
Impulsive gravitational waves generated by null particles
in de Sitter and anti–de Sitter backgrounds
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By boosting the metric of the Schwarzschild–de Sitter and Schwarzschild–anti-de Sitter space-times in the
ultrarelativistic limit as the mass parameter vanishes, impulsive gravitational waves are obtained in back-
grounds with a nonzero cosmological constant. We determine the geometry of these impulsive wave surfaces
using various coordinate charts. In the de Sitter background they are spheres containing two null particles
located at the poles. In the anti–de Sitter background they are hyperboloidal surfaces of constant negative
curvature containing a single null particle on the axis of symmetry. The global structure and conformal
diagrams for the complete manifolds are also determined.@S0556-2821~97!04620-1#

PACS number~s!: 04.20.Jb, 04.30.Nk

I. INTRODUCTION

In a now classic paper, Aichelburg and Sexl@1# obtained
an exact solution of Einstein’s equations for a null particle in
a Minkowski background by boosting the Schwarzschild
metric to the ultrarelativistic limit as the mass becomes arbi-
trarily small. The resulting space-time is an impulsivepp
wave. Generalizations of this solution have been obtained by
a number of authors@2–5# by similarly boosting the Kerr or
Kerr-Newman solutions.

A similar approach has been adopted by Hotta and
Tanaka@6# in boosting the Schwarzschild–de Sitter metric to
a similar limit. Effectively, they consider this as a perturba-
tion of the de Sitter metric and boost the particle to the ul-
trarelativistic limit as its mass vanishes in an appropriate
way. This approach also results in impulsive gravitational
waves. However, the background in this case is not flat and
the wavefronts are not simple planes in Minkowski space.
Rather they are surfaces of constant curvature in the de Sitter
background. The calculations can easily be adapted to de-
scribe impulsive gravitational waves in an anti–de Sitter
background. However, the global properties of the solution
in this case differ significantly.

It is the purpose of the present paper to clarify certain
aspects of these solutions and to investigate the geometrical
properties of the impulsive wave surfaces as they would be
seen by different families of observers.

II. BOOSTING THE SCHWARZSCHILD –de SITTER
SOLUTION

Let us start with the Schwarzschild–de Sitter solution in
the familiar form

ds25S 12
r 2

a2 2
2m

r Ddt22S 12
r 2

a2 2
2m

r D 21

dr2

2r 2~du21sin2 udf2!, ~2.1!

in which the cosmological constant is given byL53/a2 and
m is the mass parameter. In the limit whenm50, this is
simply the de Sitter solution which, as is well known, can be
represented as a four-dimensional hyperboloid

Z0
22Z1

22Z2
22Z3

22Z4
252a2 ~2.2!

embedded in a five-dimensional Minkowski space-time

ds25dZ0
22dZ1

22dZ2
22dZ3

22dZ4
2. ~2.3!

For m50, this can be achieved by putting

Z05Aa22r 2 sinh~ t/a!,

Z456Aa22r 2 cosh~ t/a!,

Z15r cosu,

Z25r sin u cosf,

Z35r sin u sin f. ~2.4!

From this it can immediately be observed that the origin
r 50 corresponds to the two world lines

~Z0 ,Z1 ,Z2 ,Z3 ,Z4!5„a sinh~ t/a!,0,0,0,6a cosh~ t/a!…
~2.5!

along the hyperboloid, as indicated in Fig. 1 in which the
coordinatesZ2 andZ3 are suppressed. It may seem surpris-
ing that the Schwarzschild–de Sitter solution~2.1! does not
just have a single source in the limit when the mass is small.
However, it is known that the coordinates of Eq.~2.1! do not
cover the complete space-time whose analytic extension
must include both the black hole and white hole parts. This
fact can be deduced from its conformal structure~see, e.g.,
Bičák and Podolsky´ @7#!.
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Following the approach of Aichelburg and Sexl@1#, we
may now boost the singularity representing the point mass in
the Schwarzschild–de Sitter solution to the limit in which its
speed approaches that of light and its mass is scaled to zero
in an appropriate way.

As observed by Hotta and Tanaka@6#, in this case it is
first appropriate to take the linear approximation of Eq.~2.1!
for small m in the form

ds25S 12
r 2

a2 2
2m

r Ddt22S 12
r 2

a2D 21

3F11S 12
r 2

a2D 21 2m

r Gdr22r 2~du21sin2 udf2!.

~2.6!

This can be considered as a first order perturbation of the de
Sitter line element. Using the coordinatesZi of Eqs. ~2.4!,
the first order perturbation of the line element~2.3! can be
written as

ds1
252

2ma2

r F S Z4dZ02Z0dZ4

Z4
22Z0

2 D 2

1
a2

r 2 S Z0dZ02Z4dZ4

Z4
22Z0

2 D 2G , ~2.7!

where r 5(a21Z0
22Z4

2)1/2. A boost can then be performed
in any direction orthogonal toZ4 ~a boost in theZ4 direction
simply corresponds to a time shift!. Taking the boost in the
Z1 direction, we can put

Z0→
Z01vZ1

A12v2
, Z1→

vZ01Z1

A12v2
,

Z2→Z2 , Z3→Z3 , Z4→Z4 , ~2.8!

wherev is the boost parameter. It can then be seen that, in
the limit asv→1, the linear perturbation term vanishes ev-
erywhere except on the hypersurfaceZ01Z150. Then, by
also scaling the mass according to

m5pA12v2,

wherep is a constant, it can be seen that the only nonvan-
ishing term in Eq.~2.7! is that which becomes a multiple of
(dZ01dZ1)2. The line element thus takes the form

ds25dZ0
22dZ1

22dZ2
22dZ3

22dZ4
2

22pa2H~Z4!d~Z01Z1!~dZ01dZ1!2, ~2.9!

where, putting

x25
~Z01vZ1!2

12v2 ,

H~Z4!d~Z01Z1!5 lim
v→1

1

A12v2

~a22Z4
2!Z4

21~a21Z4
2!x2

~a22Z4
21x2!3/2~Z4

22x2!2 .

~2.10!

In evaluating this limit, we follow Hotta and Tanaka@6#, in
making use of the identity

lim
v→1

1

A12v2
f S ~Z01vZ1!2

12v2 D5d~Z01Z1!E
2`

`

f ~x2!dx,

~2.11!

which can easily be proven in the theory of distributions.
However, in this case, the integrand involved contains sin-
gularities atx56Z4 . Nevertheless, it is possible to remove
the effect of these by first making a singular coordinate trans-
formation such that

dZ02dZ1→dZ02dZ12 lim
v→1

4pa3

A12v2

3S a22
~Z01Z1!2

12v2 D 22

~dZ01dZ1!.

Then, using Eq.~2.11!, it can be shown that the function
H(Z4) in the line element~2.9! takes the form

H~Z4!52
2

a2 F22
Z4

a
lnUa1Z4

a2Z4
UG . ~2.12!

It can thus be seen that the resulting space-time differs
from the de Sitter space-time only by the inclusion of an
impulsive wave located on the null hypersurface given by

FIG. 1. The de Sitter space-time represented as a four-
dimensional hyperboloid embedded in a five-dimensional Minkow-
ski space-time. The coordinatesZ2 and Z3 have been suppressed,
and the timelike world lines are indicated by the two test particles
which correspond to the weak limit of the source of the
Schwarzschild–de Sitter space-time.
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Z01Z150, Z2
21Z3

21Z4
25a2. ~2.13!

It may be observed that the shock wave is a two-sphere in the
five-dimensional Minkowski space at any timeZ0 .

In addition, as shown in@6#, the singularities that were
originally located atr 50 have now been boosted to become
two null particles described byd functions in the energy-
momentum tensor on the wave surface. These have the world
lines

Z01Z150, Z25Z350, Z456a. ~2.14!

These are the two null straight lines on the four-dimensional
hyperboloid as indicated in Fig. 2.

III. GLOBAL COORDINATES „L>0…

Let us now investigate the geometry of the shock wave in
the de Sitter background. To do this, we set up some appro-
priate coordinate system. At each event, we introduce some
‘‘time’’ and ‘‘space’’ labels. We can then ask the question,
what are the space coordinates of the shock wave at a given
‘‘synchronized’’ time? Of course, although the geometry is
unique, the coordinates can be chosen arbitrarily, and so that
the coordinate shape is not unique. In practice, however,
‘‘comoving coordinates’’ can always be introduced, and so
the coordinate shape of the shock wave will correspond to its
shape as seen by the associated family of observers.

In fact there are a number of privileged families of ob-
servers in a de Sitter space. These correspond to those in

which the spatial sections at any synchronous time have con-
stant curvature. We will consider the three cases of positive,
zero, and negative curvature. Of these the most natural
choices of coordinates are those associated with spatial sec-
tions of constant positive curvature. These will be considered
in the present section, with the other cases considered in Sec.
IV. Further properties of the coordinates used for the de Sit-
ter space-time and the relations between them have been de-
scribed by Eriksen and Gro”n @8#, although in a slightly dif-
ferent notation.

The most natural set of coordinates covering the four-
dimensional hyperboloid~2.2! is the set of ‘‘global coordi-
nates’’ given by

Z05a sinh~t/a!,

Z15a cosh~t/a!cosx,

Z45a cosh~t/a!sin x cosu,

Z25a cosh~t/a!sin x sin u cosf,

Z35a cosh~t/a!sin x sin u sin f, ~3.1!

in which the coordinatesu andf are different from those of
Sec. II. Indeed the same symbols are used for a number of
different coordinate parametrizations below. With this, the
line element becomes

ds25dt22a2 cosh2~t/a!@dx21sin2 x~du21sin2 udf2!#.
~3.2!

In this case, the privileged family of timelike observers have
world lines on whichx, u, andf are constant. For this fam-
ily, the three-spacest5const, which represent the universe
at any time, have the geometry of three-spheresS3 which
appear to contract to a minimum size att50, and then re-
expand.

Let us now return to consider the shock wave, which is
given by Eqs.~2.13! with the null particles having the world
lines ~2.14!. Using Eqs.~3.1!, we see that the shock wave is
located at cosx52tanh(t/a). Thus, the hyperspherical coor-
dinatex monotonically increases fromx50 ast→2` to
x5p/2 at t50 and x5p as t→1`. This has a natural
physical interpretation shown in Fig. 3. As the synchronous
~proper! time t of comoving observers at fixed pointsP
given by constantx0 , u0 , and f0 increases, the impulse
propagates from the ‘‘north pole’’ (x50) to the ‘‘south
pole’’ (x5p) of the closed spaceS3. Moreover, the radius
of S3 is given by R5a cosh(t/a); i.e., ast increases, for
t,0, the space contracts to a minimum radiusa ~at t50!
and then reexpands fort.0.

This is visualized in Fig. 3 where the coordinatef was
suppressed so that the evolution of the universe is repre-
sented by a sequence of two-spheres~with coordinatesx and
u! of which only hemispheres are shown. At any time, the
impulse is here given by a~semi!circle which is located ex-
actly in the circular intersection of the corresponding sphere
with a cylinder of radiusa. Indeed, the distance of the im-
pulse from the axis through the poles is given by
R sinx5a cosh(t/a)A12tanh2(t/a)[a. The null particles

FIG. 2. The de Sitter space-time represented as a four-
dimensional hyperboloid embedded in a five-dimensional Minkow-
ski space-time with the coordinatesZ2 andZ3 suppressed. The null
world lines are indicated by the two particles which correspond to
the source of the Schwarzschild–de Sitter space-time boosted to the
limit in which its velocity is that of light and its mass vanishes.
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which are the singular sources of the wave are located at
u50 and u5p, as follows immediately from Eqs.~2.14!
and ~3.1!.

In order to investigate the global conformal structure of
the space-time, it is useful to introduce the conformal time
hp defined by

hp52 arctan~et/a!. ~3.3!

Then sinh(t/a)52cothp , cosh(t/a)51/sinhp , and the line
element~3.2! becomes

ds25
a2

sin2 hp
@dhp

22dx22sin2 x~du21sin2 udf2!#.

~3.4!

In this case, the appropriate conformal diagram which is
shown in Fig. 4 covers the coordinate ranges fromhp50
(t52`) to hp5p (t5`), and fromx50 to x5p.

It may then be observed that the conditionZ01Z150
corresponds to the single rootx5hp , and hence that

d~Z01Z1!5
1

a
d~x2hp!.

The impulsive wave in the conformal diagram in Fig. 4 is
simply located along the linex5hp . Moreover, since the
functionH(Z4) only need be evaluated forx5hp , it can be
seen that the impulsive addition to the de Sitter line element
~3.4! is given by

ds1
254paF22cosu lnU 11cosu

12cosu UGd~hp2x!~dhp2dx!2.

~3.5!

FIG. 3. In natural coordinates the de Sitter space-time is a
closed universe with the spatial geometry of a three-sphere whose
radius is given byR5a cosh(t/a). Suppressing the coordinatef, its
evolution can be visualized as a sequence of two-spheres which are
indicated here by hemispheres which contract to a minimum size
and then reexpand. At any time, the impulsive wave is a two-sphere
represented here by a semicircle located at the circular intersection
of a cylinder of radiusa with the corresponding sphere representing
the universe. This propagates from the ‘‘north pole’’x50 as
t→2` across the equatorx5p/2 at t50 to the ‘‘south pole’’
x5p as t→` while the whole universe contracts to a minimum
sizeR5a at t50 and then reexpands.

FIG. 4. The conformal diagram of the de Sitter space-time with natural global coordinateshp ,x. Each point of the diagram represents
a two-sphere parametrized by coordinatesu,f. The linesx50 andx5p are identified. In contrast to Minkowski space-time, de Sitter has
a spacelike future and past infinity for null and timelike lines. The impulsive wave is located alongx5hp with two singular points sources
at u50 andu5p.
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From this, it can immediately be seen that the two null par-
ticles are located at the pointsu50 andu5p, which corre-
spond to the opposite poles of the spherical wave surface.

IV. OTHER COORDINATE CHARTS „L>0…

Although the coordinates introduced in the previous sec-
tion are the most natural in the sense that they cover the
entire de Sitter space-time and provide a simple interpreta-
tion of the shock geometry, it is also appropriate to consider
some alternative coordinate systems as they can be inter-
preted in terms of different families of observers.

Taking the case in which spatial sections at synchronous
times have zero curvature, we can introduce the conformally
flat coordinates

Z05
1

2h
@a22h21~x2a!21y21z2#,

Z15
a

h
~x2a!,

Z25
a

h
y,

Z35
a

h
z,

Z45
1

2h
@a21h22~x2a!22y22z2#. ~4.1!

With this, the line element becomes

ds25
a2

h2 ~dh22dx22dy22dz2!. ~4.2!

When coming to describe the geometry of the impulsive
wave in these coordinates, it is convenient to put

x5r cosu, y5r sin u cosf, z5r sin u sin f,

whererP@0,̀ ), uP@0,p#, fP@0,2p), so that

r25x21y21z2,

and then we have

Z01Z152
1

2h
~h22r2! ~4.3!

and

Z45
1

2h
~h22r212ax!.

Thus, on the impulsive wave on whichZ01Z150, we have
h56r and

Z45
ax

h
5a

r

h
cosu.

It may be noted that, in order to include the maximum ana-
lytic extension of the space-time, it is necessary to permith
to cover the range (2`,`). In addition, from Eq.~4.3! it
follows that

d~Z01Z1!5d~h2r!1d~h1r!,

which indicates that the impulsive wave has two compo-
nents,

when h5r, Z45a cosu,

when h52r, Z452a cosu.

Combining these, we see that the impulsive addition to the
de Sitter line element~4.2! is given by

ds1
254pF22cosu lnU 11cosu

12cosu UG
3@d~h2r!~dh2dr!21d~h1r!~dh1dr!2#.

~4.4!

This looks like two impulses. However, both components are
required for the conformal picture to be geodesically
complete: Sincer>0, the termd(h2r) is nonvanishing
only for h>0 while d(h1r) applies only forh<0. Again it
can be seen that the two null source particles are located at
the polesu50 andu5p on the spherical wave surface.

The conformal diagram of the sectiony5z50 is shown
in Fig. 5. In this, the whole de Sitter universe is covered by
two regions in whichh>0 andh<0. It is also convenient to
use x5r cosu where u50 or p. The diagram thus illus-
trates the paths of the two null particles propagating in op-
posite directions. The impulsive wavesr5h and r52h
can also be seen to represent either a contracting two-sphere
in an exponentially expanding universe or an expanding two-
sphere in a contracting universe.

This point can also be clarified by introducing the proper
time t defined by

h56ae2t/a,

so that the line element~4.2! of de Sitter space-time becomes

ds25dt22e2t/a@dr21r2~du21sin2 udf2!#. ~4.5!

It can thus be seen that the region in whichh.0 corre-
sponds to an exponentially expanding ‘‘inflationary’’ uni-
verse. The region included in the conformal diagram in
which h,0 corresponds to a time-reversed exponentially
contracting universe.

It may also be observed that the ‘‘radius’’ of the spherical
impulsive wave is given by

r5uhu5ae2t/a.

Thus, in theexpanding universewith the three-dimensional
spacest5const being flat, the impulsive wave is an expo-
nentially contracting two-sphere. Conversely~changing
t→2t!, it can also be considered as an expanding spherical
wave in an exponentially contracting universe.
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Let us finally consider how the impulsive wave would
appear to the family of observers which, at any synchronous
time, are located in a space of a negative curvature. In this
case, the four-dimensional hyperboloid~2.2! can be param-
etrized by

Z05a sinh~t/a!coshc,

Z15a cosh~t/a!,

Z45a sinh~t/a!sinh c cosu,

Z25a sinh~t/a!sinh c sin u cosf,

Z35a sinh~t/a!sinh c sin u sin f, ~4.6!

and the de Sitter line element takes the form

ds25dt22a2 sinh2~t/a!

3@dc21sinh2 c~du21sin2 udf2!#. ~4.7!

However, it may be noted that these coordinates only cover
part of the hyperboloid.

Again it is convenient to introduce a conformal time de-
fined here by

hn5H 2 arccothet/a for t>0,

2 arctanhet/a for t<0.
~4.8!

It may be noted that, ast increases from2` to 0 and then to
`, hn increases from 0 tò and then decreases back to 0.
Using this, the hyperboloid is parametrized by Eqs.~4.6!
where sinh(t/a)561/sinhhn , cosh(t/a)5coshhn /sinhhn ,
and the line element~4.7! becomes

ds25
a2

sinh2 hn
@dhn

22dc22sinh2 c~du21sin2 udf2!#.

~4.9!

Since

Z01Z15
a

sinh hn
~coshhn6coshc!,

we have

d~Z01Z1!5
1

a
@d~hn2c!1d~hn1c!#.

Thus, on the impulsive wave,c56hn and it can again be
shown that the impulsive addition to the de Sitter line ele-
ment ~4.9! is given by

ds1
254paF22cosu lnU 11cosu

12cosu UG
3@d~hn2c!~dhn2dc!21d~hn1c!~dhn1dc!2#.

~4.10!

This again looks like two impulses. However, the first term
is nonvanishing only forc.0, while the second term is non-
vanishing only forc,0. Both components are required for
the conformal picture to be geodesically complete. This is
described in Fig. 6.

The spherical pulse is now propagating in a three-space
t5const which has a negative curvature and contracts for
t,0 according toausinh(t/a)u. The impulse is located at
ucu5hn52 arctanhet/a; i.e., it is expanding fromc50 to
ucu5`.

V. NULL PARTICLE IN AN ANTI –de SITTER
BACKGROUND

For a vacuum universe with a negative cosmological con-
stant (L,0), the Schwarzschild–anti–de Sitter solution can
be written in the form~2.1! but with a2 replaced by2a2. It
is then possible to proceed as in Sec. II to boost the singular

FIG. 5. The conformal diagram of the sectiony5z50 of the de Sitter space-time with coordinatesh,r5uxu. The wave is located along
h56r and represents either an exponentially contracting two-sphere in an exponentially expanding flat inflationary universe or an expand-
ing two-sphere in a contracting space.
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point r 50 in the limit asm→0 in an appropriate way. This
again produces an impulsive wave, but this time in an
anti–de Sitter background.

Before proceeding, however, it is first appropriate to re-
call that the anti–de Sitter solution can be represented as the
four-dimensional hyperboloid

Z0
22Z1

22Z2
22Z3

21Z4
25a2 ~5.1!

embedded in a five-dimensional Minkowski space-time

ds25dZ0
22dZ1

22dZ2
22dZ3

21dZ4
2 ~5.2!

with two timelike dimensionsZ0 andZ4 . The natural param-
etrization of this is given by

Z45Aa21r 2 cos~ t/a!,

Z05Aa21r 2 sin~ t/a!,

Z15r cosu,

Z25r sin u cosf,

Z35r sin u sin f. ~5.3!

From this it can be seen that a source at the originr 50 is
located on the line

~Z0 ,Z1 ,Z2 ,Z3 ,Z4!5„a sin~ t/a!,0,0,0,a cos~ t/a!…,
~5.4!

which is a closed timelike geodesic which returns to the
same event afterDt52pa. This is illustrated in Fig. 7 in
which the spacelike coordinatesZ2 andZ3 are suppressed. It
can thus be seen that them→0 limit of the Schwarzschild–
anti–de Sitter solution has a single source following a closed
timelike line.

In this case, the first order perturbation of the anti–de
Sitter line element, equivalent to Eq.~2.7!, can be written as

ds1
252

2ma2

r F S Z4dZ02Z0dZ4

Z4
21Z0

2 D 2

1
a2

r 2 S Z0dZ01Z4dZ4

Z4
21Z0

2 D 2G , ~5.5!

where r 5(Z0
21Z4

22a2)1/2. A boost can then be performed
in theZ1 direction using Eqs.~2.8!. Again it can be seen that,
in the limit asv→1, this linear perturbation term vanishes

FIG. 6. The conformal diagram of the de Sitter space-time with coordinatest,c. For the corresponding comoving observers the spherical
impulsive wave expands in a contracting space of negative curvature.

FIG. 7. The anti–de Sitter space-time represented as a four-
dimensional hyperboloid embedded in a five-dimensional space-
time with two timelike dimensionsZ0 andZ4 . Here the coordinates
Z2 andZ3 have been suppressed, and the closed world line of the
particle which corresponds to the weak limit of the source of the
Schwarzschild–anti-de Sitter space-time is indicated.
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everywhere except on the hypersurfaceZ01Z150. By put-
ting m5pA12v2, the line element then takes the form

ds25dZ0
22dZ1

22dZ2
22dZ3

21dZ4
2

22pa2H~Z4!d~Z01Z1!~dZ01dZ1!2, ~5.6!

where using Eq.~2.11! with x25(Z01vZ1)2/(12v2),

H~Z4!5E
2`

` ~Z4
22a2!Z4

21~a21Z4
2!x2

~Z4
22a21x2!3/2~Z4

21x2!2 dx. ~5.7!

Since in this case the integrand is nonsingular, we obtain,
immediately,

H~Z4!52
2

a2 F22
Z4

a
lnUa1Z4

a2Z4
UG . ~5.8!

It can be seen that in this case the resulting space-time
differs from the anti–de Sitter space-time by the inclusion of
an impulsive wave located on the null hypersurface given by

Z01Z150, Z4
22Z2

22Z3
25a2. ~5.9!

Unlike the case in a de Sitter background, this is now an
evolving two-hyperboloid in a five-dimensional Minkowski
space with two time dimensions.

Also, the source is now a null particle having the world
line

Z01Z150, Z25Z350, Z456a.

This is represented by the two null straight lines on the four-
dimensional hyperboloid as indicated in Fig. 8. However,
since time is here effectively wrapped around the hyperbo-

loid, this represents a null particle which propagates to infin-
ity and then comes back again in an endless cycle.

VI. GLOBAL COORDINATE CHART „L<0…

In an anti–de Sitter space-time, it is appropriate initially
to consider the natural global coordinate system obtained by
putting r 5a sinhR in Eqs.~5.3! by which

Z45a coshR cos~ t/a!,

Z05a coshR sin~ t/a!,

Z15a sinh R cosu,

Z25a sinh R sin u cosf,

Z35a sinh R sin u sin f, ~6.1!

and the line element becomes

ds25cosh2 Rdt22a2@dR21sinh2 R~du21sin2 udf2!#.
~6.2!

In this case, the privileged family of timelike observers have
world lines on whichR, u, and f are constant, and their
proper times are given byt5t coshR. The timelike slices
t5const are three-dimensional spaces of constant negative
curvature.

We may now consider the impulsive wave on which
Z01Z150. It can be seen that this is given by

tanhR cosu52sin~ t/a!. ~6.3!

It may be noticed that this does not give such a convenient
coordinate condition as does the equivalent case in a de Sit-
ter background. Nevertheless, we can show that

d~Z01Z1!5
d„t1a arcsin21~ tanhR cosu!…

A11sinh2 R sin2 u
,

and, evaluatingH(Z4) using Eqs.~6.1!, we obtain that the
impulsive addition to the anti–de Sitter line element~6.2! is
given by

ds1
254pF 2

coshR cos~ t/a!
2 lnU 11coshR cos~ t/a!

12coshR cos~ t/a!
UG

3d„t1a arcsin~ tanhR cosu!…S a
cosu

coshR
dR

2a sinh R sin udu1coshR cos~ t/a!dtD 2

, ~6.4!

which looks somewhat complicated.
We would now like to visualize this wave as it would be

observed by the natural family of observers in the three-
dimensional space (R,u,f). For this, we consider a section
t5const through the space-time. It is then convenient to in-
troduce the coordinateZ̃05a coshR which, together with
the coordinatesZ1 , Z2 , and Z3 span a four-dimensional
pseudo-Euclidean space

FIG. 8. The anti–de Sitter space-time represented as a four-
dimensional hyperboloid embedded in a five-dimensional Minkow-
ski space-time with two timelike dimensionsZ0 and Z4 . The null
world line is indicated by the particle which correspond to the
source of the Schwarzschild–anti-de Sitter space-time boosted to
the limit in which its velocity is that of light and its mass vanishes.
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ds4
25dZ̃0

22dZ1
22dZ2

22dZ3
2. ~6.5!

The hypersurface of the impulsive wave can now be visual-
ized at any time as the intersection of the plane
Z152sin(t/a)Z̃0 with half of a rotational hyperboloid

Z̃0
22Z1

22~AZ2
21Z3

2!25a2 ~6.6!

in the pseudo-Euclidean half space (Z̃0 ,Z1 ,AZ2
21Z3

2) repre-
senting the three-dimensional space of constant negative cur-
vature with the metric ds3

252a2@dR21sinh2 R(du2

1sin2 u df2)]. This is illustrated in Fig. 9.
The source of the impulsive wave is a single null particle

located on the wave at the pointAZ2
21Z3

250,
Z152a tan(t/a). This indicates that the null particle moves
from Z15` to Z152` as t goes from (2 p/2) a to
(p/2) a.

It is then possible to visualize the wavefront at any time
by projecting the intersection of the plane and the hyperbo-
loid onto the space ofZ1 andAZ2

21Z3
2 as illustrated in Fig.

9, and then rotating it about theZ1 axis. In this way, theZ2
andZ3 coordinates are reintroduced by putting

Z25AZ2
21Z3

2 cosf, Z35AZ2
21Z3

2 sin f.

The impulsive wave is thus represented by the sequence of
hyperboloidal surfaces illustrated in Fig. 10. While the angle
f is a ‘‘polar’’ angle associated with the axial symmetry of
the surfaces, the angleu is measured from the~positive-
oriented! axis of symmetry. It can be shown that each hyper-
boloidal surface representing the impulsive wave front has
an asymptotic angleua given by ua5t/a1p/2. Therefore,
ast/a grows from2p/2 to p/2 ~and the source null particle
moves fromZ15` to Z152`! the wave surfaces open
from ua50 to ua5p.

Since the time coordinatet is periodic, it can be seen that
the impulsive wave propagates toZ152` and then back to
Z15` in an endless cycle.

In order to investigate the conformal structure of the
space-time in these coordinates, we introduce the conformal
time x defined by

x52 arctan~eR!2p/2. ~6.7!

In this case we have coshR5secx, sinhR5tanx, and the
line element becomes

ds25
a2

cos2 x S 1

a2 dt22dx22sin2 x~du21sin2 udf2! D .

~6.8!

In this case, the impulsive wave on whichZ01Z150 can be
seen to occur when sinx cosu52sin(t/a) in agreement with
Eq. ~6.3!. The location of the wave in the conformal diagram
of the anti–de Sitter space-time foru50 is shown in Fig. 11.

VII. OTHER COORDINATE CHARTS „L<0…

Let us now consider how the impulsive wave would ap-
pear to the alternative family of observers which, at any syn-
chronous time, are located in a space of constant negative
curvature. In this case, the four-dimensional hyperboloid
~5.1! can be parametrized by

Z05a sin~t/a!,

Z15a cos~t/a!sinh c cosu,

Z25a cos~t/a!sinh c sin u cosf,

Z35a cos~t/a!sinh c sin u sin f,

Z45a cos~t/a!coshc, ~7.1!

and the anti–de Sitter line element takes the form

FIG. 9. The geometry of the impulsive wave in anti–de Sitter
space-time as observed by natural family of observers at any time is
given by the intersection of the planeZ152sin(t/a)Z̃0 with half of
a rotational hyperboloid in the pseudo-Euclidean space so that the
wavefronts are the spaces of constant negative curvature.

FIG. 10. By projecting the intersections representing the wave
fronts from Fig. 9 onto the plane ofZ1 , Z2

21Z3
2 and rotating them

about theZ1 axis we get the visualization of the impulsive wave in
the anti–de Sitter space-time as a sequence of hyperboloidal sur-
faces. The source of the wave is a null particle moving along the
axis of symmetry which at any time is located in the corresponding
surface.
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ds25dt22a2 cos2~t/a!@dc21sinh2 c~du21sin2 udf2!#.
~7.2!

The time-slicest5const are three-dimensional spaces of
constant negative curvature, but which do not have a con-
stant ‘‘size’’ as occurs for the global coordinates~6.2! in the
previous section. Their curvatures change according to
a cos(t/a). However, it may be noted that these coordinates
only cover part of the hyperboloid.

Again it is convenient to introduce a conformal time de-
fined by

hn5arctanh@sin~t/a!#. ~7.3!

It may be noted that, ast/a increases from2p/2 to 0 and
then top/2, hn increases from2` to `. With these param-

eters, the hyperboloid is now given by Eqs.~7.1! with
sin(t/a)5tanhhn , cos(t/a)5sechhn , and line element~7.2!
becomes

ds25
a2

cosh2 hn
@dhn

22dc22sinh2 c~du21sin2 udf2!#.

~7.4!

Proceeding as before, we can consider the impulsive wave
on whichZ01Z150. However, this again does not give such
a convenient coordinate condition as does the equivalent
case in a de Sitter background. Calculations can again be
performed to yield an expression similar to Eq.~6.4!. How-
ever, this does not provide any further insights. The confor-
mal diagram with the impulse foru50 is given in Fig. 12.

It is finally appropriate here to consider a conformally flat
coordinate system. Accordingly, we can put

FIG. 11. The conformal diagram of the anti–de Sitter space-
time with natural global coordinate chartt,x. Each point represents
a two-sphere parametrized byu,f, antipodal points on the spheres
correspond to6x. Null and spacelike infinity form a timelike sur-
face x5p/2 (R5`). The impulsive wave foru50 is also indi-
cated.

FIG. 12. The synchronous coordinatest,c,u,f cover only a part
of the whole anti–de Sitter space-time. The timelike geodesics
c,u,f constants all converge. In this diagram drawn foru50 the
impulsive wave propagates along the indicated null lines.
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Z05
1

2x
@a22h21x21y21~z2a!2#,

Z15
a

x
~z2a!,

Z25
1

2x
@a21h22x22y22~z2a!2#,

Z35
a

x
y,

Z45
a

x
h. ~7.5!

With this, the line element becomes

ds25
a2

x2 ~dh22dx22dy22dz2!. ~7.6!

It is also convenient to put

x5r cosu, y5r sin u cosf, z5r sin u sin f,
~7.7!

so that the line element becomes

ds25
a2

r2 cos2 u
@dh22dr22r2~du21sin2 udf2!#.

~7.8!

It can also be shown that the form of the impulse is given by

d~Z01Z1!5
uxu
r

@d~h2r!1d~h1r!# ~7.9!

and the impulsive addition to the anti–de Sitter line element
is given by

ds1
25

4p

ucosuu F22
1

cosu
lnU 11cosu

12cosu UG
3@d~h2r!~dh2dr!21d~h1r!~dh1dr!2#.

~7.10!

This is clearly the simplest coordinate form of the shock
geometry~5.6! in an anti–de Sitter background. Again this is
only one impulse forh.0 andh,0. Also, the impulsive
wave is given byh56r. The metric is regular foru5p/2
so that it is singular only foru50 andu5p. The conformal
diagram is given in Fig. 13.

For any value ofh, the surfacesr5const according to
Eqs. ~7.7! look like spheres. However,they are not
spheres: They are surfaces that are conformal to spheres.
Actually, they are hyperboloidal. Indeed, performing the
transformationj5arctanh(sinu) we can write the section
h56r of the line element ~7.8! as
ds252a2(dj21sinh2 jdf2). This represents the hyperbo-
loidal two-space of constantnegativecurvature2a.

We may thus conclude that the conformally flat coordi-
nate system~7.8! is well adapted for describing the impul-

sive wave~5.6! in anti–de Sitter space-time. Conversely, the
coordinates~6.2! and ~7.2! are not suitable due to the fact
that their corresponding two-surfacesare sphereshaving the
line elementds252C2(du21sin2 udf2), C5const. This
naturally explains the complicated forms of the impulsive
additions to the anti–de Sitter line element~6.4! in these
coordinates. By contrast, we have previously observed that
all three coordinate systems~3.2!, ~4.2!, and ~4.7! that we
have introduced in theL.0 case are suitable for describing
sphericalimpulsive gravitational waves in the de Sitter uni-
verse since they also haveds252C2(du21sin2 udf2).

VIII. CONCLUSIONS

Following the method of Hotta and Tanaka@6#, we have
boosted the Schwarzschild–de Sitter and the Schwarzschild–
anti-de Sitter metrics to the ultrarelatistic limit and have thus
constructed exact solutions for impulsive waves in back-

FIG. 13. The conformal diagram of the anti–de Sitter space-
time and conformally flat coordinatesh,r which cover the whole
universe. Here we consider the sectionZ25Z350 so thatf5p/2
and sinu5(r22h2)/(2ar). The impulsive wave is given simply by
h56r.
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grounds with a nonzero cosmological constant. In a de Sitter
background, a spherical gravitational wave is generated by
two null particles propagating in opposite directions. We
have used three privileged families of observers in which the
constant time surfaces have constant positive, negative, or
zero curvature. We have shown that each of these coordinate
systems is suitable for describing the geometry of the impul-
sive wave. In the closed form of the de Sitter universe which
contracts to a minimum size and then reexpands, the impulse
propagates from the ‘‘north pole’’ to the ‘‘south pole.’’ In an
expanding flat and open de Sitter universe it is a contracting
sphere; alternatively in a contracting universe the sphere is
expanding.

By contrast, the impulsive wave generated in an anti–de
Sitter background is hyperboloidal. It is generated by a
single null particle. We have also shown that it is only the

conformally flat coordinates that form a suitable natural pa-
rametrization of this solution.

It may also be noted that a family of impulsive spherical
gravitational waves has been constructed by Hogan@9#, the
elements of which appear to propagate either in a de Sitter or
an anti–de Sitter background. However, these are not related
to the solutions given above.
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