the form u=—exp(—ul26.), v=expv/28,), (19

(1) with P satisfying the Eq(3). The only place wheré\

enters is through the functiond. The cosmological Wherev=u+2r*, r* being given by Eq(17). Hence, in-

Robinson-Trautman metric reads stead of Eq(13), we get the expansion

ll. THE ROBINSON-TRAUTMAN SPACE-TIMES
WITH 0 <9Am?<1

ds?=— @, du?—2dudr+2r?P~2dzdZ,  (14) F=14fy o —0)40+ Mt £y o — )80+ /m

where 4oy f14'0(_a)565+ Im
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- de Sitter locally approach de Sitter space-time locally closeZtq i.e., near
. "‘”"°°( r—oo, u finite (cf. Fig. 2. As discussed in detail ifL1], the
r=o00 r= P r=o00

. transformation of the form
AN / r=xe""—H 2(f. /f.)+ > Ae ",
n=1

/ u =g o0

eHu:HX_efHT_’_ Z BneanT'
n=3

L
T4t
e

as u = oo

<
THN . u=o0
N

©

r=0 {=n+ 2, Che ", (23)
n=3

FIG. 2. Starting with initial data au=u,, the Robinson-
Trautman metrics with &9Am?<1 converge to a
Schwarzschild—de Sitter metric as—. Although traces of gravi-

in which A,,, B,, C, are suitable functions of, 7, , and
H=A/3 brings the metri¢14) into the asymptotic form

tational waves WiII_per_sist at future infinitg[f, for aII_gec_)dgsic _ d2= _d72+e2HT[dX2+f;ZXZ(dHZ_’_SinZed(pZ)]
observers the metric will approach the de Sitter metric within their

past light cone. The metric at the horizéa* has only a finite *

degree of smoothness, although this can be higher than that in the + 2 e’mHTth)dxadxb, (24
case withA=0. m=0

. . where the coordinateg, ¢ are reintroduced by
_25+f15,1(|”|u|)(_u)605*/m )
) n=12e'“tan(6/2), f.=f|, .=f(u=H tn|Hx|,6,¢),
+ s —u)80+ /My (20)
K andh{ depend or{x®}={x, 0, ¢} only. It is seen explicitly
atu— +o, i.e.,u—0_ [cf. Eq.(19)]. The full metric takes that for 7— o, the metric(24) does not approach the de Sitter

the form metric globally, the gravitational waves leave “an imprint”
) 1o onZ" which is demonstrated by the presence of the function
42— — 4A64r e F L —r)LFoes 1o f... However, any geodesic observer will deeally, inside
3ro.r T his past light-cone, space-time approach de Sitter space-time
o exponentially fast in accordance with the cosmic no-hair
X(r+r,+1,,)2 %% dudo conjecture(see[11] for details.
—485®,du?+2r’P~2d¢d¢, (21) IV. THE ROBINSON-TRAUTMAN SPACE-TIMES

WITH 9 Am?=1
where

Above, we summarized the approach to Schwarz-
schild—de Sitter space-time in the case MAm?< 1 charac-
terized by the existence of two distinct horizons and
ro,, with0<2m<r, <3m<r, .. With A approaching its
with f being of the form(20) above. We may join the radia- extremal valueA — 1/9m2, the black-hole horizon, mono-
tive Robinson-Trautman metrics withA>0 to the tonjcally increases and the cosmological horizan, de-

Schwarzschild—de Sitter metric so that the space-tim@reases to the common valuen3In this section we shall
“settles down” to the Schwarzschild—de Sitter black hole gnajyze the extreme case\@?=1 for which there exists

including its interior(see Fig. 2 Such an extension across gnly one “double” Killing horizon atr .= 3m.
u=0 will, in general, beC® in the case of vanishing . [For The metric of the Robinson-Trautman space-time is still
example,® and all its derivatives vanish fai=0 in the  9iven by Egs(14) and(15), and the corresponding extreme
Schwarzschild case, Whereag)fl)io with f given by Eq. ?chw.arzschllt,j,—de Sl|tter I’Ee.tI’IC by E(L6). However, the
. . . tortoise-type” coordinater* is now

(13).] With A>0, much higher smoothness can be obtained.
For those values ok which imply 45, /m equals an integer, om?
the smoothness is always better than thatfo+ 0. More- r*=— +2min
over, the horizor{™ can be made “arbitrarily smooth” by
letting A approach its extremal value\—1/9m? (i.e.,  where an additive constant was chosen such tthat0 at
r.—3m). Then,s5, becomes arbitrarily large and the terms r — . By introducing the Kruskal-type null coordinates
~(—0)"?+/m i=48, ..., in Eq.(20) will guarantee arbi-
trarily high smoothness of the functidnat u=0.

The Robinson-Trautman metrics with>0 may serve as \here
exact analytic models demonstrating the cosmic no-hair con-
jecture under the presence of gravitational waves, they all 6=—-—m(3—-2In2)<0, (27)

& e TR-1+ AR (22)
A 2 12m~9")°

r+6m
r—3m

; (25

u=—arccot—u/8), v=arctariv/d), (26)
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de Sitter locally
as T — o0

FIG. 4. Starting with initial data au=u,, the Robinson-
Trautman metrics with Am?=1 converge to an extreme
Schwarzschild—de Sitter space-time ws>~. The extension be-
yond the horizor#{* is smooth but not analytic.

As in the previous case, the general Robinson-Trautman
space-times with Am?=1 approach an extreme
Schwarzschild—de Sitter space-time as—+, i.e.,
u—0_ [u<0, cf. Eqg. (26)] Indeed, introducing
gi=ajcotl, where a;=—(2i8/m)>0, i=1,2,3,..., and
hj=exp@;), j=1,2,3 ..., the expansion of the function

FIG. 3. (a Conformal diagram of the extreme
Schwarzschild—de Sitter space-time with ®°=1 and the singu-
larity in the past, corresponding to a white hole. The maximal ana ) : . )
lytic extension of the geometry is obtained by glueing an infinitef,_l given by Eq.(30) can be written as a linear combina-

: : : " - tion of terms ¢;)h., k=0,1,2, ... . Clearlyg,— —= as
number of regions shown in the figure, or joining a finite number of _ i/ Hjo 115 i
regions via identification of events along two horizans3m. (b) u—0_, so that gi)khj—>0; this implies f—1. All
The time-reversed diagrami{- —U,0— —0), corresponding to a Robinson-Trautman spacetimég8)-(30) are thus settling
black hole. down to the extreme Schwarzschild—de Sitter space-time as
u—oo, i.e., at the null hypersurfack™ given byu=0_ (see
v=u+2r*, r* given by Eq.(25), the “extreme” Robinson- Fig. 4). A question again naturally arises, whether one can

Trautman metric can be written in the form extend the space-time througt* by glueing to it, for ex-
ample, an extreme Schwarzschild—de Sitter space-tivith
& (r+6m)(r—-3m)? . . . . - - e
d<2= — , . ——dudo — ® ,d 2 u>0). It is not difficult to see that one can make such an
2imr  cogy sirfu extension and, in contrast with the cases®A m?<1, this
oy extension is smooth
+2r°P~°d{d(, (28 First, it can be shown by induction and using the relation
where dg;/du=—(a;+g%/a;) that the nth derivative, n=1,
2, ..., of (g))¥ with respect tou can be expressed as a
- 8 1 r polynomial of the @+k)th order in g;, e,
=S SR-1+5-AGR]. (29 (gfM=x"%%c, g%, where the coefficients,, are con-
stants. Similarlyh{"™ =h; =22 d.g?, whered; are constants.
The asymptotic expansid@) becomes Lei.bnit.Z’S .formula then giVeS grhj)(n)—)O as gy— —x,
which implies
f= > f, dlcotlie (2ameon limf=1, lim fM=0. (32)

i,j=0 - .
u—0_ u—0_

_ —(25/m)cot — (48/m)cott
=1+ g (2MCOULf, @ (ML £, Moreover, we find

« @ (283/m)coti 5 15.C0t e (300/mcour (30) A
' lim (®,)™=0, (33
In particular, if f=1 we get®,=0, P=P, [see Eqs(4), u—0-

(6), and(7)], and the metriq28) describes the spherically R R .

symmetric extreme Schwarzschild—de Sitter space-time, se@ince sin“u~g'cos“u, so that &, ={linear combination
Fig. 3 for its conformal diagram. It is regular on the horizon of gik”hj}cos“‘ﬂ; an arbitrary derivative of the first factor

r=re=3m for all finite u andv since tends to zero as—0_ while derivatives of the second factor
a2 _ 2 2,2 remain finite.
lim m: lim (r=3m :(18m ) (32 Therefore, the radiative Robinson-Trautman space-times

r—~3m COSU  r—3m SIMPU & with 9Am?=1 can be extendesmoothlythrough the hori-
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FIG. 5. Another smooth extension of the Robinson-Trautman
metric with 9Am?=1 beyond the horizofit* can be obtained by FIG. 6. Conformal diagram of the Schwarzschild—de Sitter
glueing two copies of the metric along= (u=0). The extreme  space-time with Am?>1 describing a spherically symmetric na-
black-hole space-time illustrated in Fig(b3 can also be joined to ked singularity in thelasymptotically de Sitter universe.
the Robinson-Trautman space-time aldg.

. . . r 1 r?=2r_r+r?
zon H to the spherically symmetric extreme S — ZIn—
Schwarzschild—de Sitter space-time with the same values of Arf—1|2 ro+r_r—6m/Ar_
A andm, 9Am?=1 (see Fig. 4 However, such an exten-

. . . AT . r_
sion is not unique. There are other possibilities, the simplest — —6m/Ar?
one can be obtained by glueing a copy of the Robinson- n 2
Trautman space-time with/om*=1 to itself (see Fig. 5. [(314)r2 = 3/A

For u>0 we consider another copy of Eq28)—(30) ob-
tained by the reflection— —U, v— —v. [The same reflec-

tion connects Figs. (8 and 3b).] Again, since % arctar( r+r_/2 _m (34)
lim (®,)(M=0, the extension across=0 is smooth and the J(314)r2 =3/A] 2

Ho0y here r_=—(3m/A)Y{(1-C)*+(1+C)"*]<0 and

space-time can be called an “extreme” Robinson-Trautmar_ "™ A= TI(OAmD) be sh hat* icall
black hole in the de Sitter universe. Its conformal diagramc_ 1-1/(9Am). It can be shown that® monotonically

resembles the diagram in Fig. 2, representing the nonextren%ecreasez_frotm*(r =0)>0 tor*(r=c)=0. The Kruskal-
case(cf. [11]). Any timelike geodesic observer falling from ype coordinales are

the regionu<0 will cross the smooth horizok* and reach u=—arccotu/m), ov=arctai—uv/m), (35
the singularity at =0, or escape to “de Sitter-like” infinity
given byr =c. wherev=u+2r* andr* is given by Eq.(34). Then, the

Therefore, the smooth extensions acressO are not Robinson-Trautman metric reads

unique. Of coursethey are not analyticln fact, the func- Am? 6m dudo
tions expécotl) in expansion(30) are C* at u=0_, but ds*=— T rZHr_F)W
u=0 is an irremovable singularity. v

The behavior of the Robinson-Trautman space-times near —®,du?+2r2P2dzd¢, (36)
future spacelike infinityZ ™ (given byr =) is similar to the
nonextreme case discussed in the previous section. AgaiMhere
one can perform the transformati¢23) converting the met- 5
ric into the asymptotic form(24) so that those space-times i A:m_(ER_ 1+LA R) (37)
approach the de Sitter metric locally as>«, in correspon- sinfu | 2 12m=9")
dence with the cosmic no-hair conjecture. and

V. THE ROBINSON-TRAUTMAN SPACE-TIMES f=”2>0 f; j(—m)icotu e e

WITH 9 Am2>1
=1+f 2cou+f 4cou+,”+f 28 cou
In this case the corresponding Schwarzschild—de Sitter L 2’0? 14
space-time(16) admits no horizon in the region>0 (cf. —mfyg come0 4. (39
[21,36]) so that there is only a naked singularity situated at o ) ) )
r=0. The metric of the Robinson-Trautman space-time with! "€ metric is regular for all valugs>0 and, in particular, it
9Am2>1 is again given by Eq€14) and (15) but now the describes spherically symmetric Schwarzschild—de Sitter

“tortoise-type” coordinater* becomes space-time with a naked singularityfi= 1 (i.e., <i>A= 0); its
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paked !
Schwarzschild-de Sitter I+ des 'ﬁeéfr"y

ZSU—POO/{ e oo

FIG. 7. Starting with smooth initial data at= u,, the Robinson-
Trautman metrics with Am?>1 approach a “naked”
Schwarzschild—de Sitter metric as-«. No extension of the met-
ric is necessary.

conformal diagram is seen in Fig. 6. Since the expansion
(38) is analogous to Eq30), we can take over the results . _ . .
(32) and (33), implying that any Robinson-Trautman space- FIG. 9. Conformal diagram of the Schwarzschild—anti-de Sitter
time with 9Am?>1 approaches smoothly the correspondingSPace-time with <0 andm=0. Infinity Z is timelike.

Schwarzschild—de Sitter space-time w@as» (l]—>0_). It ; _ 1 1/3_
contains no horizoricontrary to the cases discussed in the? blf}Ck'hOIe honzo_n ar,=(—3m/A)"{(C+1) (C
previous sectionsso that the metric&36)—(38) need notto  — 1) 1>0, whereC=y1—1/(9Am?). The value ofry de-

be extended pasi=0; it is already geodesically complete *'¢25€S from,=2mfor A=0tor,—0 asA— —c, as seen
for u>uy, as indicated in Fig. 7. Also, it can be put into the in_ Fig. 8 [the3 expanS|50n2 ofry for small A<0 'S
asymptotic form(24), again demonstrating explicitly the cos- 'h=2M+ (8/3)M”A+O(m>A )]. Kruskal-type null coordi-
mic “no-hair” conjecture under the presence of gravitational "ates are

waves. U= —exp(—ui25,), v=expvi28). (39
VI. THE ROBINSON-TRAUTMAN SPACE-TIMES B . . ; _ .
WITH A <0 Here, v=u+ 2r*, with the “tortoise-type” coordinater
for A<O given by
We now complete the analysis of the Robinson-Trautman
vacuum space-times withlh with the caseA<0. The 1 6m
Schwarzschild—anti-de Sitter metric, which is again a spheri-r* = 5h(|n|f— Ml — §|n(f2+ il
cally symmetric Robinson-Trautman solution given by Egs. h

(14) and(15) with f=1 [or (16) with A <0], always admits 6m—r, { + \/T—rh ZrH
+ arctal 1+ —
J(6m+ry)(2m—ry) em-+rp I

!

P 3 2m-r, 1)
" 2Ar, 3m—r,’

+D

where

and D=-my—A/3[1+In(—4An?/3)]. Performing the
transformation(39), the Robinson-Trautman metri¢4) be-
comes

4A 82 6m | "?
= 2 -
ds? 3 (r +rpr Arh)

4 6m—ry
X exp —
V(6m+ry)(2m—ry,)

; 2m—ry,
X
arcta BmTT,

2r
1+ —
Mh

+D )d&dz}

FIG. 8. A plot of the black-hole horizion,, and the parameter 2% np P
8, (dashed lingas a function ofA <0 andm. —46,Pdu+2r°P~°d{d{, (42)
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rizon is situated at,<3m/2 and 45,/m<3; the function

f is less thanC® and the metric is not everCl. If
—Am?>3, thenr,<m, 46,,/m<1, anddf/du diverges at
H*.

However, as expected, the presence of a negative cosmo-
logical constant does not affect the smoothness of infihity
(although it changes its charact@r:becomes timelike In-
troducing a coordinaté=r ! and a conformal factof) =1
in Egs.(14) and(15), one finds(cf. [11])

Schwarzschild-anti-de Sitter /7"
as u — oo N -

02d2=2dud|—- 120 ,du?+2P~2d¢ds, (45

where

r=0 -1 A,
®,=AINP—2I"X(InP) ,—2mI— =172 (46)

3
FIG. 10. Starting with smooth initial data at=ug, the
Robinson-Trautman metrics withA<O converge to a
Schwarzschild—anti-de Sitter metric as—~. The metric at the |t s easy to see thdt=0 is a regular timelike hypersurface
horizon™ has only a finite degree of smoothness which is lowersq, arbitrary SmootfP(u,g“,g_).
than that in the case with=0.

VII. CONCLUDING REMARKS

We have shown that all vacuum radiative cosmological
where Robinson-Trautman space-times of the Petrov type Il with
m>0 settle down to Schwarzschild—de Sittgr A>0) or
Schwarzschild—anti-de Sittéif A <0) solutions at large re-
&)A=e“/5h ER— 1+LA R|. (43 tarded times. This is true for “arbitrary strong” smooth ini-
12m~—9 tial data in the Robinson-Trautman class of metrics. The
space-times can then be extended to include the black-hole
R interiors. AsSA >0 is increased, the interior of a correspond-
If f=1, we get®,=0, and the metric reduces to the ing Schwarzschild—de Sitter black hole can be joined to an
Schwarzschild—anti-de Sitter metric in Kruskal coordinatesgexternal cosmological Robinson-Trautman space-time across
its conformal diagram is indicated in Fig. 9. Lettidg—0, the horizon with an increased degree of smoothness. In the
we obtain back the metricl1). In a general case, the expan- extreme case when/m?=1, the extension i”, i.e.,
sion (9) of f in terms ofU introduced by Eq(39) becomes ~ Smooth, but not analytic. In this sense, the conject@r)
presented for the case=0 in Ref.[8], that the only “posi-
tive mass Robinson-Trautman space-time which is smoothly

f=1+1fy o —0)*o/M4f, ((—u)8h/m extendible th_rougH}-Fr is (necessarily the Schwarzschild
space-time” is not true for Robinson-Trautman space-times
o g d —0)%Ph M= 28, f15 (Inful) (—u)®%h /™ with a positive cosmological constant. On the other hand, for
R A <0 the extension to a Schwarzschild—anti-de Sitter black
+fisd — 1) /Mt (44)  hole has a lower degree of smoothness than those in corre-

sponding cases with =0.
All space-times withA >0 represent exact explicit mod-
Therefore, all radiative Robinson-Trautman metrics W|the|s exh|b|t|ng the cosmic no-hair Conjecture under the pres-
A<0 “settle down” to the Schwarzschild—anti-de Sitter ence of gravitational waves. They may serve as test beds in
metric asu—o, or u—0_ (see Fig. 10 However, the numerical studies of more realistic situations.
smoothness of the extension of the Robinson-Trautman met-

ric across the horizonH™ given by u=0 to the ACKNOWLEDGMENTS
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