
Extremal isolated horizons with Λ
and the related unique type D black holes

David Matejov, Jiří Podolský

Charles University, Faculty of Mathematics and Physics,

Institute of Theoretical Physics, V Holešovičkách 2, 180 00 Prague 8, Czech Republic

E-mail: d.matejov@gmail.com, podolsky@mbox.troja.mff.cuni.cz

December 24, 2021

Abstract

We extend our previous work in which we derived the most general form of an
induced metric describing the geometry of an axially symmetric extremal isolated
horizon (EIH) in asymptotically flat spacetime. Here we generalize it to EIHs in
asymptotically (anti-)de Sitter spacetime. The resulting metric conveniently forms
a 6-parameter family which, in addition to a cosmological constant Λ, depends on
the area of the horizon, total electric and magnetic charges, and two deficit an-
gles representing conical singularities at poles. Such a metric is consistent with
results obtained in the context of near-horizon geometries. Moreover, we study
extremal horizons of all black holes within the class of Plebański-Demiański exact
(electro)vacuum spacetimes of the algebraic type D. In an important special case of
non-accelerating black holes, that is the famous Kerr-Newman-NUT-(A)dS metric,
we were able to identify the corresponding extremal horizons, including their posi-
tion and geometry, and find explicit relations between the physical parameters of
the metric and the geometrical parameters of the EIHs.
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1 Introduction

In the present article, we continue our investigation of axisymmetric extremal isolated
horizons admitting a non-zero value of the cosmological constant Λ.

As we have already pointed out in our previous work [1], the concept of an isolated
horizon has many interesting and advantageous features. Above all, it may serve as a
model describing a black hole in equilibrium with its neighborhood (its accretion disk,
an external electromagnetic field, etc.), purely (quasi-)locally. This can be very useful in
theoretical research as well as in various applications in numerical relativity or related
astrophysical studies [2–5]. Among significant recent discoveries let us mention the gen-
eral proof of the Meissner effect for black holes [6, 7]. Our work continues along this
direction. More specifically, we rigorously analyse the uniqueness of the extremal black
hole horizons.

It has been previously shown [8, 9] that when a black hole becomes extremal (by
increasing its rotation, for example), it exhibits behaviour leading to its very special
properties that do not depend on the surrounding environment. One of these properties
is the uniqueness of the induced metric on the horizon slices of constant time. Here
we extend our previous investigations and results [1] to the case when the black hole
is situated in asymptotically (anti-) de Sitter spacetime with a non-zero cosmological
constant. We systematically derive the induced metric of the extremal horizon using the
Newman-Penrose (NP) formalism, pointing out differences between the Λ = 0 and Λ 6= 0
cases. We also compare our general result with the analogous one previously obtained
in [10–13]. We discuss the advantages of our approach, leading to a result which — by its
simple and elegant form — allows also direct interpretation of the obtained integration
constants. In particular, we find explicit relations between geometrical parameters of
the EIHs and physical parameters of the Kerr-Newman-NUT-(anti-)de Sitter solution
contained in the Plebański-Demiański class of metrics [14–21].

Let us summarize structure of this paper. In Sec. 2, we review the necessary notation
and basic definitions concerning isolated horizons. In Sec. 3 we specialize on extremal
isolated horizons with non-zero cosmological constant Λ, and we explicitly solve the con-
straint equations for a function describing the horizon geometry. We also compare our
result with the analogous result already known in literature. In Sec. 4 we investigate the
horizon geometry of the most general type D black hole in a Plebański-Demiański fam-
ily of exact spacetimes. Then we restrict our attention to non-accelerating black holes,
that is the well-known Kerr-Newman-NUT-(A)dS spacetime. In the final Sec. 5 we show
that such an extremal horizon has geometry identical to the one derived for a generic
EIH in Sec. 2, and we also provide explicit relations between the parameters of both
solutions. Appendix A contains a discussion of the number and character of possible
extremal horizons in the Kerr-Newman-NUT-(A)dS spacetime.

2



2 Preliminaries

Here we consider EIHs with a non-zero cosmological constant Λ 6= 0. In our convention
of metric (+−−−), the Einstein equations read

Rab − 1
2
Rgab + Λ gab = −8π Tab. (1)

In the Newman-Penrose (NP) formalism1, the equations are reduced to a relation between
the trace-free part of the Ricci tensor and corresponding tetrad projections of the energy-
momentum tensor. In electrovacuum spacetimes with Λ, this relation is simply

Φab = 2φaφ̄b, (2)

where φa are tetrad projections of the electromagnetic field tensor Fab.
Further we define H to be an isolated horizon with a cross section K. The null

generator of H coincides with the null vector la of the NP tetrad on H, while the vectors
ma, m̄a span the tangent space of K, and na is constant on H.

It turns out that for axially symmetric 2-dimensional manifolds of spherical topology
it is useful to introduce adapted coordinates (ζ, φ) ∈ [−1, 1]× [0, 2π) in which its metric
has the canonical form [4]

qab dxadxb ≡ −R2
( 1

f(ζ)
dζ2 + f(ζ) dφ2

)
. (3)

Such metric is characterized by a single metric function f(ζ). We further assume that
the function satisfies the generalized regularity conditions at the poles ζ = ±1, namely

f ′(±1) = ∓ 2
(

1 +
δ±
2π

)
. (4)

A convenient choice of the spatial vector ma on H is

ma H=
1√
2R

(√
f(ζ) ∂aζ +

i√
f(ζ)

∂aφ

)
, (5)

normalized as mam̄
a = −1. The only independent component of the connection on H is

then given by the coefficient a defined as

a ≡ maδ̄ m̄
a = α− β̄ H= − 1

2
√

2R

f ′(ζ)√
f(ζ)

. (6)

With this choice, a is real on the horizon, ā H
= a, as well as the derivative operator

δ ≡ ma∇a
H
= δ̄ acting on a scalar function, namely

δϕ
H
=

1√
2R

√
f(ζ) ∂ζϕ, (7)

for an arbitrary function ϕ = ϕ(ζ).
1For its summary see our previous work [1].
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2.1 Electromagnetic field and the spin coefficient π
NP

As we have already discussed in [1, 7], the tetrad component φ1 of the electromagnetic
field tensor Fab is on the horizon governed by the Maxwell equation which, under an
assumption of stationarity Dφ2

H
= 0, reads

δφ1 + 2π
NP
φ1 − κ(`) φ2

H
= 0. (8)

This equation remains unchanged also in spacetimes with a cosmological constant Λ 6= 0.
Similarly, the spin coefficient π

NP
, which is a subject of a particular NP Ricci identity,

remains unaffected. Namely, the equation on the horizon reads

ð̄π
NP

H
= κ(`) λ− π2

NP
. (9)

These two equations can be fully integrated in the axially symmetric extremal case
κ(`) = 0. The explicit solutions in the adapted coordinates are

φ1
H
=

cφ
(ζ + cπ)2

, π
NP

H
=

√
f

2

1

R (ζ + cπ)
, (10)

in which the integration constants cφ, cπ depend only on intrinsic properties of the horizon.
It is illustrative to express cφ in terms of the physical electric and magnetic charges,

Q ≡ QE + iQM =
1

2π

∮
K
φ1 vol(K) =

2R2

c2
π − 1

cφ. (11)

Inverting this relation gives

cφ =
Q

2R2
(c2
π − 1). (12)

Notice that the general arguments which previously led to proof of the Meissner
effect [6, 7] remain valid as well.

3 Geometry of horizon sections

In previous section we argued that the electromagnetic field φ1 and the spin coefficient π
NP

are independent of the cosmological constant Λ. However, this might not be expected
for the Ψ2 component of the Weyl tensor, and for the horizon geometry described by
the metric function f(ζ). Indeed, repeating the same arguments as in [1] we obtain the
constrain equations for Ψ2 and f(ζ) in the form

ðπ
NP

H
= −π

NP
π̄

NP
−Ψ2 − 2Λ

NP
,

ðπ
NP
− ðπ

NP

H
= 2a2 − 2δa− 2Ψ2 + 2Λ

NP
+ 4|φ1|2. (13)

Both equations contain additional terms proportional to the NP quantity Λ
NP
, which is

related to the scalar curvature by Λ
NP

= R/24. Therefore, in electrovacuum spacetimes
Λ

NP
= Λ/6. From now on, we will use only the cosmological constant Λ to avoid confusion.
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Combining these two equations to eliminate Ψ2 and using equation (9) we arrive at

a2 − δa+ 2|φ1|2 − 1
2
Λ
H
= 1

2
(π

NP
− π̄

NP
)2 + a(π

NP
+ π̄

NP
). (14)

Further, we employ the definition (6) and the expression for the derivative operator (7)
in the adapted coordinates. After some algebra, the final equation for f(ζ) reads

|ζ + cπ|4 f ′′ + (2ζ + cπ + c̄π)|ζ + cπ|2 f ′ + (cπ − c̄π)2 f + 8R2|cφ|2

+ 2ΛR2(ζ + c̄π)2(ζ + cπ)2 H= 0. (15)

The general solution in terms of the integration constants cπ and cφ has the form

f(ζ) =
4|cφ|2R2(1− ζ2)

(|cπ|2 − 1) |ζ + cπ|2

− ΛR2(1− ζ2)
(|cπ|2 − 1)

(
ζ2 + 2(cπ + c̄π)ζ

)
+ 3c2

π c̄
2
π + cπ c̄π −

(
ζ2 + 2(cπ + c̄π)2

)
3(|cπ|2 − 1) |ζ + cπ|2

,

(16)

where we have applied the boundary conditions at both poles f(±1) = 0 to fix the inte-
gration constants. We also impose our generalized regularity conditions (4) to find the
value of the constant cπ. We thus obtain

cπ =
δ− − δ+ ± 2 i

√
A0 − A1 + A2

4π + δ− + δ+ − 4π|Q|2R−2 − 4πΛR2
, (17)

where

A0 ≡ (2π + δ−)(2π + δ+)− 4π2|Q|4R−4,

A1 ≡ 4
3
π(4π + δ− + δ+)ΛR2 − 8

3
π2|Q|2Λ, (18)

A2 ≡ 4
3
π2Λ2R4.

Substitution into the formula for f(ζ) yields a unique solution. We summarize it in the
following theorem, which is generalization of [1].

Theorem 1 Let (H, [la]) be an axially symmetric extremal isolated horizon (EIH) of
topology Sδ+δ− in asymptotically (anti-)de Sitter spacetime. Then the geometry of its spher-
ical sections is described by an induced metric qab in the form (3), where the dimensionless
metric function f(ζ) is given

fEIH(ζ) = (1− ζ2)
d0 + d1 ζ + d2 ζ

2

c0 + c1 ζ + c2 ζ2
, (19)

in which

d0 ≡ (2/π)(2π + δ−)(2π + δ+) + 1
3
ΛR2

[
4π(ΛR2 − 5)− 5(δ− + δ+) + q2

]
,

d1 ≡ 4
3
ΛR2(δ− − δ+),

d2 ≡ 1
3
ΛR2

[
4π(1− ΛR2) + (δ− + δ+)− q2

]
,

(20)
c0 ≡ 4π(1− 1

3
ΛR2) + (δ− + δ+) + q2,

c1 ≡ 2(δ− − δ+),

c2 ≡ 4π(1− ΛR2) + (δ− + δ+)− q2,
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and we have denoted

q2 ≡ 4π
|Q|2

R2
. (21)

The function fEIH(ζ) is unique and depends on 6 real independent parameters, namely
δ+, δ−, R,Λ and Q ≡ QE + iQM . It is well-behaved, and any of these parameters (except
R when |Q| 6= 0) can be set to zero.

This is a fully general and explicit result for (axisymmetric) extremal isolated horizons,
expressed in terms of geometrical and physical parameters, namely:

Λ ..... cosmological constant ,
R ..... radius defined by the horizon area A = 4πR2 ,

q2 ..... dimensionless elmag charge parameter q2 = (4π)2(Q2
E +Q2

M)/A ,

δ± ..... two deficit angles at the horizon poles ζ = ±1, respectively .

In fact, Λ and R are combined into a single dimensionless parameter ΛR2, so that all
terms entering the coefficients di and ci are dimensionless. Moreover, d1 = 2

3
ΛR2 c1 and

d2 = 1
3
ΛR2 c2.

The metric function has to be positive, f(ζ) > 0, and non-zero except at the poles
where f(ζ = ±1) = 0, which restricts range of the parameters.

There are two natural subcases to consider:

The case Λ = 0

In the spacetimes with zero cosmological constant Λ = 0 the metric function (19) acquires
much simpler form. The coefficients (20) reduce to

d0 = (2/π)(2π + δ−)(2π + δ+), c0 = 4π + (δ− + δ+) + q2,

d1 = 0, c1 = 2(δ− − δ+), (22)

d2 = 0, c2 = 4π + (δ− + δ+)− q2,

so the function f(ζ) simplifies to

fEIH(ζ) =
2

π

(2π + δ−)(2π + δ+)(1− ζ2)

4π(1 + ζ2) + δ−(1 + ζ)2 + δ+(1− ζ)2 + q2(1− ζ2)
. (23)

This is exactly the function derived and analysed in our previous work, see Theorem 1
and Eq. (65) in [1].

Regular axes δ− = 0 = δ+

In the case when the both poles are regular, the coefficients (20) simplify to

d0 = 8π + 1
3
ΛR2

[
4π(ΛR2 − 5) + q2

]
, c0 = 4π(1− 1

3
ΛR2) + q2,

d1 = 0, c1 = 0, (24)

d2 = 1
3
ΛR2

[
4π(1− ΛR2)− q2

]
, c2 = 4π(1− ΛR2)− q2,
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and thus the function (19) takes the form

fEIH(ζ) = (1− ζ2)
2 + 1

3
ΛR2

[
(ΛR2 − 5 + 1

4π
q2) + (1− ΛR2 − 1

4π
q2) ζ2

]
(1− 1

3
ΛR2 + 1

4π
q2) + (1− ΛR2 − 1

4π
q2) ζ2

. (25)

As we will show below, a metric function of this form can be identified with an extremal
isolated horizon of the Kerr-Newman-(anti-)de Sitter black hole. When we set the elec-
tromagnetic charges to zero (QE = 0 = QM , implying q2 = 0) we obtain

fEIH(ζ) = (1− ζ2)
2 + 1

3
ΛR2

[
(ΛR2 − 5) + (1− ΛR2) ζ2

]
(1− 1

3
ΛR2) + (1− ΛR2) ζ2

. (26)

This is the result recently presented by Buk and Lewandowski [9], with a straightforward
identification of the variables ζ ≡ x, fEIH ≡ P 2.

3.1 Comparison with the general result by Kunduri and Lucietti

An analogous result to our Theorem 1 for the geometry of an extremal black hole has
been presented by Kunduri and Lucietti in [10] in the context of near-horizon geometries.
This result in general admits conical singularities as well as electromagnetic field and the
cosmological constant. However, from the analysis performed in [10] it is not immediately
clear which physical quantity is related to which integration constant. In what follows
we will compare our result (19) with the result (83), or Theorem 4.3, in [10] for the
uncharged case e = 0 = g. Such metric of the near-horizon geometry reads

ds2
KL = Γ(x)(A0r

2 dv2 + dv dr) +
Γ(x)

P(x)
dx2 +

P(x)

Γ(x)
(dΦ + kr dv)2, (27)

with

Γ(x) =
k2

β
+
βx2

4
, (28)

P(x) = −βΛ

12
x4 +

(
A0 −

2Λk2

β

)
x2 + c1 x−

4k2

β2

(
A0 −

Λk2

β

)
. (29)

When we set dr = 0 the metric degenerates if and only if r = 0. The horizon, which is
a null hypersurface, is therefore located at r = 0. Then the induced metric of a horizon
section is

g|K =
Γ(x)

P(x)
dx2 +

P(x)

Γ(x)
dΦ2, (30)

The poles and the range of the coordinate x are determined by possible roots of the
polynomial P(x) such that P(x+) = 0 = P(x−).

3.1.1 The case Λ = 0

For simplicity, let us first assume that Λ = 0. The function Γ(x) remains the same, while
the polynomial P(x) simplifies to

P(x) = A0 x
2 + c1 x−

4k2

β2
A0. (31)
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The range of the coordinate x is given by its two real roots, x ∈ [x−, x+]. Since P/Γ is the
square of the norm of the axial Killing vector ∂Φ, it has to be positive. This necessarily
implies A0 < 0. The roots of P(x) are

x± =
1

2A0

(
−c1 ∓

√
c2

1 + 16A2
0k

2β−2

)
. (32)

The area of the horizon section is

A =

∫ Φ2

Φ1

dΦ

∫ x+

x−

√
det(g|K) dx = (Φ2 − Φ1)(x+ − x−) ≡ ∆Φ (x+ − x−). (33)

Let us consider a linear transformation between the canonical coordinates (ζ, φ) of (3)
and the coordinates (x,Φ), namely

ζ = ω x+ χ, Φ = λφ+ κ, (34)

where ω, χ, λ, κ are (not yet determined) constants. The transformed metric reads

g|K =
A

4π

(
4πΓ(x)

Aω2P(x)
dζ2 +

4πP(x)

Aλ2Γ(x)
dφ2

)
, (35)

where A = 4πR2. To ensure the same form of the metric (3) in the canonical coordinates,
for which gζζ gφφ = R4, the parameter λ has to be chosen uniquely as

λ =
4π

Aω
. (36)

Other constants might be found from the known range of the coordinate ζ. The poles
are located at ζ = ±1 which correspond to x = x±, hence

1 = ω x+ + χ, −1 = ω x− + χ. (37)

By using (32) and (36) we arrive at

ω = − 2A0√
c2

1 + 16A2
0k

2β−2
, χ = − c1√

c2
1 + 16A2

0k
2β−2

. (38)

Now we can also determine the range of the coordinate Φ. The transformation (34)
gives ∆Φ = λ∆φ = 2πλ. Using (36), (33) and (37) we obtain ∆Φ2 = 4π2. Assuming
naturally Φ2 > Φ1 we find that ∆Φ = 2π.

Using (32), the black hole area (33) is thus cast into the form

A = −2π

√
c2

1 + 16A2
0k

2β−2

A0

. (39)

Therefore, the coefficients (38) of the transformation (34) have a simple form in terms of
the area A, namely

ω =
4π

A
, χ =

2πc1

AA0

. (40)
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The metric function fKL can now be extracted from (35) as

fKL(x) ≡ 4πP(x)

Aλ2Γ(x)
. (41)

When we substitute all the necessary relations we get the following formula in the canon-
ical coordinates

fKL(ζ) =
8A2

0 (1− ζ2)√
c2

1β
2 + 16A2

0k
2 (1 + ζ2) + 2c1β ζ

. (42)

The deficit angles can be now calculated using our regularity condition (4), yielding

δ± =
π

2k2

(√
c2

1β
2 + 16A2

0k
2 ∓ c1β

)
− 2π. (43)

Putting this expressions in our result (23) and setting q = 0 we obtain exactly the function
(42). Our result is thus fully compatible with the previous results [10] in this subcase.

Notice that for c1 = 0 we obtain simply

δ+ = δ− = −2π

(
A0

|k|
+ 1

)
. (44)

In this case we can achieve a regular geometry (δ+ = 0 = δ−) by an appropriate redefini-
tion of the range of the coordinate Φ, or by a suitable choice of the ratio A0/|k|, which
is admissible due to a freedom in the choice of one of the metric parameters.

3.1.2 The case Λ 6= 0

When the cosmological constant Λ is non-zero the polynomial P(x) given by (29) is
of the fourth order which considerably complicates the analytic investigation. Explicit
identification of the roots x± corresponding to the poles ζ± = ±1 of the horizons with the
deficit angles δ± is not obvious, as well as the physical interpretation of the integration
constants in (29) and the range of the coordinates employed in [10].

Interestingly, it is possible to complete this task in the case of uncharged extremal
black holes with c1 = 0. In such a case the key expression (29) becomes biquadratic, so
that it is possible to find its four roots as

x2
1,2 =

6

Λβ2

[
A0β − 2Λk2 ∓

√
A2

0β
2 + 16

3
Λk2(Λk2 − A0β)

]
. (45)

The poles are then located at x± = ±x1 or x± = ±x2, depending on the precise values
of the parameters and the sign of Λ. However, our further analysis is not affected by the
specific choice, so let us take x ∈ [x−, x+] ≡ [−x1, x1].

Now we proceed in exactly the same way as in the previous case Λ = 0. We assume
the transformation (34), which results in the relations (36) and (40), namely

ω =
2

x+ − x−
=

4π

A
≡ 1

R2
, χ = −x+ + x−

x+ − x−
= 0. (46)
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When we put these relations into (36), we get λ = 1 and consequently ∆Φ = 2π. The
metric function (41) now reads

fKL(ζ) =
1
3
Λ ξ4 − 4(A0β − 2Λk2) ξ2 + 16k2(A0β − Λk2)

R2β2(ξ2 + 4k2)
, (47)

where we have denoted ξ ≡ βR2ζ for brevity. The deficit angles can be calculated directly
from fKL or, in general, using the chain rule for the derivative of fKL,

dfKL

dζ
=

1

ω

dfKL

dx
=

d

dx

P(x)

Γ(x)
=

P′(x)

Γ(x)
− P(x)

Γ′(x)

Γ2(x)
. (48)

Using the definition (4), the deficit angles are thus

δ± = ∓π P′(x±)

Γ(x±)
− 2π. (49)

After substituting the functions Γ(x) and P(x) from (28), (29), we arrive at

δ+ = δ− = 2π
4k2(2Λx+ − 1) + β2x2

+(2
3
Λx+ − 1)− 4A0βx+

4k2 + β2x2
+

. (50)

In this special case when c1 = 0, the deficit angles are equal and the black hole is non-
accelerating. In fact, these conditions are equivalent. The metric can be regularized (by
a suitable redefinition of the range of the coordinate Φ, or by a special choice of one of
the parameters) if and only if c1 = 0. For Λ = 0, the expression (50) reduces to (44).

When we put the relations (50) into our main result (19), (20) together with q2 = 0,
we recover (47). Therefore, we have proved that fKL coincides with fEIH for c1 = 0 and
the particular choice of parameters δ±, R2, q2 given by the above formulas. We have also
determined the relation of the parameters of the metric (27) to the geometric parameters
of EIHs.

Considerable complications to identify the parameters of (29) in the most general case
c1 6= 0 of extremal isolated horizons with Λ 6= 0 shows that our new form of the metric
function fEIH(ζ) given by (19), whose numerator is factorized into a product of two
quadratic terms, is more convenient. Moreover, because it directly contains geometrical
and physical parameters, namely the deficit angles δ± at the two poles of the horizon, its
area A, and the dimensionless electromagnetic charge parameter q2.
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4 Exact type D black holes

A complete class of black hole spacetimes of algebraic type D with any value of the
cosmological constant Λ and electromagnetic field (which is not null and is double aligned
with the gravitation field) was presented by Plebański and Demiański [16], extending the
previous work of Debever [17]. Here we employ the convenient Griffiths-Podolský form
of these solutions derived in [19,20] and summarized as Eq. (16.18) in [15], namely

ds2 = − 1

Ω2

(
−Q
ρ2

[
dt−

(
a sin2 θ + 4l sin2 1

2
θ
)

dϕ
]2

+
ρ2

Q
dr2

+
ρ2

P
dθ2 +

P

ρ2
sin2 θ

[
a dt−

(
r2 + (a+ l)2

)
dϕ
]2)

. (51)

The metric functions are

Ω = 1− α
( l

ω
+
a

ω
cos θ

)
r,

ρ2 = r2 + (l + a cos θ)2,

P (θ) = 1− a3 cos θ − a4 cos2 θ,

Q(r) = (ω2k + e2 + g2)− 2mr + ε r2 − 2α
n

ω
r3 −

(
α2k +

Λ

3

)
r4, (52)

where

a3 = 2α
a

ω
m− 4α2 a l

ω2
(ω2k + e2 + g2)− 4

Λ

3
a l,

a4 = −α2 a
2

ω2
(ω2k + e2 + g2)− Λ

3
a2, (53)

while the coefficients k, ε and n in (52) are determined by the relations( ω2

a2 − l2
+ 3α2l2

)
k = 1 + 2α

l

ω
m− 3α2 l

2

ω2
(e2 + g2)− Λ l2, (54)

ε =
ω2k

a2 − l2
+ 4α

l

ω
m− (a2 + 3l2)

[ α2

ω2
(ω2k + e2 + g2) +

Λ

3

]
, (55)

n =
ω2k l

a2 − l2
− α a

2 − l2

ω
m+ (a2 − l2) l

[ α2

ω2
(ω2k + e2 + g2) +

Λ

3

]
. (56)

The metric (51) thus depends on seven usual physical parameters m, a, l, α, e, g, Λ
which characterize mass, Kerr-like rotation, NUT parameter, acceleration, electric and
magnetic charges of the black hole, and the cosmological constant, respectively.

In addition, there is the twist parameter ω related both to a and l (see the discussion
in [18,19]). As demonstrated in our previous works [1,21,22], it is very convenient to use
the remaining gauge freedom to fix ω as

ω ≡ a2 + l2

a
. (57)
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With this choice, the general metric (51) reduces directly to the familiar forms of either
the Kerr–Newman-(A)dS, the Taub-NUT-(A)dS solution, or the C-metric with charges,
rotation and the cosmological constant, without the need of further transformations,
simply by setting the corresponding parameters to zero.

An important observation for our work is that horizons are located at values of the
radial coordinate r = rh which are determined by a condition

Q(rh) = 0. (58)

An extremality of the horizon is related to its degeneracy, and can be expressed as

Q′(rh) = 0, (59)

where the prime denotes the derivative with respect to r. As we have shown in our
previous work [1], this condition is equivalent to the requirement of vanishing surface
gravity κ(`) = 0.

The explicit form of the key metric function Q(r) given by (52) is rather complicated
when (54)–(56) are employed. It is a quartic expression in the coordinate r, but the
coefficients are rather cumbersome. Interestingly, for Λ = 0 it can be explicitly factorized
to four roots [18], thus simply identifying the corresponding horizons. This fact enabled
us in [1] to find and study the properties of all admitted extremal horizons.

In order to proceed with the analysis in the present case with a general cosmological
constant Λ, we have to make an additional simplifying assumption. It turns out that we
can identify the extremal horizons of all non-accelerating black holes of algebraic type D
in the Plebański and Demiański family.

4.1 Non-accelerating black holes (α = 0)

For vanishing acceleration, i.e. for the Kerr-Newman-NUT-(anti-)de Sitter black holes,
by setting α = 0 the expressions (53) and (54)–(56) with (57) considerably simplify to

a3 = −4
3
Λ a l, a4 = −1

3
Λ a2,

ω2k

a2 − l2
= 1− Λ l2, ε = 1− 1

3
Λ (a2 + 6l2), n =

[
1 + 1

3
Λ (a2 − 4l2)

]
l. (60)

The metric (51), (52) thus reduces to

ds2 =
Q
ρ2

[
dt−

(
a sin2 θ + 4l sin2 1

2
θ
)

dϕ
]2 − ρ2

Q
dr2

− ρ2

P
dθ2 − P

ρ2
sin2 θ

[
a dt−

(
r2 + (a+ l)2

)
dϕ
]2
, (61)

with

ρ2 = r2 + (l + a cos θ)2,

P (θ) = 1 + 4
3
Λ a l cos θ + 1

3
Λ a2 cos2 θ, (62)

Q(r) = (a2 − l2)(1− Λ l2) + e2 + g2 − 2mr + [1− Λ (1
3
a2 + 2l2)] r2 − 1

3
Λ r4,
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in full agreement with Eq. (16.23) of [15]. Recall that this class of solutions is contained
within those found in different form by Carter [23], and that its particular subclasses
were presented and discussed, e.g. by Frolov [24] and Gibbons and Hawking [25].

For further investigations it is useful to rewrite these black hole spacetimes in an
equivalent form by introducing a coordinate

ς = cos θ, ς ∈ [−1, 1]. (63)

The metric (61) then becomes

ds2 =
Q
ρ2

[
dt−

(
a (1− ς2) + 2l (1− ς)

)
dϕ
]2 − ρ2

Q
dr2

− ρ2

P̃
dς2 − P̃

ρ2

[
a dt−

(
r2 + (a+ l)2

)
dϕ
]2
, (64)

where

ρ2 = r2 + (l + a ς)2, (65)

P̃ (ς) ≡ (1− ς2)P (ς) = (1− ς2)(1 + 4
3
Λ a l ς + 1

3
Λ a2 ς2), (66)

while Q(r) remains the same is in (62).

4.2 Geometry of the horizons of non-accelerating black holes

In our previous paper [1] we investigated a class of exact spacetimes of the algebraic
type D with Λ = 0, and we derived explicit results for a metric function which describes
the geometry of extremal black hole horizons in this class. Interestingly, the derivation
of these results does not differ from the case when Λ 6= 0. Hence, using the formula (55)
in [1] (summarized in Theorem 2 of [1]), the corresponding metric function reads

fD(ζ) =
4πC2

A

[
r2
H + (a+ l)2

]2 P̃ (ζ)

Ω2(ζ) ρ2(ζ)
, (67)

where the dependence on Λ is implicit via the specific function P̃ . For non-accelerating
black holes studied here the functions P̃ and ρ are given by (66) and (65), respectively,
while Ω = 1 because α = 0. Let us recall that these functions have to be regarded as
functions of a new coordinate ζ which is related to ς via

ζ(ς) =
ς − α rH

( a
ω

+
l

ω
ς
)

1− α rH
( a
ω
ς +

l

ω

) , (68)

see Eq. (53) in [1]. However, in the present case α = 0 this is just an identity, ζ = ς.
The horizon area A of an extremal black hole whose horizon is located at rH , entering

the expression (67), is

A = 4πC [r2
H + (a+ l)2], (69)
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see Eq. (51) in [1] for the case α = 0.
Finally, the deficit angles around the poles are given by Eq. (57) in [1],

δ+ = 2π
(
C (1− a3 − a4)− 1

)
,

δ− = 2π
(
C (1 + a3 − a4)

r2
H + (a+ l)2

r2
H + (a− l)2

− 1
)
.

(70)

Recall that the free conicity parameter C was introduced to ensure the correct range
[0, 2π) of the adapted angular coordinate φ.

5 Identification of EIHs with horizons of all type D
non-accelerating extremal black holes

As we have already mentioned, the most important subclass of the general family of
type D black holes are solutions without acceleration (α = 0). In fact, these are the
famous Kerr-Newman-NUT-(A)dS black holes characterized by 6 physical parameters
m, a, l, e, g,Λ. Such spacetimes in general contain two black hole horizons, which “merge”
when the black hole is extremal, and two cosmological horizons due to the presence of a
cosmological constant Λ.

In view of (62), equation (58) which localizes these horizons takes the form

1
3
Λ r4

h − [1− Λ (1
3
a2 + 2l2)] r2

h + 2mrh − (a2 − l2 + e2 + g2) + Λ l2(a2 − l2) = 0. (71)

For Λ = 0 the condition of extremality (59) relates the value of the radial coordinate and
the mass parameter directly as rh = m, see [1]. Inspired by this relation, we can express
the mass parameter m from equation (59) by taking the derivative of Q given by (62).
An algebraic manipulation leads to

m = rh − 1
3
Λ (a2 + 6 l2 + 2r2

h) rh. (72)

When we substitute this relation back into (71) we obtain

(r2
h + l2)(Λ r2

h + Λ l2 − 1) + 1
3
Λ a2(r2

h − 3l2) + a2 + e2 + g2 = 0. (73)

Interestingly, this is a quadratic equation for r2
h whose distinct two roots are

r2
H =

1

2Λ

[
1− Λ (1

3
a2 + 2l2)−

√
D
]
,

r2
C =

1

2Λ

[
1− Λ (1

3
a2 + 2l2) +

√
D
]
,

(74)

where

D ≡ 1− Λ (14
3
a2 + 4e2 + 4g2) + Λ2a2 (1

9
a2 + 16

3
l2). (75)

The first root rH represents a black hole horizon, while rC localizes a cosmological horizon.
To see this directly, let us compute the area of the two surfaces. Substituting these values
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of rH and rC into (69) gives

AH =
2πC

Λ

[
1 + Λ a (5

3
a+ 4l)−

√
D
]
,

AC =
2πC

Λ

[
1 + Λ a (5

3
a+ 4l) +

√
D
]
,

(76)

respectively. Expansion for small values of Λ leads to

AH = 4πC
[
2a(a+ l) + e2 + g2

]
+O(Λ),

AC = 4πC
1

Λ
+O(1).

(77)

In the limit of asymptotically flat spacetime Λ→ 0, the area AC diverges, i.e. the cos-
mological horizon expands to infinity. On the other hand, in this limit the black hole
horizon has the area AH = 4πC

[
a2 − l2 + e2 + g2 + (a+ l)2

]
= 4πC

[
r2
H + (a+ l)2

]
and

m = rH , which fully agrees with Eqs. (110) and (109) of [1], respectively.
From (74) it is obvious that for each r2

H and r2
C there actually exists a pair of horizons,

namely ±rH and ±rC . There are thus extremal horizons in both regions r > 0 and
r < 0. Moreover, it can be seen from (72) that rh → −rh corresponds to m→ −m.
By substituting ±rH from (74) into (72) we obtain an explicit expression m(a, l, e, g,Λ)
determining the value of the mass parameter for the corresponding extremal black hole
horizon.

The precise number and degeneracy of these extremal horizons in the Kerr-Newmann-
NUT-(A)dS spacetime depend on the cosmological constant Λ (primarily divided into the
distinct Λ < 0 and Λ > 0 cases) and on specific values of the physical parameters a, l, e, g.
In the Appendix we carefully discuss all the possibilities. Let us summarize here only the
main results:

• In the Λ < 0 case there is no cosmological horizon. The extremal black hole horizon
is located at rH given by (116), provided the NUT parameter l satisfies the condition
(115).

• In the Λ > 0 case the admittable values of the cosmological constant form a discon-
tinuous interval Λ ∈ (0,Λ−] ∪ (Λ+,∞), where Λ± are given by (112).

• The boundary value Λ− characterizes a situation in which all horizons merge into
one multiple-degenerate horizon located at rH = rC given by (125). Moreover, the
NUT parameter l has to fulfil the condition (122).

• For Λ ∈ (0,Λ−) there is the extremal black hole horizon as well as the cosmological
horizon at rH and rC expressed by (138) and (139), respectively. The value of l
is again restricted by (122). Depending on the relative values of |a| and |l|, the
cosmological constant Λ is further restricted by (140), or is not restricted at all.

• On the other hand, existence of the extremal black hole horizon is automatically
excluded when Λ ∈ (Λ+,∞). In this case, the cosmological horizon is present only
if |l| < |a| and Λ is greater than Λ0 given by (111).
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Let us now return to the main topic of this section which is the identification of the
metric functions fEIH(ζ) and fD(ζ) of extremal black holes. The former is given by (19)
while the latter by (67). For non-accelerating type D black holes it simplifies to

fD = C [r2
H + (a+ l)2] (1− ζ2)

1 + 4
3
Λal ζ + 1

3
Λa2 ζ2

r2
H + (l + aζ)2

, (78)

and the deficit angles (70) around the poles are

δ+ = 2πC [1 + 1
3
Λa(a+ 4l)]− 2π,

δ− = 2πC [1 + 1
3
Λa(a− 4l)]

r2
H + (a+ l)2

r2
H + (a− l)2

− 2π.
(79)

To keep the relations compact and readable, we do not substitute for rH from (74).
To complete the investigation of the extremal isolated horizons in the full family of

Kerr-Newman-NUT-(A)dS black holes, we substitute the values (79) for δ± together with
the relation R2 = C [r2

H + (a+ l)2], see (69), into the formula (19), (20) for fEIH, and we
compare the resulting function with (78). It turns out that it is possible to match fD and
fEIH exactly by a unique choice of the dimensionless charge parameter q2, namely by

q2 = 4πC
(r2
H + l2)

[
1− Λ(r2

H + l2)
]
− a2

[
1 + Λ(1

3
r2
H − l2)

]
r2
H + (a− l)2

. (80)

Indeed, for these values of δ±, R2 and q2 we obtain

c0 = Ξ (r2
H + l2), d0 = C Ξ [r2

H + (a+ l)2],

c1 = Ξ 2al, d1 = C Ξ [r2
H + (a+ l)2] 4

3
Λal,

c2 = Ξ a2, d2 = C Ξ [r2
H + (a+ l)2] 1

3
Λa2,

where

Ξ = 8πC
1− 1

3
Λ(2r2

H + 2l2 + a2)

r2
H + (a− l)2

, (81)

so that (19) is exactly the function (78).
Moreover, using the definition (21) of q2 for (80) and the area A = 4πR2 of the ex-

tremal black hole horizon at rH given by (69), we arrive at the explicit relation between
the physically defined charges (11) and the parameters of the type D metric (61) as

Q2
E +Q2

M = C2 r
2
H + (a+ l)2

r2
H + (a− l)2

[
(r2
H + l2)

[
1− Λ(r2

H + l2)
]
− a2

[
1 + Λ(1

3
r2
H − l2)

]]
. (82)

Expressing rH using (74), that is r2
H + l2 =

(
1− 1

3
Λ a2 −

√
D
)
/(2Λ), we get

Q2
E +Q2

M = C2 1 + Λ a (5
3
a+ 4l)−

√
D

1 + Λ a (5
3
a− 4l)−

√
D

(e2 + g2), (83)

where D is given by (75). The physical charges QE, QM are thus directly related to
the metric charge parameters e, g, although they are not identical. However, a simple
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relation Q2
E +Q2

M = C2(e2 + g2) is recovered if (and only if) a lΛ = 0, i.e. when the Kerr
rotation vanishes (a = 0), when the NUT parameter vanishes (l = 0), or in the absence
of the cosmological constant (Λ = 0).

We can thus summarize the results in the following theorem.

Theorem 2 Extremal horizons in the complete family of Kerr-Newman-NUT-(A)dS black
holes (all extremal black holes of algebraic type D without acceleration) are located at rH
determined by (74). Their geometry is represented by the induced metric of the form (3),
where the metric function fD is given by (78).

Moreover, this function precisely coincides with the metric function fEIH(ζ) of ax-
isymmetric extremal isolated horizons (EIHs) in asymptotically (A)dS spacetime, given
in Theorem 1. The geometric parameters of EIHs are identified with the parameters of
the metric (61) via the relation R2 = C [r2

H + (a+ l)2], the deficit angles δ+, δ− around
the poles are given by (79), and the physical charges QE, QM are given by (83).

5.1 Kerr-Newman-(A)dS black holes (l = 0)

Let us have a closer look at the physically most relevant case, when the black hole
represents a charged and rotating mass in (anti-)de Sitter spacetime without the NUT
parameter.

The black hole extremal horizon rH > 0 (and rH < 0) is located at the radial coordi-
nate

r2
H =

1

2Λ

[
1− 1

3
Λa2 −

√
1− Λ(14

3
a2 + 4e2 + 4g2) + 1

9
Λ2a4

]
, (84)

see (74). By setting l = 0 in (78), the metric function simplifies to

fD = C(r2
H + a2)(1− ζ2)

1 + 1
3
Λ a2 ζ2

r2
H + a2 ζ2

. (85)

The deficit angles (79) remain non-zero, namely

δ+ = δ− = 2πC (1 + 1
3
Λ a2)− 2π, (86)

but for a unique choice of the conicity parameter

C = (1 + 1
3
Λ a2)−1, (87)

we obtain a solution with both poles regular.
Then the function fD(ζ) given by (85) has precisely the form of (25) of fEIH(ζ), with

q2 = 4π
r2
H − a2 − 1

3
Λ r2

H(3r2
H + a2)

(r2
H + a2)(1 + 1

3
Λ a2)

=
8πΛ (e2 + g2)

(1 + 1
3
Λ a2)

(
1 + 5

3
Λ a2 −

√
1− Λ (14

3
a2 + 4e2 + 4g2) + 1

9
Λ2a4

) . (88)
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This is consistent with (80). Notice also that the limit Λ→ 0 is well-defined and non-zero,

lim
Λ→0

q2 = 4π
e2 + g2

2a2 + e2 + g2
. (89)

Due to (21) and (76), the relation between the charge parameters is

Q2
E +Q2

M = C2(e2 + g2) =
e2 + g2

(1 + 1
3
Λ a2)2

. (90)

The genuine electric and magnetic charges QE, QE are thus proportional to the metric
charge parameters e, g. However, the proportionality factor C determining the conicity
is now fixed by the condition (87) to achieve δ+ = 0 = δ−, i.e. regular both axes.

5.2 Charged NUT-(A)dS black holes (a = 0)

In this part we concentrate on non-rotating black holes characterized by a condition a = 0.
In fact, in this case necessarily α = 0, because there is no accelerating NUT solution in
the considered class of type D spacetimes [18].

The equation (73) simplifies to

(r2
H + l2)(Λ r2

H + Λ l2 − 1) + e2 + g2 = 0, (91)

with explicit solutions

r2
H =

1−
√

1− 4Λ(e2 + g2)

2Λ
− l2, (92)

r2
C =

1 +
√

1− 4Λ(e2 + g2)

2Λ
− l2.

Expansion for small values of the cosmological constant yields

r2
H = e2 + g2 − l2 +O(Λ), r2

C =
1

Λ
+O(1), (93)

so we immediately recognize the black hole horizons at rH and the cosmological horizons
at rC .

The area of the black hole horizon given by (69) is

A = 2πC
1−

√
1− 4Λ(e2 + g2)

Λ
, (94)

which for Λ→ 0 reduces to 4πC (e2 + g2), in agreement with the results of [1]. Notice
also that in absence of electric and magnetic charge e = 0 = g, the black hole horizon can
not be extremal.

Under the current assumption of a non-rotating black hole, the metric function (78)
simplifies considerably to

fD(ζ) = C (1− ζ2). (95)

18



This result does not depend on Λ, and is the same as in the case when Λ = 0. Geometry
of the black hole horizon is that of a quasi-regular sphere. The deficit angles (70) around
the poles are zero provided C = 1 because a3 = 0 = a4, and thus

δ+ = δ− = 2π(C − 1). (96)

In order to map the metric function fEIH(ζ) to fD(ζ), we substitute the above relations
into (20) which gives

d0 = 8πC2 + 1
3
ΛR2

[
4π(ΛR2 − 5C) + q2

]
, c0 = 4π(C − 1

3
ΛR2) + q2,

d1 = 0, c1 = 0, (97)

d2 = 1
3
ΛR2

[
4π(C − ΛR2)− q2

]
, c2 = 4π(C − ΛR2)− q2,

so that the metric function (19) becomes

fEIH(ζ) = (1− ζ2)
2C2 + 1

3
ΛR2

[
(ΛR2 − 5C + 1

4π
q2) + (C − ΛR2 − 1

4π
q2) ζ2

]
(C − 1

3
ΛR2 + 1

4π
q2) + (C − ΛR2 − 1

4π
q2) ζ2

. (98)

It reduces to (95) if (and only if) we choose

q2 = 4π(C − ΛR2) = 4πC [1− Λ (r2
H + l2)]. (99)

Using the definition (21) of q2 and substituting for rH from (92) and (69) we arrive at

Q2
E +Q2

M = C2(e2 + g2). (100)

The physically defined charges QE, QM are thus directly proportional to the electric and
magnetic parameters e, g of the type D metric via the conicity C.

6 Conclusion

The main aim of this paper was to extend the results from our previous work [1] in which
we investigated in detail the unique properties of axially symmetric extremal isolated
horizons (EIHs) in asymptotically flat spacetimes. Here we considered such horizons in
asymptotically (anti-)de Sitter spacetimes with non-zero cosmological constant Λ 6= 0.

After we introduced in Sec. 2 the necessary notation and basic definitions we sys-
tematically studied constrain equations following from the NP formalism. We concluded
that the electromagnetic field, represented by tetrad projections φi, and the spin coeffi-
cient π

NP
remain unchanged compared to the case with Λ = 0. Namely, in the natural

coordinates ζ and φ adapted to the horizon geometry they are given explicitly as

π
NP

H
=

√
f

2

1

R (ζ + cπ)
, φ1

H
=

cφ
(ζ + cπ)2

, (101)

see equation (10). Using these results, we were able to integrate the remaining equation
(14) constraining the horizon geometry. Our first main result of this paper is summarized
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in Theorem 1. In particular, the metric function fEIH describing the induced metric on
the horizon reads

fEIH(ζ) = (1− ζ2)
d0 + d1 ζ + d2 ζ

2

c0 + c1 ζ + c2 ζ2
, (102)

where the constants di, ci are given in (20). The function is unique, well-behaved, and
depends on 6 real independent parameters, namely two deficit angles δ+, δ− at the horizon
poles, the square of the radius R2 (the horizon area A divided by 4π), the cosmological
constant Λ, and the total electric and magnetic charges QE, QM . It further simplifies
for various special choices of these parameters. For instance, we recover the recently
derived solution (26) by Buk and Lewandowski [9] when the function fEIH is assumed to
be regular at both poles (δ+ = 0 = δ−). For Λ = 0 it precisely reduces to the solution
(23) which we investigated in [1].

We also compared our result (19) with an analogous, previously known result (30),
which was derived in the context of near horizon geometries [10–13]. In two special cases
of uncharged black holes (when Λ = 0 and c1 = 0, respectively) we proved the equivalence
of the results. Furthermore, we discussed advantages of our approach which leads to a
more elegant form with integration constants having a direct geometrical interpretation
and with the full gauge freedom already fixed.

Our second objective here was to compare the general result (19) with the horizon
geometry of extremal black holes in the Plebański and Demiański class of exact solu-
tions of the algebraic type D. It is represented by the line element (51) in a convenient
parametrization by Griffiths and Podolský [19, 20]. In [1] we derived a specific metric
function fD, which describes the geometry of the horizon of such type D black holes.
Its general form (67) is not affected by any value of Λ, since it enters the function only
indirectly via P̃ , A, rH . Hence the formula (67) remains valid also for Λ 6= 0.

For reasons of simplicity, we restricted our subsequent analysis to non-accelerating
black holes with α = 0, that is to the family of Kerr-Newman-NUT-(anti-)de Sitter black
holes (61), (62).

We identified two types of extremal horizons — the black hole one and a the cosmo-
logical one. They are located at radial coordinates ±rH and ±rC , respectively, expressed
by (74). Their precise number and degeneracy depend on the cosmological constant Λ
(primarily divided into the distinct cases Λ < 0 and Λ > 0), as it is carefully analysed in
the Appendix.

In the last part of Sec. 5 of our work we were able to show that the function fD has
the same form as fEIH for every combination of the physical parameters. The result is
summarized in Theorem 2. The metric function fD is simplified to (78), namely

fD = C [r2
H + (a+ l)2] (1− ζ2)

1 + 4
3
Λal ζ + 1

3
Λa2 ζ2

r2
H + (l + aζ)2

. (103)

This function is equivalent to fEIH if we choose the dimensionless charge parameter q2 as

q2 = 4πC
(r2
H + l2)

[
1− Λ(r2

H + l2)
]
− a2

[
1 + Λ(1

3
r2
H − l2)

]
r2
H + (a− l)2

, (104)

see (80). The key observation is that it does not depend on the coordinate ζ, thus it can
be regarded as a different parametrization of the same function. The reason why we had
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to find its (unique) value is that the parameters of the metric (61) have well-understood
meanings only in special cases. Applying the definition (21), we thus obtained a non-
trivial relation between the genuine electric and magnetic charges (11) and the charge
parameters of the Kerr-Newman-NUT-(anti-)de Sitter metric, namely

Q2
E +Q2

M = C2 1 + Λ a (5
3
a+ 4l)−

√
D

1 + Λ a (5
3
a− 4l)−

√
D

(e2 + g2), (105)

whereD is given by (75). The charges are mutually proportional, Q2
E +Q2

M = C2(e2 + g2),
if and only if a lΛ = 0.

In Sec. 5.1 we concentrated on the physically most relevant subcase when l = 0. We
found that the poles are not generally regular, although they can be regularized by a
suitable choice (87) of the conicity parameter C. Due to this choice there is a specific
relation (90) between the electric and magnetic charges, which simplifies to equality
Q2
E +Q2

M = e2 + g2 in asymptotically flat spacetimes.
Another interesting example was discussed in Sec. 5.2. It represents the most general

non-rotating (a = 0) charged NUT black hole of type D in the (anti-)de Sitter background.
The intrinsic geometry of its horizon is identical to the geometry of a quasi-regular sphere
(95), and it does not depend on any parameter apart from the free conicity parameter C.
Though not obvious, the function fEIH also admits this possibility, and it appears when
the dimensionless charge parameter q2 has the particular value given by (99).
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Appendix: Analysis of the number and degeneracy of
the extremal horizons of non-accelerating black holes

To simplify the analysis, let us denote

x ≡ r2
h, (106)

and rewrite the key equation (73) for the position of the horizons in the standard form

p x2 + q x+ s = 0, (107)

where the constants are

p = Λ,

q = −1 + Λ (1
3
a2 + 2l2), (108)

s = a2 + e2 + g2 − l2 + Λ l2(l2 − a2).

The solution of this quadratic equation is x± = (−q ±
√
D)/(2p), that is

x± =
1

2Λ

[
1− Λ (1

3
a2 + 2l2)±

√
D
]
, (109)

where the discriminant D ≡ q2 − 4ps reads

D = 1− Λ (14
3
a2 + 4e2 + 4g2) + Λ2a2(1

9
a2 + 16

3
l2). (110)

It is a quadratic expression in Λ.
In order to have a well-defined coordinate position of a horizon rh by (106), the

corresponding root has to be non-negative, x ≥ 0.
The special case when x = 0 = rh implies s = 0, which appears whenever the cosmo-

logical constant takes the special value

Λ0 =
a2 − l2 + e2 + g2

l2 (a2 − l2)
. (111)

In the uncharged case, Λ0 = l−2.
The number of real roots x is determined by the sign of D in (109). This discriminant

vanishes for certain values of Λ, namely

Λ± = 3
7a2 + 6e2 + 6g2 ±

√
(7a2 + 6e2 + 6g2)2 − a2(a2 + 48l2)

a2(a2 + 48l2)
. (112)

Such values Λ± are real and positive provided a2(a2 + 48l2) < (7a2 + 6e2 + 6g2)2, i.e.

l2 < a2 +
7

4
(e2 + g2) +

3

4

(e2 + g2)2

a2
. (113)

For uncharged black holes this condition is simply l2 < a2.
For negative values of Λ the discriminant (110) is always positive, while for positive Λ

it acquires negative, positive and zero values. The case Λ = 0 was investigated in our
previous work [1]. Thus, we restrict our attention to the remaining cases Λ ≶ 0, which
we will discuss separately.
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The case Λ < 0

Since D > 0, there are always two real roots x± given by (109). Due to (106) these
have to be positive. It is easy to infer that x+ < 0 for any combination of the metric
parameters (indeed, p < 0 and −q > 0, so that x+ > 0 implies −q +

√
D < 0 which is a

contradiction). On the other hand, from x− > 0 we obtain a non-trivial constraint

−q <
√
D =

√
q2 − 4ps ⇔ s > 0 ⇔ Λ l4 − (1 + Λa2) l2 + a2 + e2 + g2 > 0.

If l = 0, the last inequality holds for any a, e, g. Hence, we may regard it as a restriction
imposed on the admittable values of l. It is a quadratic polynomial in l2 with two roots

(l2)± =
1 + Λa2 ±

√
(1 + Λa2)2 + 4(−Λ)(a2 + e2 + g2)

2Λ
. (114)

Now, (l2)+ < 0 (since for Λ < 0 the expression under the square root is a sum of positive
numbers) which is forbidden. The second root (l2)− defines a maximal range of l

l ∈ (−lmax, lmax), lmax ≡
√

(l2)−. (115)

In the uncharged case when e = 0 = g we obtain (l2)− = a2, so that the interval is simply
|l| < |a|.

To summarize, in the case Λ < 0 there is no cosmological horizon (which would be
at r2

C ≡ x+) while the extremal black hole horizon is located at

r2
H ≡ x− =

1

2Λ

[
1− Λ (1

3
a2 + 2l2)−

√
D
]
, (116)

see (109), where the discriminant is given by (110).
For the special value Λ = Λ0 < 0 of the cosmological constant given by (111) with

a2 < l2 < a2 + e2 + g2, we obtain rH = 0. This also admits the non-rotating case a = 0.

The case Λ > 0 with Λ = Λ±

WhenD = 0, all horizons merge into one multiple-degenerate horizon. The corresponding
solution for x0 ≡ x+ = x− is

x±0 =
1

2Λ±
− 1

6
a2 − l2. (117)

Positivity of this root requires Λ±(1
3
a2 + 2l2) < 1.

This is violated by Λ+, as demonstrated by the following estimate:

Λ+(1
3
a2 + 2l2)

=
7a2 + 6e2 + 6g2 +

√
(7a2 + 6e2 + 6g2)2 − a2(a2 + 48l2)

a2(a2 + 48l2)
(a2 + 6l2)

≥ 7a2 +
√

48a4 − 48a2l2

a2(a2 + 48l2)
(a2 + 6l2) = F (ξ), (118)
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where we have introduced

ξ ≡ l2

a2
≥ 0, F (ξ) ≡ 7 +

√
48
√

1− ξ
1 + 48 ξ

(1 + 6ξ). (119)

The function F (ξ) monotonously decreases for ξ ∈ [0, 1], with minimum F (1) = 1, so that
F (ξ) ≥ 1. The value Λ+ is thus not admitted.

The complementary value Λ− yields a possible solution, but the ranges of the metric
parameters are restricted. Let us define dimensionless constants

ψ ≡ e2 + g2

a2
≥ 0, η ≡ 7 + 6ψ, (120)

so that

Λ−(1
3
a2 + 2l2) =

[
η −

√
η2 − (1 + 48 ξ)

] 1 + 6 ξ

1 + 48 ξ
. (121)

This expression is required to be < 1, which implies a constraint on the possible values
of l. Using η ≥ 7, we get 6 ξ < η − 5 +

√
η2 − 8 η + 23, that is

l2 < 1
3
a2 + e2 + g2 +

√
4
9
a4 + a2(e2 + g2) + (e2 + g2)2. (122)

For e = 0 = g we simply obtain |l| < |a| as in the previous case Λ < 0.
Using the parameters introduced in (119) and (120), the condition (113), which guar-

anties that Λ− is well-defined, can be rewritten in the form

48ξ < η2 − 1. (123)

Then it is easy to show that for all η ≥ 7

8(η − 5 +
√
η2 − 8 η + 23) ≤ η2 − 1. (124)

The condition (122) thus restricts the values of l more than (113).
Under the condition (122), the multiple degenerate horizon is located at

r2
H = r2

C =
1

2Λ−
− 1

6
a2 − l2, (125)

where Λ− is given by (112).

The case Λ > 0 with Λ 6= Λ±

In this general case with positive cosmological constant there exist two distinct extremal
horizons at r2

h ≡ x if and only if Λ ∈ (0,Λ−) ∪ (Λ+,∞). Otherwise there are no horizons
and the singularity is naked.

The roots x±, explicitly given by (109), must be positive. The condition x+ > 0
requires −q > −

√
D, which is equivalent either to q < 0 or to s < 0. On the other hand,

for x− > 0 one needs −q >
√
D which is q < 0 and s > 0. The latter conditions are

stronger than the former, thus x− > 0 implies x+ > 0.
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Let us investigate the condition x− > 0. It differs from the Λ < 0 case, because q
might be positive or negative as well, which induces an additional constrain for Λ, not
only for l. We require

1) − q = 1− Λ(1
3
a2 + 2l2) > 0, (126)

2) s = (a2 − l2)(1− Λ l2) + e2 + g2 > 0. (127)

The first condition is violated by every Λ > Λ+ because

Λ(1
3
a2 + 2l2) > Λ+(1

3
a2 + 2l2) ≥ F (ξ) ≥ 1, (128)

where we used our previous estimate (118). On the other hand, it is fulfilled by every
Λ < Λ− provided l is bounded by (122).

It is useful to introduce another dimensionless (positive) parameter

λ ≡ a2Λ, (129)

and analogously,

λ− ≡ a2Λ−, λ+ ≡ a2Λ+. (130)

The inequalities (126), (127) are then recast into the form

1) 1− λ (1
3

+ 2 ξ) > 0, (131)
2) 1− ξ + ψ − λ ξ(1− ξ) ≥ 0. (132)

When ξ < 1, that is for |l| < |a|, we may write these conditions as

1)
3

1 + 6 ξ
> λ, (133)

2)
1− ξ + ψ

ξ(1− ξ)
> λ, (134)

where the expressions on the left-hand sides are functions of ξ, also depending on the
parameter ψ. For any fixed ξ they determine the maximal value of λ. Admissible values
of λ for each ξ are represented graphically by the dark shaded area in Fig. 1.

For 0 < ξ < 1 we have an estimate

1− ξ + ψ

ξ(1− ξ)
>

3

1 + 6 ξ
> λ− (135)

for any value of ψ ≥ 0. The cosmological constant is thus not additionally restricted, and
it remains Λ ∈ (0,Λ−).

For ξ > 1 we have to reverse the inequality (134) which, apart from the upper bound
λ−, bounds the value of λ from below

ξ − 1− ψ
ξ(ξ − 1)

< λ < λ− <
3

1 + 6 ξ
. (136)
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Figure 1: Specific constraints on the values of the dimensionless metric parameters
ξ = l2/a2 and λ = a2Λ. The inequality (133) is represented here as the curve 1, while
the inequality (134) is represented as the curve 2. Also shown are the values λ− and
λ+ given by (130), (112). The shaded areas denote the admissible values of the param-
eters ξ and λ. The dimensionless “charge” parameter ψ was chosen here as ψ = 0.1, but
qualitative behaviour is the same for any ψ > 0.

In this case necessarily ψ > 0. These inequalities imply a maximal value for ξ as well,
namely

ξ < 1
3

+ ψ +
√

4
9

+ ψ(ψ + 1). (137)

Written in terms of the physical parameters, it is exactly the condition (122). In partic-
ular, ψ = 0 requires ξ < 1, that is e = 0 = g requires |l| < |a|.

To sum up, in the case of a positive cosmological constant Λ ∈ (0,Λ−) there is the
extremal black hole horizon as well as the cosmological horizon, located at

r2
H =

1

2Λ

[
1− Λ (1

3
a2 + 2l2)−

√
D
]
, (138)

r2
C =

1

2Λ

[
1− Λ (1

3
a2 + 2l2) +

√
D
]
, (139)

provided the value of the NUT parameter l satisfies the condition (122). If |a| > |l| the
value of Λ is not further restricted, while if |l| > |a| and e2 + g2 6= 0 there is a lower bound
for Λ given by

Λ > Λ0 ≡
a2 − l2 + e2 + g2

l2 (a2 − l2)
. (140)

Finally, let us look at the second condition x+ > 0. We have already shown that if
q < 0 then it is sufficient to have positive x+ irrespective of the sign of s. However, if
q > 0 one can still ensure that x+ is positive by requiring s < 0. In such a case there is
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only a cosmological horizon. In the interval 0 < ξ < 1 (that is for |l| < |a|) we obtain the
following restriction on the values of the cosmological constant

λ+ <
1− ξ + ψ

ξ(1− ξ)
< λ. (141)

In terms of the physical parameters it reads

Λ+ < Λ0 < Λ. (142)

Hence, the cosmological horizon exists for all values Λ ∈ (Λ0,∞). However, if ξ > 1 there
is no positive solution, i.e. no horizons. The values of λ, which satisfy equation (141) are
graphically represented by the light shaded area in Fig. 1.

Interestingly, the presence of the cosmological horizon depends not only on the value
of the cosmological constant Λ but also on all other parameters of the black hole, namely
of the mutual relation of the Kerr-like rotation a and the NUT parameter l.
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