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Impulsive gravitational waves generated by null particles
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By boosting the metric of the Schwarzschild—de Sitter and Schwarzschild—anti-de Sitter space-times in the
ultrarelativistic limit as the mass parameter vanishes, impulsive gravitational waves are obtained in back-
grounds with a nonzero cosmological constant. We determine the geometry of these impulsive wave surfaces
using various coordinate charts. In the de Sitter background they are spheres containing two null particles
located at the poles. In the anti—de Sitter background they are hyperboloidal surfaces of constant negative
curvature containing a single null particle on the axis of symmetry. The global structure and conformal
diagrams for the complete manifolds are also determif@@556-282197)04620-1
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[. INTRODUCTION in which the cosmological constant is given hy=3/a and

m is the mass parameter. In the limit whem=0, this is
simply the de Sitter solution which, as is well known, can be
represented as a four-dimensional hyperboloid

In a now classic paper, Aichelburg and Sgk] obtained
an exact solution of Einstein’s equations for a null particle in
a Minkowski background by boosting the Schwarzschild
metric to the ultrarelativistic limit as the mass becomes arbi-
trarily small. The resulting space-time is an impulsipp
wave. Generalizations of this solution have been obtained b
a number of authorf2-5| by similarly boosting the Kerr or
Kerr-Newman solutions. d?=dZ2-dZ>—dZ3-dZ2-dZ2. 2.3

A similar approach has been adopted by Hotta and
Tanake 6] in boosting the Schwarzschild—de Sitter metric to por =0, this can be achieved by putting
a similar limit. Effectively, they consider this as a perturba-

Z3-73-73-27%-75=-a2 (2.2

¥mbedded in a five-dimensional Minkowski space-time

tion of _th_e .de _Si;ter m_etric and boo;t the .particle to the_ul— Zo= [a2— 2 sinh(t/a),
trarelativistic limit as its mass vanishes in an appropriate
way. This approach also results in impulsive gravitational Z,=+ JaZ=12 coshit/a),

waves. However, the background in this case is not flat and
the wavefronts are not simple planes in Minkowski space.

Rather they are surfaces of constant curvature in the de Sitter Z,=r cos®,

background. The calculations can easily be adapted to de- ,

scribe impulsive gravitational waves in an anti—de Sitter Z,=r sin 6 cos &,

background. However, the global properties of the solution ) ]

in this case differ significantly. Zz=r sin 6 sin ¢. 2.9

It is the purpose of the present paper to clarify certain o _ ) o
aspects of these solutions and to investigate the geometricil0M this it can immediately be observed that the origin
properties of the impulsive wave surfaces as they would b&=0 corresponds to the two world lines

seen by different families of observers. .
(Z9,21,25,25,Z4)=(a sinh(t/a),0,0,0+ a cosht/a))

(2.9
II. BOOSTING THE SCHWARZSCHILD -de SITTER
SOLUTION along the hyperboloid, as indicated in Fig. 1 in which the
) ) ) .. coordinatesZ, andZ5 are suppressed. It may seem surpris-

the familiar form just have a single source in the limit when the mass is small.
However, it is known that the coordinates of Eg.1) do not
r’ 2m r2 2m\71 cover the complete space-time whose analytic extension
dszz(l— 22 T)dtz— -2~ T) dr? must include both the black hole and white hole parts. This
fact can be deduced from its conformal struct(see, e.g.,
—r2(d6?+sir? 6d¢?), (2.1)  Bicak and Podolsky7]).

0556-2821/97/5@)/475612)/$10.00 56 4756 © 1997 The American Physical Society



56 IMPULSIVE GRAVITATIONAL WAVES GENERATED BY . .. 4757

wherer = (a?+23—25)*2. A boost can then be performed
in any direction orthogonal td, (a boost in theZ, direction
simply corresponds to a time shifffaking the boost in the
Z, direction, we can put

Zo+Uzl 7 UZO+Z]_
e aa———— —_——,
0 V1-v? ! J1-v?
ZZ—>22, Zg—>23, Z4—>Z4, (28)

the limit asv—1, the linear perturbation term vanishes ev-
erywhere except on the hypersurfagg+Z,=0. Then, by
also scaling the mass according to

m=py1-v?,

ishing term in Eq{(2.7) is that which becomes a multiple of
(dZo+dZ;)?. The line element thus takes the form

d?=dz3—dZi—dz3—dz5—dZ2
—2paH(Z,) 8(Zy+Z1)(dZg+dZ;)%, (2.9

where, putting
FIG. 1. The de Sitter space-time represented as a four-

dimensional hyperboloid embedded in a five-dimensional Minkow- ) (Zo+vZ,)?
ski space-time. The coordinat&s and Z; have been suppressed, X :—1—112 )
and the timelike world lines are indicated by the two test particles
which correspond to the weak limit of the source of the 2 52\72 20 92\2
Schwarzschild—de Sitter space-time. H(Z4) 8(Zo+Z4) = lim ! (a2 Z;)Z42+3(/;’:1 224)2)(2_
b1 N1—v2 (8% =Z5+Xx%)%(Z5—x7)
Following the approach of Aichelburg and Sd#l], we (2.10
may now boost the singularity representing the point mass if, e\ ajyating this limit, we follow Hotta and Tanakél, in
the Schwarzschild—de Sitter solution to the limit in which its making use of the identity
speed approaches that of light and its mass is scaled to zero

in an appropriate way. 1 (Zo+vZ)? o

As observed by Hotta and Tanak®l], in this case it is lim 5 ):5(ZO+ Zl)f f(x?)dx,
first appropriate to take the linear approximation of E41) v—1 V1-v 1-v -
for smallm in the form (211

which can easily be proven in the theory of distributions.

r2 2 r2\ -1 However, in this case, the integrand involved contains sin-
ds?=|1-— 2 T)dtz— ( 1- ¥) gularities atx=*+Z,. Nevertheless, it is possible to remove
the effect of these by first making a singular coordinate trans-
r2\~1om formation such that
X1+ 1—; e drz—rz(d02+sinz 0d¢2).
4pad
dZy,—dz,—dZ,—dZz;— lim
(26) 0 1 0 1 . \/m
2\ -2
This can be considered as a first order perturbation of the de x(az— (Zot2Z4) ) (dZo+dZ,).
Sitter line element. Using the coordinatés of Eqs. (2.4), 1-v

the first order perturbation of the line elemd@t3) can be Then, using Eq(2.1D, it can be shown that the function

written as H(Z,) in the line element2.9) takes the form
2 Z, |a+Z
2ma?[ (Z,dZy—ZydZ,)\? N P S 4
ds2=— : e H(Z,) Y 2 a In a2z, | (2.12
4 0
a2 [ ZodZo—Z4dZ,\ 2 It can thus be seen that the resulting space-time differs
+ = %) } (2.77  from the de Sitter space-time only by the inclusion of an
r 23— 24 impulsive wave located on the null hypersurface given by

wherev is the boost parameter. It can then be seen that, in

wherep is a constant, it can be seen that the only nonvan-
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which the spatial sections at any synchronous time have con-
stant curvature. We will consider the three cases of positive,
zero, and negative curvature. Of these the most natural
choices of coordinates are those associated with spatial sec-
tions of constant positive curvature. These will be considered
in the present section, with the other cases considered in Sec.
IV. Further properties of the coordinates used for the de Sit-
ter space-time and the relations between them have been de-
scribed by Eriksen and @&nd 8], although in a slightly dif-
ferent notation.

The most natural set of coordinates covering the four-
dimensional hyperboloid2.2) is the set of “global coordi-
nates” given by

Zo=a sinh(7/a),
Z,=a cosh{r/a)cosy,
Z,=a cosh{r/a)sin y cosé,

Z,=a cosh{7/a)sin x sin 6 cos ¢,

Zsz=a cosh{r/a)sin x sin 6 sin ¢, (3.

FIG. 2. The de Sitter space_time represented as a fouri.n which the coordinate$ andd) are different from those of
dimensional hyperboloid embedded in a five-dimensional Minkow-Sec. Il. Indeed the same symbols are used for a number of
ski space-time with the coordinat&s andZ; suppressed. The null  different coordinate parametrizations below. With this, the
world lines are indicated by the two particles which correspond tdine element becomes
the source of the Schwarzschild—de Sitter space-time boosted to the
limit in which its velocity is that of light and its mass vanishes.  ds>=d7?—a? costf(r/a)[dx?+ sir? x(dé>+sir? 6d¢?)].

3.2

Zo+2Z,=0, Z5+Z3+Z%=a 2.1
0"~ 2778 213 In this case, the privileged family of timelike observers have

It may be observed that the shock wave is a two-sphere in th orld lines on whicty, 6, and¢ are constant. For this _fam-
five-dimensional Minkowski space at any tirdg. ily, the three-spaces=const, which represent the universe

In addition, as shown if6], the singularities that were at any time, have the geometry of three-sphegeswhich

originally located at =0 have now been boosted to becomeap'o‘:"a(rj to contract to & minimum size &t 0, and then re-
two null particles described by functions in the energy- &XPand.

momentum tensor on the wave surface. These have the worlg |€t US now return to consider the shock wave, which is
lines given by Eqgs(2.13 with the null particles having the world

lines(2.14). Using Eqgs(3.1), we see that the shock wave is
Zo+2,=0, Z,=2Z5=0, Z,==+a. 2.1 located at cogy=—tanh(7a). Thus, the hyperspherical coor-
dinate y monotonically increases fromg=0 as7— —x to
These are the two null straight lines on the four-dimensionak = 7/2 at 7=0 and y=m as r—+. This has a natural
hyperboloid as indicated in Fig. 2. physical interpretation shown in Fig. 3. As the synchronous
(propep time 7 of comoving observers at fixed poin®®
given by constanty,, 6y, and ¢, increases, the impulse
propagates from the “north pole” =0) to the “south
Let us now investigate the geometry of the shock wave irpole” (x= ) of the closed spacg®. Moreover, the radius
the de Sitter background. To do this, we set up some appr@f S® is given by R=a cosh(/a); i.e., asr increases, for
priate coordinate system. At each event, we introduce some<0, the space contracts to a minimum radéugat 7=0)
“time” and “space” labels. We can then ask the question, and then reexpands far>0.
what are the space coordinates of the shock wave at a given This is visualized in Fig. 3 where the coordinatewas
“synchronized” time? Of course, although the geometry issuppressed so that the evolution of the universe is repre-
unique, the coordinates can be chosen arbitrarily, and so thaented by a sequence of two-sphesesh coordinatesy and
the coordinate shape is not unique. In practice, however§) of which only hemispheres are shown. At any time, the
“comoving coordinates” can always be introduced, and soimpulse is here given by éemijcircle which is located ex-
the coordinate shape of the shock wave will correspond to it@ctly in the circular intersection of the corresponding sphere
shape as seen by the associated family of observers. with a cylinder of radiusa. Indeed, the distance of the im-
In fact there are a number of privileged families of ob- pulse from the axis through the poles is given by
servers in a de Sitter space. These correspond to those Risin y=a cosh¢/a)\1—tantf(7a)=a. The null particles

Ill. GLOBAL COORDINATES (A>0)
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which are the singular sources of the wave are located at
0=0 and 8=, as follows immediately from Eq92.14
and(3.1).

In order to investigate the global conformal structure of
the space-time, it is useful to introduce the conformal time
7, defined by

np=2 arctarie™?). (3.3

Then sinh{/a)=—cot 7,, cosh@/a)=1/sinz,, and the line
element(3.2) becomes

2
d52=si?617[d7;§—dxz—sin2 x(d6?+sir? gdgp?)].
p
(3.9

In this case, the appropriate conformal diagram which is
shown in Fig. 4 covers the coordinate ranges frgg=0
(7=—=) to pp=m (7==), and fromy=0 to y=.

It may then be observed that the conditidg+Z,;=0
corresponds to the single rogt= 7,, and hence that

FIG. 3. In natural coordinates the de Sitter space-time is a
closed universe with the spatial geometry of a three-sphere whose _ 1
radius is given byR=a cosh/a). Suppressing the coordinade its 8(Zo+21)= a o(x— 77P)'
evolution can be visualized as a sequence of two-spheres which are
indicated here by hemispheres which contract to a minimum siz%
and then reexpand. At any time, the impulsive wave is a two-sphere.
represented here by a semicircle located at the circular intersectio . .
of a cylinder of radius with the corresponding sphere representing 'UNctionH(Z4) only need be evaluated far= 7, it can be
the universe. This propagates from the “north polg’=0 as seen_tha_t the impulsive addition to the de Sitter line element
7—— across the equatop=m/2 at 7=0 to the “south pole”  (3-4) is given by
x=m as 7— while the whole universe contracts to a minimum

he impulsive wave in the conformal diagram in Fig. 4 is
mply located along the ling=»,. Moreover, since the

sizeR=a at 7=0 and then reexpands. dsf 4pal 2 | 1+cosé 5 q 42
=4pa 2—cos 0 In| 71| 8(7p— x)(dpp—dx)".
(3.9
np‘_'l

V4

//

I~ o ®

1l i 1

> = / >

V4

=0

FIG. 4. The conformal diagram of the de Sitter space-time with natural global coordinatgs Each point of the diagram represents
a two-sphere parametrized by coordinafigs. The linesy=0 andy= = are identified. In contrast to Minkowski space-time, de Sitter has
a spacelike future and past infinity for null and timelike lines. The impulsive wave is located ptomg with two singular points sources
at /=0 and6=.
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From this, it can immediately be seen that the two null pardt may be noted that, in order to include the maximum ana-

ticles are located at the points=0 and6#= 7, which corre-  lytic extension of the space-time, it is necessary to pegmit

spond to the opposite poles of the spherical wave surface.to cover the range-{,»). In addition, from Eq.(4.3) it
follows that

IV. OTHER COORDINATE CHARTS (A>0)
8(Zog+Z1)=8(n—p)+8(n+p),
Although the coordinates introduced in the previous sec-
tion are the most natural in the sense that they cover thehich indicates that the impulsive wave has two compo-
entire de Sitter space-time and provide a simple interpretaaents,
tion of the shock geometry, it is also appropriate to consider

some alternative coordinate systems as they can be inter- when n=p, Z,=a cos¥,
preted in terms of different families of observers.
Taking the case in which spatial sections at synchronous when n=—-p, Z,=—acosé.
times have zero curvature, we can introduce the conformally
flat coordinates Combining these, we see that the impulsive addition to the

de Sitter line elemen.2) is given by

1
Zozz_n[az_ 7;2—|—(x—a)2+y2+22], | 1+cosé
d§—4p 2—co0sé In m
2,=2(x—a), X[ 8(5—p)(dy—dp)®+ 8(n+p)(dy+dp)?].
7 (4.4
Zz=3y This looks like two impulses. However, both components are

required for the conformal picture to be geodesically
complete: Sincep=0, the termd(7n— p) is nonvanishing
only for =0 while §(n+ p) applies only forp<0. Again it
can be seen that the two null source particles are located at
the poles#=0 and #= 7 on the spherical wave surface.
1 The conformal diagram of the sectigri=z=0 is shown
Z4=2—[a2+ 7’ —(x—a)’~y*-27?]. (4.1)  in Fig. 5. In this, the whole de Sitter universe is covered by
K two regions in whichp=0 and#=<0. It is also convenient to
With this, the line element becomes use x=p cosd where §=0 or . Thg diagram thu; iIIt_Js—
trates the paths of the two null particles propagating in op-
a2 posite directions. The impulsive waves=» and p=— 7
ds’=—(dn?*—dx*~dy*~dz?). (4.2 can also be seen to represent either a contracting two-sphere
7 in an exponentially expanding universe or an expanding two-
phere in a contracting universe.
This point can also be clarified by introducing the proper
time 7 defined by

When coming to describe the geometry of the impulsiveS
wave in these coordinates, it is convenient to put

X=p COS ¥, =p sin § cos¢, z=p sin d sin ¢, _
P y=p ¢ P ¢ n=*ae "3
where 0,), 6e[0,7], 0,27), so that . . .
pel0x), 0€[0m], ¢<[0.2m) so that the line elemelt.2) of de Sitter space-time becomes
2-y24 24 72 .
prExXTy Iz ds2=dr2—e?adp2+ p2(d62+sir? 6d¢?)]. (4.5
and then we have It can thus be seen that the region in whigh>0 corre-
1 sponds to an exponentially expanding “inflationary” uni-
ZotZi=— —(9°—p? (4.3)  verse. The region included in the conformal diagram in
27 which <0 corresponds to a time-reversed exponentially
contracting universe.
It may also be observed that the “radius” of the spherical
impulsive wave is given by

and

Z4=i(172—p2+ 2ax). .
27 p=|nl=ae" "2

Thus, on the impulsive wave on whi@y+Z;,=0, we have  Thus, in theexpanding universaith the three-dimensional
n=*p and spacesr=const being flat, the impulsive wave is an expo-
nentially contracting two-sphere. Conversely(changing
ax_ p 7— — 1), it can also be considered as an expanding spherical
wave in an exponentially contracting universe.
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FIG. 5. The conformal diagram of the sectipe z=0 of the de Sitter space-time with coordinatgp =|x|. The wave is located along
n==*p and represents either an exponentially contracting two-sphere in an exponentially expanding flat inflationary universe or an expand-
ing two-sphere in a contracting space.

Let us finally consider how the impulsive wave would Since
appear to the family of observers which, at any synchronous
time, are located in a space of a negative curvature. In this

case, the four-dimensional hyperbold2l2) can be param- ZO+21:sinh nn(COSh 7= coshy),
etrized by
we have
Zy=a sinh(7/a)coshy,
1
Z,=a cosh r/a), d(Zo+Zy)=Z[8(m= )+ o(m+ )]
Z,=a sinh(7/a)sinh ¢ cos 6, Thus, on the impulsive wave)= + 7, and it can again be

shown that the impulsive addition to the de Sitter line ele-

Z,=a sinh(r/a)sinh ¢ sin 6 cos ¢, ment (4.9 is given by

Zs=a sinh(7/a)sinh ¢ sin 6 sin ¢, (4.6 1+cos 6
dsf=4pal2—cos 6 In 1_—0‘
and the de Sitter line element takes the form cos
X - —dy)?+ + +dy)?].
ds?2=d—a2 sinl’?(r/a) L6(mn— ) (dnn—dih) + S(ma+ ) (d oy +dip) 7]

(4.10

. . This again looks like two impulses. However, the first term
However, it may be noted that these coordinates only coveg nonvanishing only fos>0, while the second term is non-

X[dg2+sint? g(de?+sir? 6d¢?)].  (4.7)

part of the hyperboloid. _ vanishing only fory<0. Both components are required for
~ Again it is convenient to introduce a conformal time de-the conformal picture to be geodesically complete. This is
fined here by described in Fig. 6.

The spherical pulse is now propagating in a three-space
4.9 7=const which has a negative curvature and contracts for
7<0 according toal|sinh(#/a)|. The impulse is located at
|| = n,=2 arctanhe™?; i.e., it is expanding fromy=0 to
It may be noted that, asincreases from-c0 to 0 and then to l=ce.
o, 7, increases from 0 tee and then decreases back to 0.
Using this, the hyperboloid is parametrized by E¢%.6)
where sinh{/a)=+*1/sinh7,, cosh¢/a)=coshz,/sinh,,
and the line elemen®.7) becomes

2 arccothe™® for =0,

1 2 arctanhe™®  for r<0.

V. NULL PARTICLE IN AN ANTI —de SITTER
BACKGROUND

For a vacuum universe with a negative cosmological con-
2 2 o 2 stant (A <0), the Schwarzschild—anti—de Sitter solution can
[d7i—dy=sin? y(d6*+sin’ 6d¢*)]. be written in the form(2.1) but with a2 replaced by—a?. It
(4.9 is then possible to proceed as in Sec. |l to boost the singular

2

dsz:sinh2 n
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FIG. 6. The conformal diagram of the de Sitter space-time with coordinate&or the corresponding comoving observers the spherical
impulsive wave expands in a contracting space of negative curvature.

pointr =0 in the limit asm—O0 in an appropriate way. This 2ma?
again produces an impulsive wave, but this time in an dsfz—
anti—de Sitter background.

r

Z,d2y—2Z,d2,\?
Z5+75

Before proceeding, however, it is first appropriate to re- a? [Z,dZy+2,dZ,)\2
call that the anti—de Sitter solution can be represented as the + 2\ 227z | (5.5
i i i 4T 4o
four-dimensional hyperboloid
Z5-23- 2573+ 25=a’ (5.)  wherer=(Z3+22—a%2 A boost can then be performed

in theZ, direction using Eq92.8). Again it can be seen that,

embedded in a five-dimensional Minkowski space-time in the limit asv—1, this linear perturbation term vanishes

ds’=dz3—dz2—dz3—dZ3+dZ? (5.2)

with two timelike dimensiong, andZ,. The natural param-
etrization of this is given by

Z,=+aZ+r2 cogt/a),
Zo=+aZ+rZ sin(t/a),
Z,=r cos¥,
Z,=r sin 6 cos ¢,
Z3=r sin 6 sin ¢. (5.3

From this it can be seen that a source at the ongi0 is
located on the line

(Z9,21,25,23,24)=(a sin(t/a),0,0,0a cogt/a)),
(5.9

which is a closed timelike geodesic which returns to the

same event afteAt=2ma. This is illustrated in Fig. 7 in

which the spacelike coordinat&; andZ; are suppressed. It g, 7. The anti—de Sitter space-time represented as a four-

can thus be seen that the—0 limit of the Schwarzschild—  gimensional hyperboloid embedded in a five-dimensional space-

anti—de Sitter solution has a single source following a closeg@me with two timelike dimensiong, andZ,. Here the coordinates

timelike line. Z, andZ; have been suppressed, and the closed world line of the
In this case, the first order perturbation of the anti—departicle which corresponds to the weak limit of the source of the

Sitter line element, equivalent to E.7), can be written as  Schwarzschild—anti-de Sitter space-time is indicated.
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loid, this represents a null particle which propagates to infin-
ity and then comes back again in an endless cycle.

VI. GLOBAL COORDINATE CHART (A<O0)

In an anti—de Sitter space-time, it is appropriate initially
to consider the natural global coordinate system obtained by
puttingr =a sinhR in Egs. (5.3 by which

Z,=a coshR cogt/a),

Zo=a coshR sin(t/a),
Z,=a sinhR cos#,
Z,=a sinhR sin 6 cos ¢,

Zz=a sinhR sin 6 sin ¢, (6.1

and the line element becomes

FIG. 8. The anti—de Sitter space-time represented as a four- ds’=coslf Rdf—a[dR?*+sint? R(d6?+sin? 6d$?)].
dimensional hyperboloid embedded in a five-dimensional Minkow- (6.2
ski space-time with two timelike dimensio&y andZ,. The null . . i o
world line is indicated by the particle which correspond to the IN this case, the privileged family of timelike observers have
source of the Schwarzschild—anti-de Sitter space-time boosted #0rld lines on whichR, 6, and ¢ are constant, and their
the limit in which its velocity is that of light and its mass vanishes. proper times are given by=t coshR. The timelike slices

t=const are three-dimensional spaces of constant negative

everywhere except on the hypersurfakerZ,=0. By put-  curvature.

ting m=p\1—v?, the line element then takes the form We may now consider the impulsive wave on which

Zy+Z,=0. It can be seen that this is given by

ds’=dz5—dz?—dz3—-dz%+dZz2
tanhR cos 6= —sin(t/a). (6.3
—2pa?H(Z,) 8(Zg+Z1)(dZy+dZy)%,  (5.6)

It may be noticed that this does not give such a convenient
where using Eq(2.11) with x?=(Zy+vZ;)?/(1-v?), coordinate condition as does the equivalent case in a de Sit-
ter background. Nevertheless, we can show that

% (Z2—-a?)Z%+ (a%+Z2)x?
H(Z4)=f7 . . Y _dx. (5.7)

» (Z5—a?+x2)%4( 25+ x%)? S(t+a arcsin X(tanhR cos )

J1+sinkf R sir? 6

8(Zot2Zy)=

Since in this case the integrand is nonsingular, we obtain,

immediately, and, evaluatingH(Z,) using Egs.(6.1), we obtain that the
> 7 latz impulsive addition to the anti—de Sitter line elemédiR) is
H(Zy)=—— | 2— =2In—=2 (5.8  given by
4 a? a |a—Z,

1+coshR cogt/a)
1-coshR cogqt/a)

It can be seen that in this case the resulting space-time ds?=4p
differs from the anti—de Sitter space-time by the inclusion of

coshR cogqt/a) B In‘

an impulsive wave located on the null hypersurface given by cos @
X §(t+a arcsintanhR cos 0))| a R dR
Zo+Z,=0, Z2-7%2-7%=a2 (5.9 cos
2
Unlike the case in a de Sitter background, this is now an —a sinhR sin #d6+coshR coqt/a)dt| , (6.4

evolving two-hyperboloid in a five-dimensional Minkowski
space with two time dimensions.

Also, the source is now a null particle having the world
line

which looks somewhat complicated.
We would now like to visualize this wave as it would be
observed by the natural family of observers in the three-
Zo+Z,=0, Z,=Z4=0, Z,==*a. dimensional spaceR, 0, ®). For this, we consider a section
t=const through the space-time. It is then convenient to in-
This is represented by the two null straight lines on the fourtroduce the coordinat&,=a coshR which, together with
dimensional hyperboloid as indicated in Fig. 8. However,the coordinate<Z,, Z,, and Z; span a four-dimensional
since time is here effectively wrapped around the hyperbopseudo-Euclidean space
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FIG. 9. The geometry of the impulsive wave in anti-de Sitter FIG. 10. By projecting the intersections representing the wave
space-time as observed by natural family of observers at any time #onts from Fig. 9 onto the plane af,, Z§+Z§ and rotating them
given by the intersection of the plaZg = — sin(t/a)Z, with half of about theZ, axis we get the visualization of the impulsive wave in
a rotational hyperboloid in the pseudo-Euclidean space so that thiéne anti—de Sitter space-time as a sequence of hyperboloidal sur-

wavefronts are the spaces of constant negative curvature. faces. The source of the wave is a null particle moving along the
axis of symmetry which at any time is located in the corresponding
_q72 2 2 2 surface.
dsj=dZ3—dZi—dz5—dZ3. (6.5

The hypersurtace of he mpuisive wave can now be visual 1) SF1 0 Ivestont e conorma) sture of e
ized at any time as the intersection of the plane P '

ti defined b
Z,=—sin(t/a)Z, with half of a rotational hyperboloid IMe x defined by

72-72—(\Z3+Z%)?=a? (6.6
- In this case we have cost=secy, sinhR=tany, and the
in the pseudo-Euclidean half spacb)(zl,\/222+ 232) repre- line element becomes
senting the three-dimensional space of constant negative cur-

x=2 arctanie®) — /2. (6.7

vature with the metric dsi=—a?[dR?+ sint? R(d¢? a® (1 , .
+sir? 9 dg?)]. This is illustrated in Fig. 9. S <\ @ dt?—dx?—sir? x(d6?+sir? gd¢?) |.
The source of the impulsive wave is a single null particle (6.9

located on the wave at the point\/222+232=0,

Z,=—a tang/a). This indicates that the null particle moves In this case, the impulsive wave on whighg+Z;=0 can be

from Z,=» to Z,=—« ast goes from  w/2)a to  seen to occur when sjpcos = —sin(t/a) in agreement with

(7/2)a. Eq. (6.3). The location of the wave in the conformal diagram
It is then possible to visualize the wavefront at any timeof the anti—de Sitter space-time 60 is shown in Fig. 11.

by projecting the intersection of the plane and the hyperbo-

loid onto the space of; and \/222+ 232 as illustrated in Fig. VIl. OTHER COORDINATE CHARTS (A<0)
9, and then rotating it about tt#®, axis. In this way, theZ, ) ) ]
andZ; coordinates are reintroduced by putting Let us now cons_lder hqw the impulsive wave would ap-
pear to the alternative family of observers which, at any syn-
Z,=\Z2+Z2 cos$, Zs=\Z2+ZZ sin . chronous time, are located in a space of constant negative

curvature. In this case, the four-dimensional hyperboloid

The impulsive wave is thus represented by the sequence 8?.1) can be parametrized by

hyperboloidal surfaces illustrated in Fig. 10. While the angle
¢ is a “polar” angle associated with the axial symmetry of
the surfaces, the anglé is measured from thépositive-
oriented axis of symmetry. It can be shown that each hyper-
boloidal surface representing the impulsive wave front has

Zy=a sin(7/a),

Z,=a cog 7/a)sinh ¢ cos 6,

an asymptotic anglé, given by 8,=t/a+ m/2. Therefore, Zp;=a cod 7/a)sinh ¢ sin 6 cos ¢,
ast/a grows from— 7r/2 to 7r/2 (and the source null particle
moves fromZ;=« to Z;=—x) the wave surfaces open Zz=a cog 7/a)sinh ¢ sin 0 sin ¢,
from 6,=0 to 6,= .
Since the time coordinateis periodic, it can be seen that Z,=a coq 7/a)cosh, (7.1

the impulsive wave propagatesZg= —< and then back to
Z;= in an endless cycle. and the anti—de Sitter line element takes the form
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FIG. 11. The conformal diagram of the anti—de Sitter space-
time with natural global coordinate charly. Each point represents
a two-sphere parametrized I8y, antipodal points on the spheres
correspond tat y. Null and spacelike infinity form a timelike sur-
face y=m/2 (R=). The impulsive wave fo®=0 is also indi-
cated.

FIG. 12. The synchronous coordinateg,d,¢ cover only a part

of the whole anti—de Sitter space-time. The timelike geodesics
4,60,¢ constants all converge. In this diagram drawn for 0 the
impulsive wave propagates along the indicated null lines.

eters, the hyperboloid is now given by Eq&.1) with

d=d 72— a? co@(+/a)[dy?+sint? y(de?+sir? 6dg?)]. Zin(ﬂa)ztanh 7., Cos@a)=sechz,, and line element7.2)
(72 ecomes

. . . . 2
The time-slicest=const are three-dimensional spaces of

a

- 2_ 42 o 2 o 2
constant negative curvature, but which do not have a con- dsz_cosﬁ nn[d”” dy—sint? y(d6*+sir 6dg?)].
stant “size” as occurs for the global coordinat@s?) in the (7.9
previous section. Their curvatures change according to

a cos(ra). However, it may be noted that these coordinates  prceeding as before, we can consider the impulsive wave

onIZ\ co_ve_; part of the_ h){rierp(ilmg. ¢ | time d on whichZ,+Z,=0. However, this again does not give such
gan it1s convenient to introduce a contormal time de- 5 .onyenient coordinate condition as does the equivalent

fined by case in a de Sitter background. Calculations can again be
) performed to yield an expression similar to £§.4). How-
7= arctanfisin(7/a)]. (7.3)  ever, this does not provide any further insights. The confor-
mal diagram with the impulse fo#=0 is given in Fig. 12.
It may be noted that, ag/a increases from- /2 to 0 and It is finally appropriate here to consider a conformally flat

then tow/2, 7, increases from-c to c«. With these param- coordinate system. Accordingly, we can put
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1 2 2.y2..,2 2 n=0
ZO=5[a — g +x+y +(z—a)], \

a
21:;(2_3),

1
Z=5 @+ =Xty = (z-a)?],

a
23:;y1

a

With this, the line element becomes

2
dsz=;z(dn2—dx2—dy2—dzz). (7.6)

It is also convenient to put

X=p c0sH, y=p sinbcos¢, z=p sin o sin ¢,

7.7

so that the line element becomes

2

ds? [dn?—dp?—p2(d6?+sir? 6d¢?)].

(7.9

“pZcod 0

It can also be shown that the form of the impulse is given by

] p=a
8(Zot2Zy)= 3 [6(n—p)+&(ntp)] (7.9 /
n=0
and the impulsive addition to the anti—de Sitter line element
is given b
9 y FIG. 13. The conformal diagram of the anti—de Sitter space-
4p 1 14 cos 6 time and conformally flat coordinatesp which cover the whole
dsiz 2— n universe. Here we consider the sectity=27;=0 so that¢= /2
|cos 6] cosé | 1—cosd and sind=(p’— 77)/(2ap). The impulsive wave is given simply by

X[ 8(n—p)(dn—dp)?+ 8(p+p)(dy+dp)?]. n="*p.

(7.10  sive wave(5.6) in anti—de Sitter space-time. Conversely, the
o . , coordinates6.2) and (7.2) are not suitable due to the fact
This is clearly the simplest coordinate form of the shockihat their corresponding two-surfacase spherediaving the
geometry(5.6) in an anti—de Sitter background. Again this is |ine elementdo2= —C2(d6?+sir? 6d4?), C=const. This
only one impulse forp>0 and 7<0. Also, the impulsive  na¢rally explains the complicated forms of the impulsive
wave is given byn=*p. The metric is regular fob= /2 4qqitions to the anti—de Sitter line elemei6id) in these
so that it is singular only fop=0 and¢=. The conformal  cqqrdinates. By contrast, we have previously observed that
diagram is given in Fig. 13. _ all three coordinate systen(8.2), (4.2), and (4.7) that we
For any value ofz, the surfacep=const according 10 haye introduced in thd >0 case are suitable for describing

Egs. (7.7) look like spheres. Howeverthey are not gpnericalimpulsive gravitational waves in the de Sitter uni-
spheres They are surfaces that are conformal to spheresygrse since they also hader?= — C2(d 62+ sir? 8d¢?).
Actually, they are hyperboloidal. Indeed, performing the

transformationé=arctanh(sird) we can write the section VIIl. CONCLUSIONS

n=%p of the line element (7.8 as
do?=—a?(d&?+sint? &¢?). This represents the hyperbo-  Following the method of Hotta and Tanalgl, we have
loidal two-space of constamegativecurvature—a. boosted the Schwarzschild—de Sitter and the Schwarzschild—

We may thus conclude that the conformally flat coordi-anti-de Sitter metrics to the ultrarelatistic limit and have thus
nate system7.8) is well adapted for describing the impul- constructed exact solutions for impulsive waves in back-
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grounds with a nonzero cosmological constant. In a de Sitteconformally flat coordinates that form a suitable natural pa-
background, a spherical gravitational wave is generated byametrization of this solution.

two null particles propagating in opposite directions. We |t may also be noted that a family of impulsive spherical
have used three privileged families of observers in which th@ra\/itational waves has been constructed by Hd@nthe
constant time surfaces have constant positive, negative, @lements of which appear to propagate either in a de Sitter or

zero curvature. We have shown that each of these coordinagg anti—de Sitter background. However, these are not related
systems is suitable for describing the geometry of the impultg the solutions given above.

sive wave. In the closed form of the de Sitter universe which
contracts to a minimum size and then reexpands, the impulse
propagates from the “north pole” to the “south pole.” In an
expanding flat and open de Sitter universe it is a contracting
sphere; alternatively in a contracting universe the sphere is J.P. is grateful for hospitality at the Mathematical Sci-
expanding. ences Department at Loughborough University and for sup-

By contrast, the impulsive wave generated in an anti—dgort from Grant No. GACR-202/96/0206 of the Czech Re-
Sitter background is hyperboloidal. It is generated by apublic and Grant No. GAUK-230/96 of Charles University
single null particle. We have also shown that it is only thewhile this work was undertaken.
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