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Abstract

We derive a new metric form of the complete family of black hole spacetimes (without a
cosmological constant) presented by Plebański and Demiański in 1976. It further improves
the convenient representation of this large family of exact black holes found in 2005 by Grif-
fiths and Podolský. The main advantage of the new metric is that the key functions are
considerably simplified, fully explicit, and factorized. All four horizons are thus clearly iden-
tified, and degenerate cases with extreme horizons can easily be discussed. Moreover, the new
metric depends only on six parameters with direct geometrical and physical meaning, namely
m,a, l, α, e, g which characterize mass, Kerr-like rotation, NUT parameter, acceleration, elec-
tric and magnetic charges of the black hole, respectively. This general metric reduces directly
to the familiar forms of either (possibly accelerating) Kerr–Newman, charged Taub–NUT
solution, or (possibly rotating and charged) C-metric by simply setting the corresponding
parameters to zero, without the need of any further transformations. In addition, it shows
that the Plebański–Demiański family does not involve accelerating black holes with just the
NUT parameter, which were discovered by Chng, Mann and Stelea in 2006. It also enables us
to investigate various physical properties, such as the character of singularities, horizons, er-
goregions, global conformal structure including the Penrose diagrams, cosmic strings causing
the acceleration of the black holes, their rotation, pathological regions with closed timelike
curves, or explicit thermodynamic properties. It thus seems that our new metric is a useful
representation of this important family of black hole spacetimes of algebraic type D in the
asymptotically flat settings.

PACS class: 04.20.Jb, 04.70.Bw, 04.40.Nr, 04.70.Dy

Keywords: black holes, exact spacetimes, accelerating and rotating sources, NUT charge, type D
solutions, Plebański–Demiański class
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1 Introduction

In this contribution, we derive and analyze a new coordinate representation of the Plebański–
Demiański spacetimes [1] describing a large class of black holes (identified also by Debever [2]). It
contains, as special cases, all the well-known simpler black holes, namely the Schwarzschild (1915),
Reissner–Nordström (1916–1918), Kerr (1963), Taub–NUT (1963) or Kerr–Newman (1965) black
holes, and also the C-metric (1918, 1962), physically interpreted by Kinnersley–Walker (1970) as
uniformly accelerating pair of black holes, see e.g. [3, 4]. These accelerating black holes can also
be charged, rotating, and can admit the NUT twist parameter.

The class of Plebański–Demiański spacetimes, which includes all these famous black holes,
is a family of exact solutions to Einstein–Maxwell equations of algebraic type D with double-
aligned non-null electromagnetic field (in the present paper we restrict ourselves only to the case
of vanishing cosmological constant) — see Chapter 16 of the monograph [4] for the recent review
and number of related references.

Our new form of the metric, which further improves the convenient representation of the class
of Plebański–Demiański black holes found by Griffiths and Podolský [5–7], reads

ds2 =
1

Ω2

(

−Q

ρ2
[

dt−
(

a sin2 θ + 4l sin2 1
2θ

)

dϕ
]2

+
ρ2

Q
dr2

+
ρ2

P
dθ2 +

P

ρ2
sin2 θ

[

a dt−
(

r2 + (a+ l)2
)

dϕ
]2
)

, (1)

where

Ω = 1− αa

a2 + l2
r (l + a cos θ) , (2)

ρ2 = r2 + (l + a cos θ)2 , (3)

P (θ) =
(

1− αa

a2 + l2
r+(l + a cos θ)

)(

1− αa

a2 + l2
r−(l + a cos θ)

)

, (4)

Q(r) =
(

r − r+
)(

r − r−
)

(

1 + αa
a− l

a2 + l2
r
)(

1− αa
a+ l

a2 + l2
r
)

. (5)

The main roots of Q(r), which identify the two black-hole horizons, are (independently of α)
located at

r+ ≡ m+
√

m2 + l2 − a2 − e2 − g2 , (6)

r− ≡ m−
√

m2 + l2 − a2 − e2 − g2 , (7)

with the (naturally positive) physical parameters

m ..... mass ,

a ..... Kerr-like rotation ,

l ..... NUT parameter ,

e ..... electric charge ,

g ..... magnetic charge ,

α ..... acceleration .

This is a further simplification of the previous Griffiths–Podolský form of the metric. The
generic structure of the metric has remained basically the same (compare (1) with Eq. (16.18)
in [4], renaming P → P , Q → Q and ̺ → ρ), but the new metric functions P (θ) and Q(r) are now
much more compact and explicit than previous P(θ) and Q(r). They are nicely factorized, with
P determining the deficit angles corresponding to the cosmic strings along the axes θ = 0, π of the
black holes (causing the acceleration), while the roots of Q clearly determine the four horizons.
Moreover, the ambiguous twist parameter ω has been removed by its most convenient fixing.
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To see these improvements explicitly, let us recall the original Griffiths–Podolský form [5] of
the metric functions, namely

Ω = 1− α
( l

ω
+

a

ω
cos θ

)

r , ρ2 = r2 + (l + a cos θ)2 , (8)

and

P(θ) = 1− a3 cos θ − a4 cos
2 θ , (9)

Q(r) =
[

(ω2k + ẽ2 + g̃2)
(

1 + 2α
l

ω
r
)

− 2m̃ r +
ω2k

a2 − l2
r2
][

1 + α
a− l

ω
r
][

1− α
a+ l

ω
r
]

, (10)

where the constants are

a3 = 2α
a

ω
m̃− 4α2 a l

ω2
(ω2k + ẽ2 + g̃2) ,

a4 = −α2 a
2

ω2
(ω2k + ẽ2 + g̃2) , (11)

and ω2k is given by

ω2k

a2 − l2
=

1 + 2α
l

ω
m̃− 3α2 l2

ω2
(ẽ2 + g̃2)

1 + 3α2 l2

ω2
(a2 − l2)

, (12)

which implies the expression

ω2k + ẽ2 + g̃2 =
(a2 − l2 + ẽ2 + g̃2) + 2α

l

ω
(a2 − l2) m̃

1 + 3α2 l2

ω2
(a2 − l2)

. (13)

Substituting (11)–(13) into (9) and (10) gives explicit but cumbersome expressions for the key
metric functions P(θ) and Q(r). This is now simplified in the new compact form of the metric
(1)–(5).

2 Derivation of the new metric

The first step in improving the form of the spacetime is to concentrate on the first factor of the
metric function Q(r) given by (10), which is quadratic in r. It can be rewritten as

[

(ω2k + ẽ2 + g̃2)
(

1 + 2α
l

ω
r
)

− 2m̃ r +
ω2k

a2 − l2
r2
]

=
ω2k

a2 − l2

[

r2 − 2m̃
a2 − l2

ω2k
r +

(

1 + 2α
l

ω
r
)(

a2 − l2 +
a2 − l2

ω2k
(ẽ2 + g̃2)

)]

. (14)

It can now be observed that this rather complicated expression nicely simplifies if we introduce a
new set of the mass and charge parameters m, e, g in such a way that

m ≡ a2 − l2

ω2k
m̃− α

l

ω
(a2 − l2 + e2 + g2) ,

e2 ≡ a2 − l2

ω2k
ẽ2 , (15)

g2 ≡ a2 − l2

ω2k
g̃2 .

Indeed, the factor (14) then takes the explicit form

ω2k

a2 − l2

[

r2 − 2mr + (a2 − l2 + e2 + g2)
]

. (16)
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Provided m2 + l2 > a2 + e2 + g2, it has two explicit roots r+ and r− given by (6) and (7), respec-
tively. The metric function (10) can thus be factorized to

Q(r) = S−1
(

r − r+
)(

r − r−
)

(

1 + α
a− l

ω
r
)(

1− α
a+ l

ω
r
)

, (17)

where the constant S is a shorthand for the inverse of (12), namely

S−1 ≡ ω2k

a2 − l2
. (18)

Substitution from (15) into (12), rewritten as

ω2k

a2 − l2

[

1 + 3α2 l2

ω2
(a2 − l2)

]

= 1 + 2α
l

ω
m̃− 3α2 l2

ω2
(ẽ2 + g̃2) , (19)

yields the explicit expression for S in terms of the new physical parameters

S = 1− 2α
l

ω
m+ α2 l2

ω2
(a2 − l2 + e2 + g2) . (20)

Notice that it can also be expressed in terms of the roots r+ and r− as

S = 1− α
l

ω
(r+ + r−) + α2 l2

ω2
r+r− =

(

1− α
l

ω
r+

)(

1− α
l

ω
r−

)

. (21)

One may be worried about the change of the “main physical parameters” introduced by (15).
However, by inspecting the expressions (19), (20) it is immediately seen that

α
l

ω
= 0 implies S =

a2 − l2

ω2k
= 1 ,

and consequently m = m̃ , e = ẽ , g = g̃ . (22)

It means, that in all the subcases α = 0 or l = 0 (namely for Schwarzschild, Reissner–Nordström,
Kerr, Taub–NUT or Kerr–Newman black holes, and also for their accelerating generalizations with
vanishing NUT parameter l) the mass parameter m and the charges e, g actually remain the same.
And since there are no accelerating purely NUT black holes in the Plebański–Demiański class of
type D solutions, see [8], the difference between m, e, g and m̃, ẽ, g̃ occurs only if αa l 6= 0, cf. (30).
That is the most general case of accelerating black holes with both the rotation a and the NUT
parameter l, whose geometric and physical properties have not yet been studied.

After factorizing the function Q(r), as the second step we now turn to the metric function P(θ)
determined by the constants a3 and a4. It is known that these two Plebański–Demiański metric
functions are related, and for vanishing cosmological constant they share the root structure. It can
thus be expected that also the function P(θ) could be factorized by the suitable reparametrization
(15). This is indeed the case. Expressing (11) in terms of the new parameters m, e, g we get

a3 = 2α
a

ω

ω2k

a2 − l2

[

m− α
l

ω
(a2 − l2 + e2 + g2)

]

,

a4 = −α2 a
2

ω2

ω2k

a2 − l2
(a2 − l2 + e2 + g2) . (23)

Using (18), (20) and substituting (23) into (9) we obtain

P(θ) = S
ω2k

a2 − l2
− a3 cos θ − a4 cos

2 θ

=
ω2k

a2 − l2

[

1− 2α
l + a cos θ

ω
m+ α2 (l + a cos θ)2

ω2
(a2 − l2 + e2 + g2)

]

= S−1
(

1− α r+
l+ a cos θ

ω

)(

1− α r−
l + a cos θ

ω

)

. (24)
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The metric function P(θ) is thus also factorized when m2 + l2 > a2 + e2 + g2, i.e., when the roots
r+ and r− exist.

To summarize, we have obtained the key expressions (17) and (24), which can be written as

Q(r) = S−1Q(r) , P(θ) = S−1 P (θ) , (25)

where

Q(r) =
(

r − r+
)(

r − r−
)

(

1 + α
a− l

ω
r
)(

1− α
a+ l

ω
r
)

, (26)

P (θ) =
(

1− α r+
l + a cos θ

ω

)(

1− α r−
l + a cos θ

ω

)

. (27)

Putting these into the original metric [5–7] (which has the same form as (1) with Q, P replaced
by Q, P , respectively) we get

ds2 =
S

Ω2

(

−Q

ρ2
S−2

[

dt−
(

a sin2 θ + 4l sin2 1
2θ

)

dϕ
]2

+
ρ2

Q
dr2

+
ρ2

P
dθ2 +

P

ρ2
sin2 θ S−2

[

adt−
(

r2 + (a+ l)2
)

dϕ
]2
)

. (28)

The third step in deriving the new metric is now based on an observation (first made in [9])
that it is possible to rescale the coordinates t and ϕ by a constant scaling factor S 6= 0 (because
their range has not yet been specified). In other words, we perform the transformation t → S t
and ϕ → S ϕ which effectively removes the constants S from the conformal metric dŝ2 ≡ S−1 ds2.
Moreover, a constant conformal factor S−1 does not change the geometry of the spacetime (recall
also (22), according to which S = 1 whenever αa l = 0). Therefore, the Plebański–Demiański
black-hole solutions can equivalently be represented by the metric dŝ2. Dropping the hat, we
arrive at the metric (1).

In fact, this specific rescaling procedure removes the two coordinate singularities hidden in the
expression (21) for S at α l r± = ω, making our new metric form (1)–(5) somewhat richer.

To complete the derivation, it only remains to fix the remaining twist parameter ω. In the
original Griffiths–Podolský form of the metric [5], this was left as a free parameter which could be
set to any value (if at least one of the parameters a or l are non-zero, otherwise ω ≡ 0 — see the
discussion in [5, 7]) using the remaining coordinate freedom. This ambiguity is unfortunate since
the metric explicitly contains non-unique ω coupled both to the Kerr-like rotation a and the NUT
parameter l. We can now improve this drawback. It was found in [9], and conveniently employed
in [10], that the most suitable gauge choice of the twist parameter is

ω ≡ a2 + l2

a
, (29)

so that

a

ω
=

a2

a2 + l2
,

l

ω
=

a l

a2 + l2
. (30)

Substituting this gauge into the expressions (8), (27) and (26), we obtain the explicit metric
functions Ω, P and Q presented in (2), (4) and (5), respectively. The new form of the metric
(1)–(5), which nicely represents the large family of type D black holes, is thus completely derived.

3 Main subclasses of type D black holes

When m2 + l2 > a2 + e2 + g2, the new metric (1)–(5) naturally generalizes the standard forms of
the most important black hole solutions. These are now easily obtained by setting the correspond-
ing physical parameters to zero.
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3.1 Kerr–Newman–NUT black holes (α = 0 : no acceleration)

By setting the acceleration parameter α to zero, the functions (2), (4) reduce to Ω = 1, P = 1, so
that the generic metric (1) simplifies as

ds2 =− Q

ρ2
[

dt−
(

a sin2 θ + 4l sin2 1
2θ

)

dϕ
]2

+
ρ2

Q
dr2

+ ρ2 dθ2 +
sin2 θ

ρ2
[

a dt−
(

r2 + (a+ l)2
)

dϕ
]2

, (31)

where

Q(r) =
(

r − r+
)(

r − r−
)

, (32)

ρ2 = r2 + (l + a cos θ)2 . (33)

The two roots of Q(r) identify the two black-hole horizons located at

r± ≡ m±
√

m2 + l2 − a2 − e2 − g2 . (34)

Famous subcases are readily obtained, namely the black holes solution of Kerr–Newman (l = 0),
charged Taub–NUT (a = 0), Kerr (l = 0, e = 0 = g), Reissner–Nordström (a = 0, l = 0), and
Schwarzschild (a = 0, l = 0, e = 0 = g).

3.2 Accelerating Kerr–Newman black holes (l = 0 : no NUT)

Without the NUT parameter l, the new metric (1) simplifies to

ds2 =
1

Ω2

(

−Q

ρ2
[

dt− a sin2 θ dϕ
]2

+
ρ2

Q
dr2

+
ρ2

P
dθ2 +

P

ρ2
sin2 θ

[

a dt− (r2 + a2) dϕ
]2
)

, (35)

where

Ω = 1− α r cos θ , (36)

ρ2 = r2 + a2 cos2 θ , (37)

P (θ) =
(

1− α r+ cos θ
)(

1− α r− cos θ
)

, (38)

Q(r) =
(

r − r+
)(

r − r−
)(

1 + α r
)(

1− α r
)

. (39)

This is a compact factorized form of the class of accelerating, rotating, and charged black holes.
The spacetime admits 4 horizons, namely two black hole horizons at r± = m±

√

m2 − a2 − e2 − g2

and two acceleration horizons at ±α−1. For vanishing charges (e = 0 = g), it is equivalent to the
rotating C-metric identified by Hong and Teo [11]. For vanishing acceleration (α = 0), the stan-
dard form of Kerr–Newman solution in Boyer–Lindquist coordinates is recovered.

3.3 Charged Taub–NUT black holes (a = 0 : no rotation)

By setting the Kerr-like rotation parameter a to zero, the new metric (1) considerably simplifies
and becomes independent of the acceleration α (because the metric functions (2)–(5) depend on α
only via the product αa). Indeed, Ω = 1, P = 1, so that

ds2 =− Q

ρ2
(

dt− 4l sin2 1
2θ dϕ

)2
+

ρ2

Q
dr2 + (r2 + l2)

(

dθ2 + sin2 θ dϕ2
)

, (40)
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where

Q(r) =
(

r − r+
)(

r − r−
)

, (41)

ρ2 = r2 + l2 . (42)

This explicitly demonstrates that there is no accelerating NUT black hole in the Plebański–
Demiański family of spacetimes. This observation was made already in the original works [5–7],
and recently clarified. It was proven in [8] that the metric for accelerating (non-rotating) black
holes with purely NUT parameter — which was found in 2006 by Chng, Mann and Stelea [12]
and analyzed in detail in [8] — is of algebraic type I. Therefore, it cannot be contained in the
Plebański–Demiański class which is of type D.

The charged Taub–NUT spacetime (40) is nonsingular (its curvature does not diverge at r = 0),
away from the axis θ = π (where the rotating cosmic string is located) it is asymptotically flat
as r → ±∞, and the interior of the black hole is located between the two horizons r+ > 0 and
r− > 0, where r± = m±

√

m2 + l2 − e2 − g2.

3.4 Uncharged accelerating Kerr–NUT black holes (e = 0 = g : vacuum)

Another nice feature of our new metric (1)–(5) is that it has the same form for vacuum spacetimes
without the electromagnetic field. Indeed, the electric and magnetic charges e and g, which
generate the electromagnetic field, enter only the expressions for r± introduced in (6), (7). In
other words, e and g just change the positions of the two black hole horizons. In the vacuum case,
these constant parameters simplify to

r± ≡ m±
√

m2 + l2 − a2 . (43)

The metric (1)–(5) with (43) represents the full class of accelerating Kerr–NUT black holes. It
reduces to accelerating Kerr black hole when l = 0, and non-accelerating Kerr–NUT black hole
when α = 0. For a = 0 it simplifies directly to the Taub–NUT black hole (40) without acceleration.

4 Extreme black holes and hyperextreme cases

The new form of the generic black hole (1) — and also all its subclasses — naturally admits a
special case with a degenerate horizon, which is the situation when the two horizons coincide,
r+ = r−. In view of (6), (7), this occurs if and only if the extremality condition

m2 + l2 = a2 + e2 + g2 (44)

is satisfied, and in such a case the extremal horizon is located at

r = m. (45)

Consequently, the metric functions take the form

P (θ) =
(

1− αam

a2 + l2
(l + a cos θ)

)2

, (46)

Q(r) = (r −m)2
(

1 + αa
a− l

a2 + l2
r
)(

1− αa
a+ l

a2 + l2
r
)

, (47)

while all the remaining expressions in the metric (1) remain the same. Apart from the degenerate
black hole horizon at r = m with zero surface gravity (and thus zero temperature), there are two
acceleration horizons.

This large family of extremal accelerating Kerr–Newman–NUT black holes admits various natu-
ral subclasses which are easily obtained by setting the corresponding physical parameters α, l, a, e, g
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to zero. In particular, Kerr–Newman–NUT black holes without acceleration (α = 0) take the form

ds2 =− Q

ρ2
[

dt−
(

a sin2 θ + 4l sin2 1
2θ

)

dϕ
]2

+
ρ2

Q
dr2

+ ρ2 dθ2 +
sin2 θ

ρ2
[

a dt−
(

r2 + (a+ l)2
)

dϕ
]2

, (48)

where

Q

ρ2
=

(r −m)2

r2 + (l + a cos θ)2
. (49)

The subcases are Kerr–Newman (l = 0), charged Taub–NUT (a = 0), Kerr (l = 0, e = 0 = g), and
Reissner–Nordström (a = 0, l = 0) extremal black holes, satisfying the extremality condition (44).

Interestingly, in our recent work [10] we proved the equivalence of degenerate horizons in this
family (48), (49) of type D black holes to a complete class of extremal isolated horizons with axial
symmetry.

Finally, if the physical parameters satisfy the relation

m2 + l2 < a2 + e2 + g2 , (50)

the black hole horizons are absent. This case represents hyperextreme spacetimes with very large
rotation a and/or charges e, g. The metric function Q(r) does not admit the real roots r+, r−.
Instead, it involves a non-factorizable quadratic term of the form (16). In such a case, the metric
(1) remains valid, but its metric functions P and Q are

P (θ) = 1− 2αa
l + a cos θ

a2 + l2
m+ α2a2

(l + a cos θ)2

(a2 + l2)2
(a2 − l2 + e2 + g2) , (51)

Q(r) =
(

r2 − 2mr + (a2 − l2 + e2 + g2)
)

(

1 + αa
a− l

a2 + l2
r
)(

1− αa
a+ l

a2 + l2
r
)

. (52)

This exact spacetime represents a naked singularity of mass m with rotation a, NUT parameter l,
electromagnetic charges e, g, and acceleration α caused by the tension of rotating cosmic strings
attached to it along the axes. There are only two acceleration horizons. For α = 0, the metric
simplifies considerably to the form (48) with

Q

ρ2
=

r2 − 2mr + (a2 − l2 + e2 + g2)

r2 + (l + a cos θ)2
. (53)

The new metric form (1)–(5) thus nicely describes the complete family of black holes of type D,
as well as their extreme cases and hyperextreme spacetimes with naked singularities.

5 Physical discussion of the new metric

To study the global structure of the spacetime and to analyze its physical properties, it is first
necessary to determine the gravitational field, in particular the specific curvature of the geometry,
and the electromagnetic field. These are encoded in the Newman–Penrose scalars — the com-
ponents of the Riemann and Maxwell tensors with respect to the null tetrad. Its most natural
choice is

k =
1√
2

Ω

ρ

[

1√
Q

(

(

r2 + (a+ l)2
)

∂t + a ∂ϕ

)

+
√

Q∂r

]

,

l =
1√
2

Ω

ρ

[

1√
Q

(

(

r2 + (a+ l)2
)

∂t + a ∂ϕ

)

−
√

Q∂r

]

, (54)

m =
1√
2

Ω

ρ

[

1√
P sin θ

(

∂ϕ +
(

a sin2 θ + 4l sin2 1
2θ

)

∂t

)

+ i
√
P ∂θ

]

.

8



A direct calculation reveals that the only nontrivial Newman–Penrose scalars corresponding to
the Weyl and Ricci tensors are

Ψ2 =
Ω3

[

r + i (l + a cos θ)
]3

[

− (m+ i l)
(

1− iαa
a2 − l2

a2 + l2

)

+
(e2 + g2)

r − i (l + a cos θ)

(

1 +
αa

a2 + l2
[

a r cos θ + i l (l + a cos θ)
]

)

]

, (55)

Φ11 = 1
2 (e

2 + g2)
Ω4

ρ4
, (56)

while the Ricci scalar vanishes (indeed, R = 0 for electrovacuum solutions with Λ = 0). Recall
also (2), (3), i.e.,

Ω = 1− α a

a2 + l2
r (l + a cos θ) , ρ2 = r2 + (l + a cos θ)2 . (57)

The curvature for the main subclasses of type D black holes, summarized in Sec. 3, are now
easily obtained by setting up the corresponding physical parameters to zero:

• Kerr–Newman–NUT (α = 0 : no acceleration)

Ψ2 =
1

[

r + i (l + a cos θ)
]3

[

− (m+ i l) +
e2 + g2

r − i (l + a cos θ)

]

, (58)

• Accelerating Kerr–Newman (l = 0 : no NUT)

Ψ2 =
(1− α r cos θ)3

(r + i a cos θ)3

[

−m (1− iαa) + (e2 + g2)
1 + α r cos θ

r − i a cos θ

]

, (59)

• Charged Taub–NUT (a = 0 : no rotation)

Ψ2 = − m+ i l

(r + i l)3
+

e2 + g2

(r2 + l2)(r + i l)2
. (60)

Of course, these expressions further simplify if (some of) the remaining parameters are zero. In
particular, the Kerr–Newman black hole is recovered from (58) if l = 0. The C-metric (accelerating
charged black holes without rotation) are obtained from (59) when a = 0. The Reissner–Nordström
black hole follows from (60) when l = 0. The uncharged (vacuum) black holes are obtained for
e = 0 = g. Moreover, all these particular expressions for Ψ2 agree with those presented in the
corresponding chapters of the monograph [4].

It is also useful to calculate the spin coefficients for the null tetrad (54). It turns out that

κ = ν = 0 , σ = λ = 0 ,

̺ = µ = −
√
Q√
2 ρ3

(

1 + i
αa

a2 + l2
(l + a cos θ)2

)

(

r − i (l + a cos θ)
)

, (61)

τ = π = −a
√
P sin θ√
2 ρ3

(

1− i
αa

a2 + l2
r2
)

(

r − i (l + a cos θ)
)

.

Also the coefficients α = β and ǫ = γ are non-zero (we do not write them because they are not
simple). Both double-degenerate principal null directions generated by k and l are thus geodetic
and shear-free. However, they have expansion and twist given by ̺ = µ ≡ −(Θ + iω), that is

Θ =

√
Q√
2 ρ3

(

r +
αa

a2 + l2
(l + a cos θ)3

)

, (62)

ω = −Ω
√
Q√

2 ρ3
(l + a cos θ) . (63)
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It is now explicitly seen that these black-hole spacetimes of algebraic type D are non-twisting (for
a general r, θ) if and only if a = 0 = l. Moreover, on the horizons identified by Q(r) = 0, both the
expansion and the twist vanish (Θ = 0 = ω).

For investigation of the curvature singularities and asymptotically flat regions, it is also useful
to evaluate the Kretschmann scalar

K ≡ RabcdR
abcd = 48Re (Ψ2

2) , (64)

for type D spacetimes. Interestingly, it takes the factorized form

K = 48
Ω6

ρ12
K+K− , (65)

where

K± = m
(

F± ± αa
a2 − l2

a2 + l2
F∓

)

∓ l
(

F∓ ∓ αa
a2 − l2 + e2 + g2

a2 + l2
F±

)

−(e2 + g2)
(

1 +
αa

a2 + l2
rL

)

T± , (66)

F± =
(

r ∓ L
)(

r2 ± 4rL+ L2
)

, T± =
(

r2 ± 2rL− L2
)

, L = l + a cos θ .

These expressions characterize the gravitational field.
When e, g are not zero, the black-hole spacetime also contains a specific electromagnetic field

represented by the Maxwell 2-form F = 1
2Fab dx

a ∧ dxb = dA. Its 1-form potential A = Aadx
a is

A = −
√

e2 + g2
r

ρ2

[

dt− (a sin2 θ + 4l sin2 1
2θ) dϕ

]

. (67)

Therefore, the non-zero components of Fab = Ab,a −Aa,b are

Ftr = −
√

e2 + g2 ρ−4
(

r2 − (l + a cos θ)2
)

,

Fϕr = −Ftr

(

a sin2 θ + 4l sin2 1
2θ

)

,

Ftθ = 2 a
√

e2 + g2 ρ−4 r sin θ (l + a cos θ) , (68)

Fϕθ = −2
√

e2 + g2 ρ−4 r sin θ (l + a cos θ)
(

r2 + (a+ l)2
)

.

The corresponding Newman–Penrose scalars are Φ0 ≡ Fab k
amb = 0, Φ2 ≡ Fab m̄

alb = 0, and

Φ1 ≡ 1
2Fab(k

alb + m̄amb) =

√

e2 + g2 Ω2

(

r + i (l + a cos θ)
)2 . (69)

It follows that Φ1Φ̄1 = 2Φ11, in fully agreement with (56).

5.1 Position of the horizons

The new metric form (1) is very convenient for investigation of horizons. Clearly, the “radial”
coordinate r is spatial in the regions where Q(r) > 0, while it is a temporal coordinate where
Q(r) < 0. These regions are separated by horizons localized at Q(r) = 0. In the case when
m2 + l2 > a2 + e2 + g2, the metric function Q is given by (5),

Q(r) =
(

r − r+
)(

r − r−
)

(

1 + αa
a− l

a2 + l2
r
)(

1− αa
a+ l

a2 + l2
r
)

. (70)
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It is a quartic expression explicitly factorized into four real roots, so that there are four horizons,
namely

H+
b at r+b ≡ r+ = m+

√

m2 + l2 − a2 − e2 − g2 , (71)

H−
b at r−b ≡ r− = m−

√

m2 + l2 − a2 − e2 − g2 , (72)

H+
a at r+a ≡ +

1

α

a2 + l2

a2 + a l
, (73)

H−
a at r−a ≡ − 1

α

a2 + l2

a2 − a l
, (74)

see the definitions of r± introduced in (6), (7). It is clear that r+ > 0 for an arbitrary choice of
the physical parameters (assuming m > 0), but r− can take any sign. In particular,

r− > 0 ⇔ l2 < a2 + e2 + g2 , (75)

r− < 0 ⇔ l2 > a2 + e2 + g2 , (76)

r− = 0 ⇔ l2 = a2 + e2 + g2 . (77)

The horizons H±
b at r±b are two black-hole horizons. Interestingly, in our new metric form

these are independent of the acceleration parameter α. In fact, they are located at the same values
r+, r− as the two horizons in the class of standard (non-accelerating) Kerr–Newman–NUT black
holes given by α = 0, see [4].

The horizons H±
a at r±a are two acceleration horizons. Their presence is the consequence of

the fact that the black holes accelerate whenever the parameter α is non-zero. It is interesting
that their location is now independent of mass m and charges e, g of the black holes. The values
of r±a depend only on the acceleration α and the specific combination of the twist parameters a, l.
Moreover, when l = 0 these are simply given just by the acceleration parameter as r±a = ±α−1.
They retain the same values as in the C-metric [4] even if it is generalized to include the charges
and rotation, that is for accelerating Kerr–Newman black holes.

Of course, there may be less than 4 horizons. As already discussed in Section 4, when the
physical parameters satisfy the extremality relation m2 + l2 = a2 + e2 + g2 the two black-hole
horizons H+

b ,H−
b coincide because r+ = r−. In such a degenerate case the extremal horizon is

located at
r+b = r−b = m, (78)

see (44) and (45), while the two distinct acceleration horizons H±
a given by (73) and (74) remain

the same. This is the horizon structure for the family of extremal accelerating Kerr–Newman–
NUT black holes, recently studied in [10]. If the parameters satisfy m2 + l2 < a2 + e2 + g2 the
black-hole horizons H+

b ,H−
b are absent. Such hyperextreme spacetimes involve accelerating naked

singularities with just two acceleration horizons H±
a .

In the limit α → 0 of vanishing acceleration, from (73), (74) we formally obtain r±a → ±∞
which is consistent with the fact that the two horizons H±

a disappear for non-accelerating Kerr–
Newman–NUT black holes. In the complementary limit a → 0 of vanishing Kerr-like rotation,
we also obtain r±a → ∞. This explicitly confirms that there are no accelerating purely NUT
black holes in the Plebański–Demiański family of type D spacetimes. Indeed, by setting a = 0
the metric (1) becomes independent of α, and the metric reduces to (40) representing charged
Taub–NUT black holes without acceleration. Nevertheless, accelerating black holes with purely
NUT parameter exist outside the Plebański–Demiański family [12] — they are of algebraic type I,
and have been recently analyzed in detail in [8].

Returning now to the generic case with four distinct horizons, it immediately follows from
(71)–(74) that (assuming non-negative parameters α, a, and l)

r−b < r+b always, while r−a < r+a for 0 ≤ l < a . (79)

In the limiting case l → a we obtain r+a = α−1, r−a → −∞, while for l > a there is 0 < r+a < r−a .

11



The physically most natural ordering of the horizons

r−a < r−b < r+b < r+a , (80)

in which the two black hole horizons H±
b are surrounded by two “outer” acceleration horizons H±

a ,
requires a sufficiently small acceleration. The condition r+b < r+a explicitly reads

α <
1

r+

a2 + l2

a2 + a l
, (81)

while r−a < r−b for any 0 ≤ l < a because in such a case r−a < 0 but 0 < r−b .
By evaluating Q given by (70) at r = 0 we obtain

Q(r = 0) = r+ r− = a2 − l2 + e2 + g2 > 0 for l < a . (82)

Consequently, Q > 0 for any (r−a , r
−
b ). It follows that the coordinate r is spatial in the regions

(r−a , r
−
b ) and (r+b , r

+
a ), that is between the black-hole and acceleration horizons, while it is temporal

in the complementary three regions.
Moreover, using the condition (81) we infer that

αa

a2 + l2
r−(l + a cos θ) <

αa

a2 + l2
r+(l + a cos θ) < αr+

a2 + a l

a2 + l2
< 1 . (83)

It means that both brackets in the metric coefficient P (θ) given by (4) are positive, and thus the
function P in (1) is always positive, retaining the correct signature of the spacetime.

5.2 Ergoregions

With the rotation parameter a, the family of black holes (1) contains ergoregions similar to those
known from the famous Kerr solution.

The boundary of the ergoregion is defined by the condition gtt = 0, where the corresponding
metric coefficient reads

gtt =
1

Ω2ρ2
(P a2 sin2 θ −Q) . (84)

The corresponding condition is thus

Q(re) = a2 sin2 θ P (θ) , (85)

where the metric functions P (θ) and Q(r) are given by (4) and (5), respectively. For a fixed value
of the angular coordinate θ, the right hand side of (85) is some constant. And since the function
Q(r) is of the fourth order, it follows that there are (at most) four distinct boundaries re of the
ergoregions in the direction of θ. These are associated with the corresponding four horizons H±

b

and H±
a , defining the surfaces of infinite redshift, and also the stationary limit at which observers

on fixed r and θ cannot “stand still”.
Solving the equation (85) explicitly is generally complicated but can be plotted using computer,

see Fig. 1. It is also obvious that the ergoregion boundary “touchess” the corresponding horizon
at the poles θ = 0 and θ = π because there the condition (85) reduces to Q(re) = 0.

In the case of vanishing acceleration α = 0, the metric functions (4) and (5) simplify to P = 1
and Q = (r − r+)(r − r−). Equation (85) reduces to r2e − 2mre + (a2 cos2 θ − l2 + e2 + g2) = 0
which has two roots

re±(θ) = m±
√

m2 + l2 − e2 − g2 − a2 cos2 θ . (86)

This explicitly localizes the two ergoregions for the Kerr–Newman–NUT black holes. As for the
standard Kerr black hole, it extends most from the corresponding horizon in the equatorial plane
θ = π/2, in which case re± = m±

√

m2 + l2 − e2 − g2.
On the other hand, for a = 0 there are no ergoregions because the condition (85) reduces to

Q(re) = 0, i.e., the boundaries coincide with the black hole horizons H±
b at r± of the Taub–NUT
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Figure 1: Plot of the metric function gtt (84) for the accelerating black hole (1) with axes θ = 0
and θ = π. The values of gtt are visualized in quasi-polar coordinates x ≡

√

r2 + (a+ l)2 sin θ,

y ≡
√

r2 + (a+ l)2 cos θ for r ≥ 0. The grey annulus in the center of each figure localizes the black
hole bordered by its horizons H±

b at r+ and r− (0 < r− < r+). The acceleration horizon H+
a at r+a (big

red circle) and the conformal infinity I at Ω = 0 are also shown. The grey curves are contour lines
gtt(r, θ) = const., and the values are color-coded from red (positive values) to blue (negative values). The
green curves are the isolines gtt = 0 determining the boundary of the ergoregions (85) in which gtt > 0
(green regions). They occur close to the horizons near the equatorial plane θ = π/2. The plot is made
for the choice m = 3, a = 1, l = 0.2, e = g = 1.6, α = 0.12 (left) and m = 3, a = 1.5, l = 0.6, e = g = 1.6,
α = 0.12 (right). For larger values of a and l the ergoregions are bigger and shifted towards θ = π. In
fact, it can be seen that the ergoregion above the black hole horizon at r+ is merged with the ergoregion
below the acceleration horizon at r+a in the equatorial part.

spacetime (possibly charged). In fact, such horizons become the Killing horizons associated with

the Killing vector field ∂t, located at m±
√

m2 + l2 − e2 − g2. To summarize, the ergoregions are
related only to the Kerr-like rotation represented by the parameter a, not to the NUT parameter l.
There are no ergoregions in the purely NUT spacetimes.

5.3 Curvature singularities

By inspecting the Weyl NP scalar Ψ2 given explicitly by the expression (55) we conclude that
the curvature singularities occur if and only if r + i (l + a cos θ) = 0 (or its complex conjugate).
Notice that this complex equation implies also ρ2 = r2 + (l + a cos θ)2 = 0 which represents the
curvature singularity in the Ricci scalar Φ11 given by (56) when the electric and magnetic charges
e, g are nonzero. Both the real and imaginary parts must vanish, so that the curvature singularity
condition reads

r = 0 and at the same time l + a cos θ = 0 . (87)

The presence of the curvature singularity is confirmed by the behavior of the Kretschmann
scalar K ≡ Rabcd R

abcd given by (65). The second condition (87), that is L = 0, implies Ω = 1,
ρ2 = r2, F± = r3, T± = r2, and

K± = m
(

1± αa
a2 − l2

a2 + l2

)

r3 ∓ l
(

1∓ αa
a2 − l2 + e2 + g2

a2 + l2

)

r3 − (e2 + g2) r2 .

In the limit r → 0 the Kretschmann scalar thus diverges,

K = 48
K+K−

r12
→ ∞ , (88)
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Figure 2: A schematic visualization of the curvature structure of the generic black hole spacetime (1)
using a section with fixed coordinates t and ϕ. Away from the singularity located at cos θ = −l/a, r = 0 it
is possible to cross r = 0 from the asymptotically flat universe in the region r > 0 (right part) to another
universe in the region r < 0 (left part). In this diagram we also plot the positions of the two black hole
horizons H+

b and H−
b at r+ and r− (red and green circles, respectively), and the two distinct infinite axes

θ = 0 and θ = π (dashed lines).

because K+ K− ∼ r6 in the vacuum case, and K+ K− ∼ r4 in the electrovacuum case.
Now, the important observation is that the necessary (but not sufficient) singularity condi-

tion l + a cos θ = 0 can only be satisfied if |l| ≤ |a|. Otherwise, the expression l + a cos θ remains
nonzero because cos θ is bounded to the range [−1, 1].

We thus conclude that in the whole family of type D spacetimes (1) the curvature singularity
structure depends on the relative values of the two twist parameters, i.e. the Kerr-like rotation a
versus the NUT parameter l, as follows:

l = 0 , a = 0 : singularity at r = 0 for any θ ,

l = 0 , a 6= 0 : singularity at r = 0 for θ = π/2 ,

0 < |l| < |a| : singularity at r = 0 for cos θ = −l/a , (89)

l = +a : singularity at r = 0 for θ = π ,

l = −a : singularity at r = 0 for θ = 0 ,

|l| > |a| > 0 : no singularity ,

l 6= 0 , a = 0 : no singularity .

Recall that throughout this paper we naturally assume that all physical parametersm, e, g, α, a, l
are non-negative. However, for the sake of completeness, in the above table we have admitted the
situation in which a and l can be any real numbers. In fact, the reflection symmetry ϕ → −ϕ of
the metric (1), or equivalently t → −t, can be used to change a → −a or l → −l when l = 0 or
a = 0, respectively. However, in the generic case when both a and l are nontrivial, their relative
sign plays the role.

Of course, these results agree with the standard character of the singularity r = 0 of the
Schwarzschild, Reissner–Nordström and (possibly charged) C-metric spacetimes (l = 0, a = 0),
the ring singularity structure of the Kerr and Kerr–Newman black holes (l = 0, α = 0), and the
absence of curvature singularities in (possibly charged) Taub–NUT spacetime (a = 0, α = 0).
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Figure 3: Schematic visualization of the curvature singularity located at r = 0, cos θ = −l/a in the black
hole spacetime (1) for 7 distinct choices of the NUT parameter l. For |l| ≥ |a| such singularity is absent
and it is possible to regularly cross r = 0 at any θ, entering another asymptotically flat universe.

Finally, it may be useful to graphically represent the global curvature and horizon structure
of these black hole spacetimes. On a schematic picture in Fig. 2 we depict the section t = const.,
ϕ = const., taking the full range of θ ∈ [0, π] distinct from the specific value cos θ = −l/a. There-
fore, the curvature singularity located at r = 0 is not encountered, and it is possible to consider the
full range of the coordinate r ∈ (−∞,+∞). In the vicinity of r = 0 the curvature of the spacetime
is maximal, in the region r > 0 (the right part of the surface) it decreases to zero, and similarly in
the region r < 0 (the left part of the surface) — far away from the origin the spacetime becomes
asymptotically flat. The angular coordinate θ ∈ [0, π] is plotted perpendicularly, completing the
full circles r = const. (considering also the antipodal section ϕ+ π in the second half of the circle).
The resulting “neck” or “wormhole” connects two distinct universes. Positions of the two black
hole horizons H+

b at r+b ≡ r+ and H−
b at r−b ≡ r− are indicated by red and green circles, respec-

tively. Here we assume 0 < l < a ≤
√

a2 + e2 + g2, so that 0 < r− < r+. In this plot we also show
the position of the two distinct full axes θ = 0 and θ = π. These are indicated by dashed lines on
top and bottom of the surface.

It should be emphasized that this is only a schematic picture, not an embedding and rigorous
construction (it cannot be done because the r-coordinate is temporal between the horizons H−

b

and H+
b , and also because the “point” cos θ = −l/a, r = 0 is actually the curvature singularity.

Using the same schematic plot of the central domain of the black hole spacetime, we can also
indicate the location of the curvature singularity at r = 0, cos θ = −l/a for various values of the
NUT parameter l (assuming the same a and other physical parameters). As in Fig. 2, the origin
r = 0 is plotted in Fig. 3 as a black circle around the “neck”, and the two axes located at θ = 0
and θ = π are indicated by dashed lines on top and bottom of the surface.

There are 7 such plots in Fig. 3 corresponding to 7 specific values of l/a. When the NUT
parameter vanishes, l = 0, the curvature singularity is located at r = 0 for θ = π/2. In the middle
plot in Fig. 2 such a singularity is indicated by red dots. In fact, considering also the additional
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angular coordinate ϕ ∈ [0, 2π), this forms a ring singularity of the Kerr–Newman black hole, shown
here as the red dashed circle in extra dimension. In the case when l = a the curvature singularity
is located at the pole θ = π (the bottom right plot), while for l = −a it is located at the opposite
pole θ = 0 (the top left plot). In the generic case |l| < |a|, the ring curvature singularity is located
at specific θ between these extremes, such that cos θ = −l/a (the bottom left and the top right
plots). Finally, when |l| > |a|, there is no curvature singularity (the top and the bottom plots).

In a similar way, by the red dots and the red dashed line we have indicated the position of the
ring-like curvature singularity at r = 0 in Fig. 1.

5.4 Conformal diagrams: global structure and infinities

In section 5.1 we have already clarified that the coordinate singularities of the metric located at r±b
and r±a correspond to four distinct horizons H±

b and H±
a (provided m2 + l2 ≥ a2 + e2 + g2). We

will now explicitly construct coordinates which cover the whole spacetime, including these horizons
given by the roots Q(r) = 0 of the quartic function (70). They will enable us to subsequently derive
the corresponding Penrose conformal diagrams showing the global structure of this family of type D
black holes represented by the metric (1).

To this end, we first introduce the retarded and advanced null coordinates

u = t− r∗ and v = t+ r∗ , (90)

with the tortoise coordinate

r∗ ≡
∫

r2 + (a+ l)2

Q(r)
dr , (91)

and also the corresponding untwisted angular coordinates

φu ≡ ϕ− a

∫

dr

Q(r)
and φv ≡ ϕ+ a

∫

dr

Q(r)
. (92)

Using the advanced pair of coordinates {v, φv}, the metric (1) takes the form

ds2 =
1

Ω2

[

a2P sin2 θ −Q

ρ2
(dv − T dφv)

2 + 2 (dv − T dφv)(dr − aP sin2 θ dφv)

+ρ2
(dθ2

P
+ P sin2 θ dφ2

v

)

]

. (93)

The function

T (θ) ≡ a sin2 θ + 4l sin2 1
2θ (94)

was introduced to abbreviate the expression. It also enters a useful identity

r2 + (a+ l)2 − a T = r2 + (l + a cos θ)2 ≡ ρ2 . (95)

Obviously, the metric (93) is regular at Q(r) = 0, so that the coordinate singularity at the horizons
has been removed.

By employing the complementary retarded pair of coordinates {u, φu}, the metric (1) reads

ds2 =
1

Ω2

[

a2P sin2 θ −Q

ρ2
(du− T dφu)

2 − 2 (du− T dφu)(dr + aP sin2 θ dφu)

+ρ2
(dθ2

P
+ P sin2 θ dφ2

u

)

]

, (96)

which is also regular at Q(r) = 0.
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Actually, these metrics are a considerable generalization of the original coordinate forms of the
rotating Kerr–Newman black hole solutions, see Eq. (1) in [13], Eq. (5.31) in [14], or Eq. (11.4)
in [4]. Now it includes not only the usual physical parameters m, a, e (and/or g), but also the
NUT parameter l and the acceleration parameter α.

As usual, the next step in construction of the maximal analytic extension of the manifold is to
introduce both the null coordinates u and v simultaneously (dropping r as a coordinate). Clearly,
for fixed values of φv and θ the radial null geodesics are simply given by v = const., while for fixed
values of φu and θ the complementary radial null geodesics are given by u = const.. Therefore,
by employing both the coordinates u and v, the causal structure of the spacetime is naturally
revealed. Using the relation (90) we immediately obtain

v − u = 2 r∗(r) , (97)

so that

2 dr =
Q

r2 + (a+ l)2
(dv − du) . (98)

This relation can be used to eliminate the dr-term either from the metric (93) or (96).
Moreover, due to the simple factorized form (70) of the metric function Q(r), the integral (91)

defining the function r∗(r) in (97) can be calculated explicitly as

r∗(r) = k+b log
∣

∣

∣
1− r

r+b

∣

∣

∣
+ k−b log

∣

∣

∣
1− r

r−b

∣

∣

∣
+ k+a log

∣

∣

∣
1− r

r+a

∣

∣

∣
+ k−a log

∣

∣

∣
1− r

r−a

∣

∣

∣
, (99)

where the auxiliary constant coefficients are

k+b =
(a2 + l2)2

[

r2+ + (a+ l)2
]

2m
(

a2 + l2 + αa(a− l) r+
)(

a2 + l2 − αa(a+ l) r+
) ,

k−b = − (a2 + l2)2
[

r2− + (a+ l)2
]

2m
(

a2 + l2 + αa(a− l) r−
)(

a2 + l2 − αa(a+ l) r−
) ,

k+a = − (a2 + l2)
[

(a2 + l2)2 + α2a2(a+ l)4
]

2αa2
(

a2 + l2 − αa(a+ l) r+
)(

a2 + l2 − αa(a+ l) r−
) , (100)

k−a =
(a2 + l2)

[

(a2 + l2)2 + α2a2(a2 − l2)2
]

2αa2
(

a2 + l2 + αa(a− l) r+
)(

a2 + l2 + αa(a− l) r−
) ,

each associated with the corresponding horizon H±
h located at r = r±h , where h = b (for the black-

hole horizons) or h = a (for the acceleration horizons). Inverting the function (99), we can express
the metric functions Q, ρ2 and Ω2 in terms of the null coordinates v − u instead of r by using the
relation (97).

To obtain the maximal extension of the black-hole manifold represented by (1), we now “glue
together” different “coordinate patches” (charts of the complete atlas) crossing all the horizons,
until a curvature singularity or conformal infinity (the scri I) is reached. In order to derive the
correct causal structure, it is essential to employ the null coordinates u and v. Therefore, we apply
the coordinate patches of the metric form (93) for extending the spacetime across the horizons in
the null direction given by the advanced coordinate v, while we apply the coordinate patches of
the metric form (96) for extending the spacetime across the horizons in the complementary null
direction given by the retarded coordinate u. Since both these metrics are regular for Q = 0, the
coordinate singularities at all the horizons H±

h are removed, step-by-step.
However, to perform this procedure exactly and correctly, two complicated issues must also be

clarified. The first problem is the fact, that the distinct coordinate patches (93) and (96) employ
distinct angular coordinates φv and φu, respectively. The second problem is to prove that thus
obtained maximal extension of the manifold is analytic.
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To resolve the first problem associated with distinct angular coordinates φv and φu, we can
employ the general strategy suggested by Boyer and Lindquist [15] for the Kerr spacetime and
subsequently used also for the charged Kerr–Newman spacetime by Carter [13]. The trick is based
on using the specific Killing vector fields which are the null generators of the horizons. In terms
of the two coordinate patches (93) and (96), such special vector fields read

ξa ≡ ∂u +Ωh ∂φu
, and also ξa ≡ ∂v +Ωh ∂φv

, (101)

where the angular velocity of the given horizon H is

Ωh =
a

r2h + (a+ l)2
. (102)

Indeed, using the corresponding metric coefficients of (93) and (96), evaluated at Q = 0, it is
straightforward to show that ξaξa(H) = 0 whenever Ωh = a/( ρ2h + a T ). Applying the identity
(95), we obtain the expression (102) for both the Killing vector fields (101).

Now, following [13, 15] we introduce a special angular coordinate φh which is constant along
the trajectories of both the Killing vector fields (101). Being the generators of the specific bifurcate
Killing horizon (a 2-dimensional spatial intersection of the “advanced” and the “retarded” null
horizons), via such new angular coordinate φh a suitable transition between the corresponding
patches is achieved. Technically, it is introduced by the 1-form condition

2 dφh ≡ dφu + dφv − Ωh(du + dv) , (103)

because dφh(ξ
a) = 0 for both the Killing vector fields (101). Using (90) and (92), this condition

can be integrated to

φh = ϕ− Ωh t . (104)

Unfortunately, the specific choice of the angular coordinate φh depends on the given horizon via
its value rh and thus Ωh. For this reason, it is not possible to find a single and simple global
coordinate φ which would conveniently “cover” all the four horizons. This drawback was met
many years ago already in the Kerr spacetime, so it is not surprising that it reappears in the
current context of the complete family of type D black holes.

An explicit general metric form constructed in this way reads

ds2 =
1

4Ω2

[

− Q

ρ2

(

(1− T Ωh)(du + dv)− 2T dφh

)2

+Qρ2
(du − dv)2

[r2 + (a+ l)2]2
+ 4

ρ2

P
dθ2

+
P sin2 θ

ρ2

(

(

a− [r2 + (a+ l)2] Ωh

)

(du + dv)− 2 [r2 + (a+ l)2] dφh

)2
]

. (105)

For non-twisting black holes without the Kerr-like rotation (a = 0) and the NUT parameter (l = 0),
the metric functions simplify to Ω = 1, P = 1, ρ2 = r2, T = 0, Ωh = 0, so that

ds2 = −Q

r2
du dv + r2(dθ2 + sin2 θ dφ2

h) , (106)

which is the usual form of the spherically symmetric black holes in the double-null coordinates [4].
On any 2-dimensional section θ = const. and φh = const., using (102), the general metric (105)

reduces to

dσ2 =
1

4Ω2

[

− (1− T Ωh)
2

ρ2
Q (du+ dv)2 +

ρ2

[r2 + (a+ l)2]2
Q (du− dv)2

+ a2
P sin2 θ

ρ2
(r + rh)

2(r − rh)
2

[r2h + (a+ l)2]2
(du+ dv)2

]

, (107)

which is indeed null at any horizon rh because Q(rh) = 0.
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Let us now move to the second problem, which is the global extension and investigation of
the degree of smoothness (analyticity) of the horizons H±

h . Restricting ourselves to the sections
given by constant values of the angular coordinates θ and φh, we introduce the couples of new null
coordinates U±

h and V ±
h , defined as

U±
h = (−1)i sign(k±h ) exp

(

− u

2k±h

)

, (108)

V ±
h = (−1)j sign(k±h ) exp

(

+
v

2k±h

)

. (109)

Each couple covers the corresponding horizon H±
h . Moreover, it is characterized by a particular

choice of two integers (i, j) which specify a certain region in the manifold. Generally, there are 5
types of regions which are separated by the four types of horizons H±

h , namely

Region Description Specification of (i, j)

I: asymptotic time-dependent domain between H+
a and I (n− 2m+ 1, n+ 2m− 1)

II: stationary region between H+
b and H+

a (2n−m, 2n+m− 1)

III: time-dependent domain between the black-hole horizons (n− 2m,n+ 2m)

IV: stationary region between H−
a and H−

b (2n−m+ 1, 2n+m)

V: asymptotic time-dependent domain between I and H−
a (n− 2m+ 1, n+ 2m− 1)

where m,n are arbitrary integers. The corresponding Kruskal–Szekeres-type dimensionless coor-
dinates for every distinct region are

T±
h = 1

2 (V
±
h + U±

h ) , R±
h = 1

2 (V
±
h − U±

h ) . (110)

Of course, the presence of the curvature singularity at r = 0 (implying r∗ = 0) for certain values
of θ restricts the range of the corresponding coordinates U−

b and V −
b in the region IV to the domain

outside U−
b V −

b = ±1.
In terms of these coordinates, the extension across the horizon is regular (in fact, analytic).

Indeed, by multiplying and dividing the null coordinates (108) and (109) we obtain

U±
h V ±

h =
(

1− r

r+b

)

k
+

b

k
±

h

(

1− r

r−b

)

k
−

b

k
±

h

(

1− r

r+a

)

k
+
a

k
±

h

(

1− r

r−a

)

k
−
a

k
±

h , (111)

U±
h

V ±
h

= (−1)i+j exp
(

− t

k±h

)

. (112)

The terms (du± dv)2 in the metric (107) become

(du± dv)2 =
4 (k±h )

2

U±
h V ±

h

(

V ±
h

U±
h

(dU±
h )2 ∓ 2 dU±

h dV ±
h +

U±
h

V ±
h

(dV ±
h )2

)

. (113)

A non-analytic behavior across the horizon rh may thus occur only at zeros of the product U±
h V ±

h .
However, they exactly cancel the zeros of the functions Q(r) in the metric (107). For example, by
choosing the black hole horizon rh = r+b ≡ r+, be get U

+
b V +

b ∝ (r − r+) which clearly compensates
the corresponding root Q ∝ (r − r+) in (5). Notice also that the last term in (107) actually
vanishes. Therefore, the metric (107) remains finite at r+. Of course, the same argument applies
to the remaining three horizons.
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Now we can construct the Penrose conformal diagrams which visualize the global structure of
the extended manifold. This is achieved by a suitable conformal rescaling of U±

h and V ±
h to the

corresponding compactified null coordinates ũ±
h and ṽ±h defined as

tan
ũ±
h

2
≡ −sign(k±h ) (U

±
h )−sign(k±

h
) = (−1)i+1 exp

(

+
u

2|k±h |
)

, (114)

tan
ṽ±h
2

≡ −sign(k±h ) (V
±
h )−sign(k±

h
) = (−1)j+1 exp

(

− v

2|k±h |
)

. (115)

Applying the identity arctanx+ arctan y = arctan( x+y
1−xy

) (modπ) we get

T̃±
h ≡ 1

2
(ṽ±h + ũ±

h ) = − arctan

[

(−1)j exp
(

− t+r∗
2|k±

h
|

)

+ (−1)i exp
(

t−r∗
2|k±

h
|

)

1− (−1)i+j exp
(

− r∗
|k±

h
|

)

]

, (116)

R̃±
h ≡ 1

2
(ṽ±h − ũ±

h ) = − arctan

[

(−1)j exp
(

− t+r∗
2|k±

h
|

)

− (−1)i exp
(

t−r∗
2|k±

h
|

)

1 + (−1)i+j exp
(

− r∗
|k±

h
|

)

]

. (117)

From these general relations it follows that

T̃±
h =



















































(−1)j+1 arctan
cosh t

2|k±

h
|

sinh r∗

2|k±

h
|

for i+ j even ,

(−1)j arctan
sinh t

2|k±

h
|

cosh r∗

2|k±

h
|

for i+ j odd, r∗ < 0 ,

(−1)j arctan
sinh t

2|k±

h
|

cosh r∗

2|k±

h
|

+ π for i+ j odd, r∗ ≥ 0 ,

(118)

and

R̃±
h =



















































(−1)j arctan
sinh t

2|k±

h
|

cosh r∗

2|k±

h
|

for i+ j even ,

(−1)j+1 arctan
cosh t

2|k±

h
|

sinh r∗

2|k±

h
|

for i+ j odd, r∗ < 0 ,

(−1)j+1 arctan
cosh t

2|k±

h
|

sinh r∗

2|k±

h
|

+ π for i+ j odd, r∗ ≥ 0 .

(119)

Recall that the function r∗(r) is given by (99) and the coefficients k±h by (100). In particular,
the lines of constant r thus coincide with the lines of constant r∗. Moreover, the condition (81)
for a reasonably small values of the acceleration parameter α guarantees that k+a , k

−
b < 0 while

k−a , k
+
b > 0. Therefore, for every single region the coordinate r∗ spans the whole range (−∞,+∞),

and similarly the coordinate t.
The explicit relations (118), (119) between the compactified coordinates {T̃±

h , R̃±
h } and the

original coordinates {t, r} of the metric (1) for all (i, j) can be used for graphical construction of
the Penrose diagram which represents the global structure of the extended black-hole manifold,
composed of various “diamond” regions. The resulting picture is shown in Fig. 4 and Fig. 5. Fig. 4
is the Penrose diagram of a generic 2-dimensional section through the whole spacetime for any
θ = const. such that cos θ 6= −l/a. It does not contain the curvature singularity at r = 0. Fig. 5
is the complementary Penrose diagram for the special value of θ such that cos θ = −l/a which
contains the curvature singularity at r = 0 in all its regions IV (see Sec. 5.3 and Fig. 3).
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Figure 4: Penrose conformal diagram of the completely extended spacetime (1) showing the global struc-
ture of this family of accelerating and rotating charged black holes. We assume the ordering of the four
horizons as r−a < r− < r+ < r+a , see (80), which occurs for reasonably small acceleration parameter α,
restricted by (81), and small values of the NUT parameter l such that |l| < |a|. Here we show a typical
2-dimensional section θ, φh = const. without the curvature singularity at r = 0, i.e., for any θ = const.
such that cos θ 6= −l/a. The double dashed vertical parallel lines indicate a separation of distinct asymp-
totically flat regions close to I± (different “parallel universes” that are not necessarily identified). Grey
areas in regions II and IV close to the horizons denote the ergoregions.

Figure 5: Penrose conformal diagram of the spacetime (1) representing the same black hole as in Fig. 4
but for the section θ, φh = const. containing the curvature singularity at r = 0, i.e., for the special value
of θ such that cos θ = −l/a. In this section, the regions IV are “cut in half” by this singularity at r = 0,
so that the acceleration horizon at r−a < 0 can not be reached, and the region V is thus absent.
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It can be seen that the complete manifold consists of an infinite number of the regions I, II, III,
IV and V, each identified by the specific pair of integers (i, j). These regions are separated by the
corresponding horizons. Namely, the regions I and II are separated by the acceleration horizon H+

a

at r+a , with the asymptotic region I also bounded by the conformal infinity I (the scri) for very
large values of r. The regions II and III are separated by the black-hole horizon H+

b at r+b ≡ r+,
while the regions III and IV are separated by the inner black-hole horizon H−

b at r−b ≡ r−. Finally,
the regions IV and V (if present) are separated by the acceleration horizon H−

a at r−a , with the
asymptotic region V bounded by the conformal infinity I with negative values of r. The curves
in each region represent the lines of constant t and r (dashed or solid, respectively).

In the diagonal null directions of these Penrose diagrams we can identify the particular coor-
dinate patches covered by the “advanced” metric form (93), extending from the bottom left I−

to the top right I+ (for example the pink regions I–V between (1,−1) and (1, 3)), and also the
complementary “retarded” metric form (96), extending from the bottom right I− to the top left
I+ (these are not colored but also contain the regions I–V, for example between (−1, 1) and (3, 1)).
These patches “share” the “central regions” III (for example (1, 1)). Each of such central region
III is bounded by the inner and outer black-hole horizons at r− and r+, localizing thus the interior
of the corresponding black hole. In the whole extended universe, there are thus infinitely many
black holes — they are identified by the regions III, and labeled by the corresponding specification
(i, j), for example (0, 0), (1, 1), (2, 2), (−2, 2), (−1, 3), (0, 4), etc.

Recall that all these black holes are rotating, NUTed, charged, and accelerating. Due to their
rotation, there are ergoregions associated with all the horizons, see Sec. 5.2 and Fig. 1. They are
represented by the grey areas in the regions II and IV close to the horizons.

As shown in Sec. 5.3 and schematically depicted in Fig. 2, there are two distinct asymptotically
flat universes associated with each original coordinate patch given by the metric (1), one for
r → +∞ and the other for r → −∞. These can now be identified in the Penrose diagram in Fig. 4
as the regions I and V beyond the acceleration horizons close to I, respectively. However, the
maximal extension has now revealed that each black hole, identified by the specific region III, is in
fact associated with four asymptotically flat regions, namely the pair of the regions I and a pair of
the regions V. Two such regions are in the causal future, while the remaining two are in the past.
Moreover, each asymptotically flat region bounded by I is “shared” by two distinct black holes.

For example, the “infinite chain” of black holes (regions III) given by . . ., (3,−1), (1, 1), (−1, 3),
. . . are located in the “future universes” (regions I) . . ., (5,−1), (3, 1), (1, 3), (−1, 5), . . ., while their
“past universes” (regions V) are . . ., (3,−3), (1,−1), (−1, 1), (−3, 3), . . ., respectively. However,
these “past universes” need not be the same asymptotically flat regions. Therefore, we inserted
the double dashed vertical parallel lines in them to indicate their separation: in general the two
regions such as (1,−1) are different “causal-past parallel universes” with respect to the distinct
causal-future universes of the chain of the black holes. Of course, it is possible to “artificially”
identify (some of) them — both the black-hole regions III and/or their asymptotically flat regions I
and V. Since there are infinitely many possibilities of such identifications, a plethora of various
topologically extremely complicated manifolds can be constructed.

Finally, let us remark that the conformal infinities I plotted in Figs. 4, 5 does not look null. This
may be surprising because in all the regions I and V the spacetime is asymptotically flat (excluding
the cosmic strings along the axes θ = 0 and θ = π, arising as specific topological defects which we
will investigate in the next three sections of this paper). Being Minkowski-like, the scri I is indeed
null. However, it should be emphasized that the Penrose diagrams in Fig. 4 and Fig. 5 are just
2-dimensional sections through the global conformal structure of the four-dimensional Lorentzian
manifold which is not spherically symmetric. In particular, it turns out that in the presence of
acceleration, the null conformal infinity I of the asymptotically flat regions is indeed represented
as the non-null curve in the given section. This has been thoroughly discussed and analyzed in
our previous work on the C-metric [16], see also Chapter 14 in [4].

The global extension of the type D black-hole family of spacetimes obtained in this section
seems to be more elegant and also more complete than the preliminary investigation [17] which em-
ployed rather complicated transformations to the Weyl–Lewis–Papapetrou form and subsequently
to the boost-rotation-symmetric form of the metric. Moreover, here it is explicitly compactified.
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5.5 Cosmic strings (or struts) and deficit angles at θ = 0 and θ = π

As shown already in previous works [5, 7], the metric form (1) is convenient for explicit analysis
of the regularity of the poles/axes located at θ = 0 and θ = π, respectively. This is now further
improved with the new metric functions (2)–(5).

The spatial axes of symmetry are associated with the Killing vector field ∂ϕ, identified as its
degenerate points. These are located at the coordinate singularities of the function sin θ in the
metric (1) which appear at θ = 0 and θ = π. Therefore, the range of the spatial coordinate θ must
be constrained to θ ∈ [0, π].

Recall that there are six physical parameters in the new metric (1), namely m, a, l, α, e, g, which
represent mass, Kerr-like rotation, NUT parameter, acceleration, electric and magnetic charges of
the black hole, respectively. However, there is also the seventh free parameter — the conicity C
hidden in the range of the angular coordinate

ϕ ∈ [0, 2πC) , (120)

which has not yet been specified. We will demonstrate its physical meaning by relating it to the
deficit (or excess) angles of the cosmic strings (or struts). Their tension is the physical source of
the acceleration of the black holes. These are basically topological defects associated with conical
singularities around the two distinct axes. In addition, for nonvanishing NUT parameter l these
cosmic strings or struts are rotating, thus introducing specific internal twist to the entire spacetime.
We will now analyze them in more detail.

Let us start with investigation of the (non)regularity of the first axis of symmetry θ = 0 in the
metric (1). Consider a small circle around it given by θ = const., with the range of ϕ given by

(120), assuming fixed t and r. The invariant length of its circumference is
∫ 2πC

0

√
gϕϕ dϕ, while

its radius is
∫ θ

0

√
gθθ dθ. The axis is regular if their fraction in the limit θ → 0 is equal to 2π.

However, in general we obtain

f0 ≡ lim
θ→0

circumference

radius
= lim

θ→0

2πC
√
gϕϕ

θ
√
gθθ

. (121)

For the metric (1), the relevant metric functions are

gϕϕ =
1

Ω2ρ2

[

P
(

r2 + (a+ l)2
)2

sin2θ −Q
(

a sin2 θ + 4l sin2 1
2θ

)2
]

, gθθ =
ρ2

Ω2P
. (122)

For very small values of θ, the second term in gϕϕ proportional to Q becomes negligible with

respect to the first term proportional to P , so that we obtain gϕϕ ≈ P
(

r2 + (a+ l)2
)2

θ2/Ω2ρ2.
Straightforward evaluation of the limit (121) gives

f0 = 2πC P (0) = 2πC
(

1− α
a2 + al

a2 + l2
r+

)(

1− α
a2 + al

a2 + l2
r−

)

. (123)

The axis θ = 0 in the metric (1) can thus be made regular by the unique choice

C = C0 ≡
[(

1− α
a2 + al

a2 + l2
r+

)(

1− α
a2 + al

a2 + l2
r−

)]−1

(124)

=
[

1− 2αm
a2 + al

a2 + l2
+ α2

(a2 + al

a2 + l2

)2

(a2 − l2 + e2 + g2)
]−1

,

where we have employed the relations (6), (7). Notice that for vanishing acceleration α, this
regularization condition is simply C0 = 1.

Analogously, it is possible to regularize the second axis of symmetry θ = π. Now, the conceptual
problem is that the metric function gϕϕ in (122), and thus the circumference, does not approach
zero in the limit θ → π due to the presence of the term 4l sin2 1

2θ. This problem can be resolved by
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the same procedure as for the classic Taub–NUT solution (see the transition between the metrics
(12.1) and (12.3) in [4]), namely by applying the transformation of the time coordinate

tπ ≡ t− 4l ϕ . (125)

The metric (1) then becomes

ds2 =
1

Ω2

(

−Q

ρ2
[

dtπ −
(

a sin2 θ − 4l cos2 1
2θ

)

dϕ
]2

+
ρ2

Q
dr2

+
ρ2

P
dθ2 +

P

ρ2
sin2 θ

[

a dtπ −
(

r2 + (a− l)2
)

dϕ
]2
)

, (126)

i.e.,

gϕϕ =
1

Ω2ρ2

[

P
(

r2 + (a− l)2
)2

sin2θ −Q
(

a sin2 θ − 4l cos2 1
2θ

)2
]

, gθθ =
ρ2

Ω2P
. (127)

Thus, for θ → π we get gϕϕ ≈ P
(

r2 + (a− l)2
)2

(π − θ)2/Ω2ρ2. The radius of a small circle around

the axis θ = π is
∫ π

θ

√
gθθ dθ, so that the fraction

fπ ≡ lim
θ→π

circumference

radius
= lim

θ→π

2πC
√
gϕϕ

(π − θ)
√
gθθ

, (128)

is

fπ = 2πC P (π) = 2πC
(

1 + α
a2 − al

a2 + l2
r+

)(

1 + α
a2 − al

a2 + l2
r−

)

. (129)

The axis θ = π in the metric (126) can thus be made regular by the unique choice

C = Cπ ≡
[(

1 + α
a2 − al

a2 + l2
r+

)(

1 + α
a2 − al

a2 + l2
r−

)]−1

(130)

=
[

1 + 2αm
a2 − al

a2 + l2
+ α2

(a2 − al

a2 + l2

)2

(a2 − l2 + e2 + g2)
]−1

.

With such a choice, there is a deficit angle δ0 (conical singularity) along the first axis θ = 0, namely

δ0 ≡ 2π − f0

= 8π α
a2 [m(a2 + l2)− αal(a2 − l2 + e2 + g2)]

(a2 + l2)2 + 2αm(a2 − al)(a2 + l2) + α2(a2 − al)2(a2 − l2 + e2 + g2)
. (131)

For black holes without the NUT parameter (l = 0) this expression simplifies to

δ0 =
8π αm

1 + 2αm+ α2(a2 + e2 + g2)
, (132)

recovering the previous results for rotating charged C-metric, see Chapter 14 in [4]. The tension in
the cosmic string along θ = 0 pulls the black hole, causing its uniform acceleration. Such a string
extends to the full range of the radial coordinate r ∈ (−∞,+∞), connecting “our universe” with
the “parallel universe” through the nonsingular black-hole interior close to r = 0.

Complementarily, when the first axis of symmetry θ = 0 is made regular by the choice (124),
there is necessarily an excess angle δπ along the second axis θ = π, namely

δπ ≡ 2π − fπ

= −8π α
a2 [m(a2 + l2)− αal(a2 − l2 + e2 + g2)]

(a2 + l2)2 − 2αm(a2 + al)(a2 + l2) + α2(a2 + al)2(a2 − l2 + e2 + g2)
, (133)

which simplifies to

δπ = − 8π αm

1− 2αm+ α2(a2 + e2 + g2)
, (134)
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for l = 0. As in the C-metric, this represents the cosmic strut located along θ = π between the pair
of black holes, pushing them away from each other in opposite spatial directions.

We observe that δ0 = 0 = δπ whenever α = 0. In such a case both the axes are regular, there is
no physical cause of the acceleration and the Kerr–Newman–NUT black holes do not move.

Interestingly, both the axes θ = 0 and θ = π can be simultaneously regular even for non-
vanishing acceleration α when all six physical parameters satisfy the special constraint

m(a2 + l2) = αal (a2 − l2 + e2 + g2) . (135)

The non-trivial constraint requires both a 6= 0 and l 6= 0. Actually, this is a nice compact form of
the condition given on page 313 of [4], when the relations (15) for the physical parameters and
also the convenient gauge choice (30) are employed. This again demonstrates the advantages of
the new form of the metric (1).

However, the condition (135) is not satisfied for small values of the acceleration α obeying the
inequality (81) which guarantees the natural ordering of the four horizons (80). Indeed, (135) can
be rewritten as m(a2 + l2) = αal r+ r−. Now applying (81), and assuming m, a, l all positive, we
get the relation

m <
l

a+ l
r− < r− . (136)

It is in clear contradiction with (7) which implies m > r−.

5.6 Rotation of the cosmic strings (or struts)

With a generic NUT parameter l, the cosmic strings (or struts) are rotating. This can be seen by
calculating the angular velocity parameter ωθ of the metric, see [12], along the two different axes
θ = 0 and θ = π, namely

ωθ ≡ gtϕ
gtt

. (137)

For the general form of the new metric (1), where

gtϕ =
1

Ω2ρ2

[

Q
(

a sin2 θ + 4l sin2 1
2θ

)

− a
(

r2 + (a+ l)2
)

P sin2θ
]

,

gtt =
−1

Ω2ρ2

[

Q− a2P sin2 θ
]

, (138)

we obtain

ωθ = −Q
(

a sin2 θ + 4l sin2 1
2θ

)

− a
(

r2 + (a+ l)2
)

P sin2θ

Q− a2P sin2 θ
. (139)

Now we take any fixed value of r away from the horizons, so that Q 6= 0 is a non-vanishing constant.
Then the limits θ → 0 and θ → π are

ω0 = 0 and ωπ = −4l , (140)

respectively. The first axis θ = 0 is thus non-rotating, while the second axis θ = π rotates and
its angular velocity is directly and solely determined by the NUT parameter l. Notice that ωπ is
independent of the Kerr-like parameter a, and it also does not depend on the conicity parameter C.
The rotational character of the axis is thus a specific feature determined by the NUT parameter l,
which is clearly independent of the possible deficit angles defining the cosmic string/strut along
the same axis.

By changing the time coordinate as (125), we obtain the alternative metric (126) for which

gtπϕ =
1

Ω2ρ2

[

Q
(

a sin2 θ − 4l cos2 1
2θ

)

− a
(

r2 + (a− l)2
)

P sin2θ
]

,

gtπtπ =
−1

Ω2ρ2

[

Q− a2P sin2 θ
]

, (141)
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so that

ωθ = −Q
(

a sin2 θ − 4l cos2 1
2θ

)

− a
(

r2 + (a− l)2
)

P sin2θ

Q− a2P sin2 θ
. (142)

The corresponding angular velocities of the two axes are thus

ω0 = 4l and ωπ = 0 . (143)

In this case, the situation is complementary to (140): the axis θ = 0 rotates, while the axis θ = π
is non-rotating.

It is interesting to observe that there is a constant difference ∆ω ≡ ω0 − ωπ = 4l between
the angular velocities of the two rotating cosmic strings or struts, directly given by the NUT
parameter l (irrespective of the value of a or the choice of C). The NUT parameter is thus
responsible for the difference between the magnitude of rotation of the two axes θ = 0 and θ = π.

5.7 Closed timelike curves around the rotating strings (or struts)

In the vicinity of the rotating cosmic strings or struts located along θ = 0 or θ = π, the black-hole
spacetime with twist can serve as a specific time machine because (as in the classic Taub–NUT
solution) there are closed timelike curves.

To identify these pathological causality-violating regions we will consider simple curves in the
spacetime, namely circles around the axes of symmetry θ = 0 or θ = π such that only the periodic
angular coordinate ϕ ∈ [0, 2πC) changes, while the remaining coordinates t, r and θ are kept fixed.
The corresponding tangent (velocity) vectors are thus proportional to the Killing vector field ∂ϕ.
Its norm is determined just by the metric coefficient gϕϕ, which for the general metric (1) has the
form (122). There exist regions such that gϕϕ < 0, where the circles (orbits of the axial symmetry)
are closed timelike curves. These pathological regions are explicitly given by the condition

P (θ)
(

r2 + (a+ l)2
)2

sin2θ < Q(r)
(

a sin2 θ + 4l sin2 1
2θ

)2
, (144)

where the functions P (θ), Q(r) are given by (4), (5). In particular, for l = 0, g = 0, α = 0 this
reduces to r2 + a2 + ρ−2 (2mr − e2) a2 sin2 θ < 0 which is exactly the condition (27) derived in [13]
for the Kerr–Newman family of black holes.

Although this condition is difficult to be solved analytically, some general observations can
be made. Clearly, the condition can not be satisfied in the regions where Q(r) < 0. Naturally
assuming a sufficiently small acceleration α satisfying the inequality (81), the function P (θ) is
positive, while the four distinct horizons are ordered as r−a < r−b < r+b < r+a , see (80). For l < a,
the metric function Q satisfies Q(r) > 0 only in the regions (r−a , r

−
b ) and (r+b , r

+
a ), in which r

is a spatial coordinate. The closed timelike curves can thus only appear between the black hole
horizon H±

b and the corresponding acceleration horizon H±
a , that is only in the region IV given by

r ∈ (r−a , r
−
b ) or in the region II given by r ∈ (r+b , r

+
a ). On the contrary, the pathological domain

can not occur in the region III inside the black hole or close to the conformal infinities I± which
are the boundaries of the dynamical regions I and V where r is temporal because Q < 0. This fact
is explicitly seen in the exact plots shown in Fig. 6.

Moreover, it can be proven analytically that these pathological regions with closed timelike
curves do not overlap with the ergoregions (shown in Fig. 1), although they are both in the same
domains II and IV. Recall that the ergoregions are identified by the condition gtt > 0 (together
with grr > 0), that is

Q < P a2 sin2 θ , (145)

see Eq. (84). By substituting this inequality into (144), which is the condition gϕϕ < 0 for the
pathological regions, we obtain the relation

r2 + (a+ l)2 < a2 sin2 θ + 4al sin2 1
2θ , (146)

that is the same as r2 + a2 cos2 θ + 2al cos θ + l2 < 0 . In view of (3), we have thus obtained

ρ2 ≡ r2 + (l + a cos θ)2 < 0 , (147)

which is a contradiction.
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Figure 6: Plot of the metric function gϕϕ (122) for the accelerating black hole (1) with a regular axis
θ = 0 and rotating cosmic string along θ = π. The values of gϕϕ are visualized in quasi-polar coordinates
x ≡

√

r2 + (a+ l)2 sin θ, y ≡
√

r2 + (a+ l)2 cos θ for r ≥ 0 (left) and r ≤ 0 (right). The grey annulus in
the center of the left figure localizes the black hole bordered by its horizons H±

b at r+ and r− (0 < r− < r+).
The acceleration horizons H±

a at r+a and r−a (big red circles) and the conformal infinity I at Ω = 0 are
also shown. The grey curves are contour lines gϕϕ(r, θ) = const., and the values are color-coded from
red (positive values) to blue (negative values); extremely large values are cut. The purple curves are the
isolines gϕϕ = 0 determining the boundary of the pathological regions (144) with closed timelike curves.
They occur close to the axis θ = π (purple regions where gϕϕ < 0). This plot is for the choice m = 3,
a = 1, l = 0.2, e = g = 1.6, and α = 0.12.

Interestingly, there is thus no intersection of the pathological regions with the ergoregions.
This is in accord with a physical intuition: the pathological regions with closed timelike curves
are located here in the vicinity of the twisting axis θ = π, while the ergoregions are concentrated
mostly near the equatorial plane θ = π

2 of the rotating black hole horizons.

5.8 Thermodynamic properties

Finally, we evaluate basic thermodynamic quantities of this class of black holes, namely the entropy

S ≡ 1

4
A , (148)

given by the horizon area A, and the temperature

T ≡ 1

2π
κ , (149)

given by the corresponding horizon surface gravity κ, see [18].
We obtain the horizon area by integrating both angular coordinates of the metric (1) for fixed

values of t and r = rh,

A(rh) =

∫ 2πC

0

∫ π

0

√
gθθ gϕϕ dθ dϕ , (150)

where the metric functions are given by (122). Using the fact that Q(rh) = 0 on any horizon, this
expression simplifies to

A = 2πC
(

r2h + (a+ l)2
)

∫ π

0

sin θ

Ω2(rh)
dθ . (151)
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Applying the explicit form of the conformal factor (2), an integration immediately leads to

A =
4πC

(

r2h + (a+ l)2
)

(

1− α
a2 + al

a2 + l2
rh

)(

1 + α
a2 − al

a2 + l2
rh

)

. (152)

With the gauge (30), this is the same expression as Eq. (51) in [10]. In particular, for the four
distinct horizons H introduced in (71)–(74) we thus obtain that

area of H+
b is A+

b =
4πC

(

r2+ + (a+ l)2
)

(

1− α
a2 + al

a2 + l2
r+

)(

1 + α
a2 − al

a2 + l2
r+

)

, (153)

area of H−
b is A−

b =
4πC

(

r2− + (a+ l)2
)

(

1− α
a2 + al

a2 + l2
r−

)(

1 + α
a2 − al

a2 + l2
r−

)

, (154)

area of H+
a is infinite , (155)

area of H−
a is infinite . (156)

The area of the acceleration horizons H±
a is thus unbounded, while the black-hole horizons H±

b

have finite values given by (153), (154).
Interestingly, there exists a relation between these horizon areas and the conicities, namely

A+
b A−

b = 16π2C2 C0 Cπ

(

r2+ + (a+ l)2
)(

r2− + (a+ l)2
)

, (157)

where C0 and Cπ, given by (124) and (130), are the specific conicities which regularize ei-
ther the θ = 0 or the θ = π axis, respectively. For vanishing acceleration α the conicities are
C = C0 = Cπ = 1, so that the two horizons of the complete family of Kerr–Newman–NUT black
holes (31)–(33) located at r± = m±

√

m2 + l2 − a2 − e2 − g2 have the corresponding areas

A±
b = 4π

(

r2± + (a+ l)2
)

. (158)

This simple expression reduces to the well-known formulas for Kerr–Newman black holes (l = 0),
charged Taub–NUT (a = 0), Kerr (l = 0, e = 0 = g), Reissner–Nordström (a = 0, l = 0), and
Schwarzschild (a = 0, l = 0, e = 0 = g) with a single horizon of the area Ab = 4π r2h = 16πm2.

The surface gravity κ is defined as the “acceleration” of the null normal ξa generating the
horizon at rh via the relation ξa;b ξ

b = κ ξa (so that κ2 = − 1
2 ξa;b ξ

a;b). Previously in [10] we
showed that for the general metric form (1) this can be expressed as

κ =
1

2

Q′(rh)

r2h + (a+ l)2
, (159)

where the prime denotes the derivative with respect to the coordinate r. With the new factorized
form (5) of the metric function Q(r) this can now be easily evaluated, yielding

surface gravity of H+
b is κ+

b =

1
2

(

r+ − r−
)

(

1 + α
a2 − al

a2 + l2
r+

)(

1− α
a2 + al

a2 + l2
r+

)

r2+ + (a+ l)2
, (160)

surface gravity of H−
b is κ−

b = −
1
2

(

r+ − r−
)

(

1 + α
a2 − al

a2 + l2
r−

)(

1− α
a2 + al

a2 + l2
r−

)

r2− + (a+ l)2
, (161)

surface gravity of H+
a is κ+

a = −α
a2

a2 + l2

(

r+a − r+
)(

r+a − r−
)

(r+a )2 + (a+ l)2
, (162)

surface gravity of H−
a is κ−

a = α
a2

a2 + l2

(

r−a − r+
)(

r−a − r−
)

(r−a )2 + (a+ l)2
. (163)
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Recall that the specific values r+, r−, r+a , r−a of the horizons position are explicitly given by
(71)–(74). In particular,

1
2

(

r+ − r−
)

=
√

m2 + l2 − a2 − e2 − g2 . (164)

Notice that the surface gravities κ (and thus the corresponding temperatures T ) of the black-
hole horizon H+

b and the acceleration horizon H−
a are positive, while they are negative for the

complementary horizons H−
b and H+

a .
It is also very interesting that even in the most general case the product of the area and the

surface gravity of the black-hole horizons are the same, and expressed simply as

A+
b κ

+
b = −A−

b κ
−
b = 2πC

(

r+ − r−
)

. (165)

Consequently, the product of the temperature and the entropy of the black-hole horizons H±
b is

(TS)+ = −(TS)− = 1
2C

√

m2 + l2 − a2 − e2 − g2 . (166)

Moreover, it is seen from (160) and (161) that

κ+
b = 0 = κ−

b if and only if r+ = r− (167)

(assuming a reasonably small acceleration α). This fully confirms that an extremal horizon has
vanishing surface gravity. As described in Sec. 4, if the extremality condition (44) is satisfied the
double-degenerate extremal horizon is located at

rh = m, (168)

and the metric function Q(r) takes the form (47),

Q(r) = (r −m)2
(

1 + α a
a− l

a2 + l2
r
)(

1− α a
a+ l

a2 + l2
r
)

. (169)

Clearly, Q(rh) = 0 and also Q′(rh) = 0, so that κ = 0 due to (159). Such a degenerate black-hole
horizon at r = m in the family of accelerating extremal Kerr–Newman–NUT spacetimes has zero
surface gravity, and thus zero thermodynamic temperature T .

Let us consider the special case with vanishing acceleration (α = 0). In such a situation, the
expressions (160)–(163) simplify:

surface gravity of H+
b is κ+

b =

√

m2 + l2 − a2 − e2 − g2

r2+ + (a+ l)2
, (170)

surface gravity of H−
b is κ−

b = −
√

m2 + l2 − a2 − e2 − g2

r2− + (a+ l)2
, (171)

surface gravity of H±
a is κ±

a = 0 . (172)

(Actually, both the acceleration horizonsH±
a disappear in this limit.) Writing (170) fully explicitly,

we obtain the surface gravity of the black-hole horizon H+
b

κ+
b =

√

m2 + l2 − a2 − e2 − g2
(

m+
√

m2 + l2 − a2 − e2 − g2
)2

+ (a+ l)2
. (173)

This generalizes for the case l 6= 0 and g 6= 0 the expression

κ =

√
m2 − a2 − e2

2m(m+
√
m2 − a2 − e2)− e2

, (174)
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which is the usual surface-gravity formula for the Kerr–Newman black hole, see Eq. (12.5.4) in [18].
For the Schwarzschild black hole it reads κ = 1/(4m).

Finally, let us remark that our explicit and fully general expressions (160)–(163) for the surface
gravity κ of each of the 4 horizons at rh agree with the results obtained directly from the definition
ξa;b ξ

b = κ ξa if the appropriate null normal generator ξa of the horizon is employed. In particular,
the corresponding Killing vector field is

ξa ≡ ∂t +Ωh ∂ϕ , (175)

where the constant Ωh is the angular velocity of the given horizon H. Using (138) and (122), the
norm ξaξa of the Killing vector ξa at the horizon (where Q = 0) vanishes if and only if

Ωh =
a

r2h + (a+ l)2
. (176)

For the particular horizons r±b ≡ r± and r±a given by (71)–(74) this gives the constants

Ω±
b =

a

r2± + (a+ l)2
, (177)

Ω±
a =

α2a3 (a± l)2

(a2 + l2)2 + α2a2 (a+ l)2(a± l)2
. (178)

It can be seen that for vanishing Kerr-like rotation (a = 0) the angular velocities of all four
horizons become zero, whereas for vanishing NUT parameter (l = 0) they all remain non-zero,

Ω±
b =

a

r2± + a2
, Ω±

a =
α2a

1 + α2a2
. (179)
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5.9 Concluding summary

In this work we presented a new metric form (1)–(7) of the remarkable family of exact black holes
of algebraic type D, initially found by Debever (1971) and by Plebański and Demiański (1976).
Moreover, we demonstrated that this improved metric representation has many advantages which
simplify the investigation of its geometrical and physical properties. In particular:

• In Sec. 2 we started with a convenient Griffiths–Podolský (2005, 2006) form of this class
of spacetimes, but we further improved it. By introducing a modified set of the mass and
charge parameters m, e, g, applying a special conformal rescaling S, and choosing a useful
gauge of the twist parameter ω, we obtained an explicit compact form of the metric.

• The metric functions (2)–(5) are very simple, depending only on the radial coordinate r and
the angular coordinate θ. Moreover, the key functions P (θ) and Q(r) are factorized. They
explicitly localize the axes of symmetry and the horizons, respectively.

• The metric depends on six parameters m, a, l, α, e, g with direct physical meaning, namely
they represent the mass, Kerr-like rotation, NUT parameter, acceleration, electric, and mag-
netic charges of the black hole, respectively.

• Interestingly, the new metric (1) depends on the parameters a, l, α directly, while the depen-
dence on the remaining three parameters m, e, g is encoded in the two constants r+ and r−
defined by (6) and (7). In fact, these expressions localize the two black-hole horizons, and
they only appear in the factorized metric functions P and Q.

• Very nice feature of the new metric form (1)–(5) is that any of its six physical parameters
can be independently set to zero, and this can be done in any order. In this way, specific
subclasses of type D black holes are easily obtained.

• This property is demonstrated in Sec. 3 where the general family of accelerating, charged,
rotating and NUTed black holes naturally reduce to its large subclasses with five physical
parameters. These are the Kerr–Newman–NUT black holes without acceleration (α = 0),
accelerating Kerr–Newman black holes without NUT (l = 0), charged Taub–NUT black holes
without rotation (a = 0), and accelerating Kerr–NUT black holes without electric or mag-
netic charges (e = 0 or g = 0).

• All the metric functions (2)–(5) depend on the acceleration α only via the product αa.
Therefore, by setting the Kerr-like rotation a to zero, the new metric (1) becomes indepen-
dent of α, and simplifies directly to charged Taub–NUT black holes. This explicitly confirms
the previous observation made by Griffiths and Podolský that there is no accelerating NUT
black hole in the Plebański–Demiański family of type D spacetimes. Quite surprisingly, such
a solution for accelerating non-rotating black hole with purely NUT parameter exists [8,12],
but it is of distinct algebraic type I.

• The simplest subcases of our general metric (1) with just the massm and one additional phys-
ical parameter reveal the famous black holes, namely the Schwarzschild, Reissner–Nordström,
Kerr, Taub–NUT or the C-metric solutions, all in their standard coordinate forms.

• As shown in Sec. 4, the improved metric (1) naturally contains also extreme black holes with
double-degenerate horizons (r+ = r−) located at r = m, whenever m2 + l2 = a2 + e2 + g2.
Such a family of extremal accelerating Kerr–Newman–NUT black holes also admits various
subclasses, obtained by setting any of the parameters α, l, a, e, g to zero. In fact, they
represent the complete class of extremal isolated horizons with axial symmetry [10].

• The hyperextreme cases, when the parameters satisfy the relation m2 + l2 < a2 + e2 + g2,
represent exact spacetimes with an accelerated naked singularity. The metric functions P,Q
are not (fully) factorizable, and take the form (51), (52). There are thus only two acceleration
horizons, which are absent when αa = 0.
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The new convenient metric (1) considerably simplifies the investigation of various properties of
this large family of black holes, as demonstrated in the subsequent sections of our work, namely:

• First, in Sec. 5 we evaluated the Weyl and Ricci tensors of (1), expressed as the Newman–
Penrose scalars in the natural tetrad (54) adapted to the double-degenerate principal null
directions. The only such scalars are Ψ2 and Φ11, confirming the type D algebraic structure
of the gravitational field, aligned with the non-null electromagnetic field (67)–(69).

• Their explicit form (55) and (56) reveals that generic black-hole spacetimes are asymptoti-
cally flat at Ω = 0. For vanishing acceleration α, the spacetimes (1) become asymptotically
flat for large values of the radial coordinate |r| (except along the axes of symmetry θ = 0
and θ = π if the cosmic strings or struts are present).

• Both the double-degenerate principal null directions are expanding. They are twisting if and
only if a = 0 = l. On the horizons, the expansion and twist always vanish.

• In general, there are four distinct horizons identified in Subsec. 5.1 as the roots of the metric
function Q(r). Since its form (70) is fully factorized, the corresponding positions are simply
expressed in terms of the physical parameters as (71)–(74). There is a pair of black-hole

horizonsH±
b at r±b ≡ r± = m±

√

m2 + l2 − a2 − e2 − g2, and a pair of acceleration horizons
H±

a at r±a ≡ ±α−1(a2 + l2)/(a2 ± a l), which simplifies to r±a ≡ ±α−1 when l = 0.

• Interestingly, these positions of the black-hole horizons are independent of the acceleration α,
while the acceleration horizons do not depend on the mass m and the charges e, g.

• For sufficiently small acceleration α such that α r+ < (a2 + l2)/(a2 + a l), with 0 ≤ l < a,
the four horizons are ordered as r−a < r−b < r+b < r+a , see (81).

• Whenever the Kerr-like rotation parameter a is non-zero, each of these four horizons is
accompanied by the corresponding ergoregion, see Subsec. 5.2. It “touches’ the horizon at
its poles, extending from the horizon near the equatorial region. This is shown in Fig. 1.
For the Kerr–Newman–NUT black holes without acceleration, the ergoregions are bounded
by the surface re±(θ) = m±

√

m2 + l2 − e2 − g2 − a2 cos2 θ.

• Using the Weyl scalar Ψ2 and also the Kretschmann scalar K ≡ RabcdR
abcd, in Subsec. 5.3

we clarified the presence and the structure of the curvature singularities. Such a singularity
is present at r = 0, but only if l + a cos θ = 0 which requires |l| ≤ |a|. There is thus no
curvature singularity in the black-hole spacetimes with large NUT parameter |l| > |a| ≥ 0.

• For 0 ≤ |l| ≤ |a| the curvature singularity is present at r = 0, but only in the section with
special value of the angular coordinate θ such that cos θ = −l/a. Various possibilities are
summarized in (89).

• This singularity has a ring structure which can be crossed from the asymptotically flat region
r > 0 to the distinct asymptotically flat region r < 0, as schematically shown in Fig. 2 and
Fig. 3. Only in the section cos θ = −l/a (or for any value of θ if l = 0 = a) we have to restrict
the range of r to two separate domains r > 0 and r < 0.

• To complete our understanding of the global causal structure of the entire family of black-
hole spacetimes (1), in Subsec. 5.4 we introduced the retarded and advanced null coordinates
in which the corresponding metric forms (93) and (96) have no coordinate singularities at
the horizons.

• Then we explicitly constructed the corresponding Kruskal–Szekeres-type coordinates which
enabled us to perform the maximal analytic extension across all the horizons. It revealed an
infinite number of time-dependent regions (of type I, III, V) and stationary regions (of type
II, IV) which are separated by the black hole and acceleration horizons H±

b and H±
a .
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• The complicated global structure of this large family of spacetimes is visualized in the Penrose
diagrams obtained by a suitable conformal compactification, drawn in Fig. 4 and Fig. 5. The
complete manifold contains an infinite number of black holes in various asymptotically flat
universes identified by distinct (future and past) conformal infinities I — unless a special
topological identification is made.

• In Subsec. 5.5 we clarified that the physical source of acceleration of the black holes is the
tension (or compression) in the rotating cosmic strings (or struts) located along the two
axes of axial symmetry at θ = 0 and θ = π. Such strings or struts are related to the deficit
or excess angles which introduce topological defects along these axes (while the curvature
remains finite).

• In general, there are strings/struts along both the axes, but one of the axis can be made
fully regular by a suitable choice of the conicity parameter C in the range ϕ ∈ [0, 2πC). The
first axis θ = 0 is regular in the metric form (1) with the choice (124), whereas the second
axis θ = π is regular in the form (126) with the choice (130). In the first case, there is a
cosmic strut along θ = π with the excess angle (133), while in the second case there is a
cosmic string along θ = 0 with the deficit angle (131). For vanishing acceleration, both the
axes can be made regular simultaneously (except for a possible NUT-like pathology).

• In addition to the deficit/excess angles, these cosmic strings/struts located along the axes
of symmetry are characterized by their rotation parameter ω (angular velocity). We demon-
strated in Subsec. 5.6 that their values are directly related to the NUT parameter l, see
expressions (140) and (143).

• There is always a constant difference ∆ω = 4l between the angular velocities of the two
rotating cosmic strings or struts. If and only if l = 0, both the axes are nontwisting.

• In the neighborhood of these rotating strings/struts there occur pathological regions with
closed timelike curves. As shown in Subsec. 5.7, these regions are generally given by the
condition (144). They appear close to the rotating strings/struts, but only between the black
hole horizon H±

b and the corresponding acceleration horizon H±
a (that is in the domains of

type II and IV), see Fig. 6.

• Although the pathological regions with closed timelike curves are located in the same domains
as the ergoregions, they do not overlap with each other.

• The convenient metric form (1) with straightforward identification of the horizons is also
suitable for an easy investigation of the black hole thermodynamics. Indeed, in Subsec. 5.8
we explicitly evaluated the area of the four horizons (153)–(156), their surface gravity (160)–
(163), and their angular velocity (177)–(178).

• These expressions generalize the usual formulas for the Kerr–Newman family to black holes
with acceleration α and NUT parameter l. They reveal interesting relations for the horizons
temperature and entropy, for example (TS)+ = −(TS)− = 1

2C
√

m2 + l2 − a2 − e2 − g2.

To conclude, the simple new metric form (1)–(7) has clear advantages. We hope that it will be
employed for various studies and applications of this interesting class of accelerating and rotating
black holes which charges and the NUT parameter.
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[1] J. F. Plebański and M. Demiański, Rotating, charged and uniformly accelerating mass in
general relativity, Ann. Phys. (N.Y.) 98 (1976) 98–127.

[2] R. Debever, On type D expanding solutions of Einstein–Maxwell equations, Bull. Soc. Math.
Belg. 23 (1971) 360–76.

[3] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Herlt, Exact Solutions of
Einstein’s Field Equations (Cambridge University Press, Cambridge, 2003).
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