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Abstract
We analyse the one-dimensional motion of a uniform thin fibre which is pulled
upwards from a horizontal plane by a constant vertical force exerted against
the homogeneous gravitational field. The solution of the equation of motion
which describes this variable mass problem is discussed and the character of
the resulting damped oscillations is described.

1. Historical background and formulation of the problem

The problem we will discuss here is associated with the name of count Jiřı́ František August
Buquoy (in German transcription Graf Georg von Buquoy), Czech aristocrat, mathematician
and gifted inventor (1781–1851). After his studies in Prague and Vienna where he was
educated in mathematics, natural science, philosophy, law and economy, he devoted his time
from 1803 to taking care of the large family possessions and to his investigations. In 1810 he
constructed a steam engine and did his best to apply it in practice. Above all, he was engaged
in glass works. On the basis of many experiments he succeeded in inventing an original
process technology (now forgotten) of a black opaque glass called hyalite (1817).

Buquoy was the first who investigated mechanical systems with a varying mass. In 1812
he explicitly formulated the correct dynamical equation of motion for the case when the
mass of a moving object is changing (see [1], p 66). He subsequently suggested several nice
concrete examples of such a motion [2] to which he applied his new generalized dynamical
equation, attempting also to solve the corresponding differential equations. In August 1815 he
presented his results at the Paris Academy of Sciences (Institut National des Sciences et des
Arts, Première Classe) to Laplace, Poisson, Ampère, Delambre, Arago, Cauchy, Fourier and
others [3, 4]. Nevertheless, apart from a single short article [5] by Poisson, his ideas did not
attract attention, and they gradually became forgotten. Buquoy’s general equation of motion
and other explicit examples were later formulated independently by various authors [6–8].
The pioneering work of Buquoy on systems of non-constant mass was rediscovered and his
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Figure 1. A schematic picture of the vertically moving fibre. The actual position of its end above
the horizontal plane is represented by x.

role in the history of physics was recognized only recently by Mikhailov [9–11]. Since then
it has begun to appear in some new textbooks on mechanics [12, 13].

The first explicit example of a system with a varying mass suggested by Buquoy in 1814
(see [2] on p 34) is the following:

Consider an ideally flexible fibre lying reeled on a horizontal plane. Determine its
motion when a constant vertical force (directed upward) is exerted on the end of the
fibre.

We wish to analyse this problem here and to demonstrate that it exhibits some surprising
properties which may be of pedagogical interest for undergraduate students. (Let us note that
the original solution proposed in [2] was not correct. The particular case of the problem was
correctly solved in [12].) Denoting the position of the end of the fibre above the horizontal
plane by x > 0 (see figure 1), we make the following natural simplifying assumptions:

• the vertical gravitational field is homogeneous,
• the fibre is thin and its linear density η is constant,
• the fibre reels off without friction at the origin of the x-axis during the upward motion,
• the fibre ‘smoothly disappears’ at the origin of the x-axis during the motion downward,

i.e., the part that has already landed on the plane does not move.

The problem could be modelled experimentally as the vertical motion of a balloon with a
heavy rope hanging down. The constant upward force would be the buoyant force exerted on
the balloon in air. The mass of the balloon and the friction forces would have to be neglected.

2. The equation of motion

The motion of the fibre is, of course, determined by Newton’s law—the rate of change of the
momentum p of the moving part of the fibre is due to the resultant force,

ṗ = F − mg, (1)

where F > 0 is the vertically upward oriented constant force, and mg is the oppositely exerting
weight of the reeled fibre. Supposing x to be the height of the end of the fibre above the plane
then p = mẋ, and the mass is given by m = ηx where η is a constant linear density of the fibre
(we emphasize that only x > 0 has a physical meaning). Therefore, the equation of motion
has the form

(xẋ)̇ = F

η
− gx, (2)
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i.e.,

ẍ = F

ηx
− g − ẋ2

x
. (3)

A stationary solution when x is independent of time represents the equilibrium situation such
that the end of the fibre is situated at a constant height

xc = F

ηg
. (4)

The problem thus seems to be reduced to finding the solution of equation (3). However,
this equation only describes the upward motion of the fibre—it is only correct for a growing
x, i.e. when ẋ > 0. The reason is that only in such a case is the resultant force F − mg

responsible for the rate of change of the total momentum of the fibre

ṗ = mẍ + ṁẋ. (5)

The first term in equation (5) corresponds to a velocity change of the already reeled-off part of
the fibre which has the mass m = ηx. The second term expresses the part of the momentum
which in the time dt has to be delivered by the resultant force in order to give velocity ẋ to
a piece of the fibre of mass dm, lying at rest on the plane—in this way the piece ‘joins’ the
moving part of the fibre.

In the case of a downward oriented motion (ẋ < 0, i.e. decreasing x) the situation
is different. The appropriate rate of change of the momentum, related to F − mg, only
corresponds to the velocity change of the already reeled-off fibre. The second term ṁẋ in
equation (5) represents the rate of change of the momentum of a piece of fibre with mass dm

which in time dt lands on the plane. Its velocity has to suddenly decrease from ẋ to zero.
However, the forces considered above are not responsible for this change. Such a change is
due to the interaction between the fibre and the plane (for example, an ideally inelastic impact
of the fibre in which case the appropriate momentum is absorbed by the ‘infinitely massive’
plane). Under these circumstances the term ṁẋ must be ignored when ẋ < 0. Formally it
means that we have to omit the velocity term from the right-hand side of equation (3). For a
downward motion of the fibre the equation of motion thus has the form

ẍ = F

ηx
− g. (6)

Another possible view on the downward motion is the following. One can take into account
the interaction between the fibre and the plane by introducing the reaction force of the form
Fr = ηẋ2. This is the third force exerted on the fibre during the downward motion, and it is
oriented upward, against the motion. Replacing F by F + Fr in equation (3) we thus naturally
obtain equation (6). The work done by the reaction force during the downward motion is
responsible for the dissipation of the total energy of the fibre. Let us also note that equation (6),
contrary to equation (3), correctly describes the free-fall of the end of the fibre when we switch
off the force F (i.e. for F = 0), as required by the principle of equivalence.

The solutions of both these equations merge together at the turning points where ẋ = 0,
i.e. at the instants when the fibre is at rest—the ‘switching’ between the two equations of
motion takes place as a result of the change of sign of the velocity. Naturally, both the
equations have the same stationary solution xc given by equation (4). The equations of motion
(3) and (6) can thus be rewritten in a unified form as

ẍ = g
(xc

x
− 1

)
− 1

2
(1 + sgn ẋ)

ẋ2

x
. (7)

Interestingly, the Buquoy problem is thus described by an equation of motion which depends
in a very specific way on the velocity.
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Figure 2. Three possible forms of the potential V
↑
ef (x) for the upward motion.

3. Upward motion

To look for solutions for ẋ > 0 we may employ equation (2). For a non-trivial situation the
term xẋ is non-zero, so that we can multiply both sides by xẋ and integrate to obtain

1

2
(xẋ)2 = F

2η
x2 − g

3
x3 + C, (8)

where C is an integration constant. Its value is determined by the initial conditions x0, ẋ0 as

C = 1

2
(x0ẋ0)

2 − F

2η
x2

0 +
g

3
x3

0 . (9)

Equation (8) can be rewritten in the form

1

2
ẋ2 + V

↑
ef (x) = F

2η
, V

↑
ef (x) ≡ g

3
x − C

x2
, (10)

which may be formally interpreted as a conservation law of total mechanical energy (having
the value F/2η), corresponding to the motion of a fictitious particle with unit mass in the force
field with the effective potential V

↑
ef (x). In fact, by substituting from (10) into (3) we obtain

the equation

ẍ = −g

3
− 2C

x3
≡ Fef(x). (11)

Possible forms of the potential V
↑

ef (x) depending on the constant C are illustrated in figure 2.
The value and the sign of C are determined by the initial conditions according to (9).

For C � 0 we observe from (11) that Fef < 0 and the initial condition must necessarily
be ẋ0 > 0. The initial condition ẋ0 = 0 is only possible when Fef � 0, in which case
C � − g

6 x3
0 < 0. For any value of the exerted force F during the upward motion there exists

a maximal height xM which is determined by the condition V
↑

ef (xM) = F
2η

, i.e. given by the
solution of cubic equation

x3 − 3

2
xcx

2 − 3

g
C = 0, (12)
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Figure 3. The potential V
↓
ef (x) for the downward motion.

see equation (10). After reaching the turning point xM the fibre necessarily starts moving
downward. For C < 0 the potential has a form of a potential well. Thus, there generically
exist two solutions of equation (12)—besides the maximal height xM there is also the ‘initial
point’ xm (the starting point for the upward motion with zero initial velocity). In such a case it
is possible to express the maximal height xM explicitly in terms of the value xm. By dividing
(12) by the factor x − xm we obtain a quadratic equation for xM > xc > xm which has a unique
physical solution

xM = 1
2

(
3
2xc − xm

)
+ 1

2

√(
3
2xc + xm

)2 − 4x2
m. (13)

Note also that for large values of x such that x3 � 3
g
|C| the effective potential (10) is

approximately V
↑

ef (x) ≈ g

3 x, so that independently of C the maximal height is xM ≈ 3
2xc.

4. Downward motion

By integrating equation (6) we obtain the effective potential for the downward motion,

1

2
ẋ2 + V

↓
ef (x) = V

↓
ef (x1), V

↓
ef (x) = gx − F

η
ln x, (14)

which is shown in figure 3. It has the form of a potential well with minimum at xc corresponding
to the stationary solution. As indicated in figure 3, for every potential level higher than V

↓
ef (xc)

there exist two turning points such that 0 < x2 < xc < x1. The coordinates of these points
fulfil the condition

x1 − x2 = xc ln(x1/x2). (15)

An important observation is that necessarily x2 > 0, and thus the upper end of the fibre can
never fall down back on the plane (see also the form of the effective reaction force Fr introduced
above).

If the downward motion follows the upward motion, the turning point x1 is identical to
the maximal value xM introduced in the previous section. And similarly, the turning point x2

becomes a new minimal value xm for a subsequent upward motion.
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Figure 4. The sequence of the potentials V
↑
ef (x) and V

↓
ef (x). The sequence of the turning points

x1, x2, x3, . . . (see the text) approaches the stationary position xc indicated by the circles at the very
bottom of the potential wells. The values of the parameters are η = 2 × 10−3 kg m−1, F = 0.1 N,
g = 9.8 m s−2, x0 = 1 m, ẋ0 = 0.
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Figure 5. The complete motion of the Buquoy’s fibre clearly exhibits damped oscillations around
the stationary point xc .

5. The complete motion

To describe the complete motion of the fibre we thus have to alternately join solutions of
equation (10) valid for ẋ > 0 with solutions of (14) for ẋ < 0. The merging takes place at the
corresponding turning points ẋ = 0, i.e. at the instants when the function x(t) reaches its local
maxima or minima, respectively. In figures 4 and 5 this procedure is explicitly demonstrated
(supposing the initial conditions x0 > 0, ẋ0 = 0, such that C < 0 and x0 = xm) by calculating
the sequence of the turning points x1, x2, x3, . . . for subsequent upward and downward motions
of the fibre.
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Table 1. The times t of the heights x of the sequence of the turning points and passages through
the (asymptotic) equilibrium point xc = 5.102, and the corresponding amplitudes ξ = x − xc . We
also present the time intervals T ↑ and T ↓ between the two nearest passages through x = xc in
the cases of the upward and downward motions separately (for example, T ↑ = 4.573 is given by
the difference of t = 5.514 and t = 0.941). The periods T ↑ decrease whereas T ↓ increase to the
value Ts = 4.534.

t x ξ T ↑ T ↓

0 1 −4.102 − −
0.941 xc 0 − −
2.186 7.536 2.434 − −
3.528 xc 0 4.573 −
4.470 3.259 −1.843 − −
5.514 xc 0 − 4.451
6.710 6.573 1.471 − −
7.979 xc 0 4.549 −
8.994 3.869 −1.233 − −

10.063 xc 0 − 4.496
11.245 6.161 1.059 − −
12.475 xc 0 4.543 −
13.518 4.172 −0.930 − −
14.606 xc 0 − 4.511
15.780 5.930 0.828 − −
16.986 xc 0 − −

The procedure is the following. From the initial conditions we determine the potential
V

↑
ef (x) using (9) and (10). The first turning point x1 = xM > x0 is determined by V

↑
ef (x1) = F

2η
,

or explicitly by (13). From (14) we then evaluate V
↓

ef (x1) and determine the second turning
point for the downward motion x2 < x1 from the condition V

↓
ef (x2) = V

↓
ef (x1), or using

equation (15). The value x2 plays the role of the new initial position xm with zero velocity
for the next upward motion. We thus determine the new potential V

↑
ef (x) corresponding to

a new value of C, and from V
↑

ef (x3) = F
2η

we find the coordinate of the next upper turning

point x3 = xM > x2. Then we find V
↓

ef (x3) and determine the following turning point for
the downward motion x4 < x3 from the condition V

↓
ef (x4) = V

↓
ef (x3), etc. As can be seen

in figure 4, this sequence of turning points oscillates around the stationary position xc, with
the amplitude of such oscillations decreasing—the motion of the fibre thus exhibits damped
quasi-periodic oscillations.

The harmonic nature of small oscillations around xc can be demonstrated from the
equations of motion (6) and (11) in the case of small amplitudes ξ = x − xc when
ξ � xc = F

ηg
. Neglecting higher terms, both equations take the form

ξ̈ +
ηg2

F
ξ = 0. (16)

This means that small oscillations are close to harmonic ones with period Ts = 2π
g

√
F
η

. It can

also be shown that the time interval T ↑ between two subsequent passages through x = xc in the
case of the upward motion decreases with time, while the analogous time interval T ↓ for the
downward motion increases with time, see table 1. In fact, limt→∞ T ↑ = limt→∞ T ↓ = Ts .

The plot in figure 5 which displays the complete motion x(t) was obtained numerically by
solving equation (7) using the Runge–Kutta method (the appropriate upward and downward
solutions being ‘switched’ at the turning points where the velocity changes its sign). The



1044 V Šı́ma and J Podolský

choice of the parameters is the same as in figure 4. In table 1 we also present the numerical
values of the times t at which the turning points xi, i = 0, 1, 2, . . . , and xc are reached, and the
corresponding amplitudes ξ = xi − xc. The damping is obvious from the decreasing moduli
of amplitude ξ . Moreover, the time intervals T ↑ for the upward motion slowly decrease with
time whereas the periods for the downward motion T ↓ increase.

Except for very special initial conditions it is difficult to obtain analytic solutions to the
equation of motion (7). An interesting particular upward motion that is explicitly solvable
occurs when C = 0, in which case equation (11) admits a solution of the form

x = 3

2g

(
F

η
− ẋ2

0

)
+ ẋ0 t − g

6
t2, (17)

with the initial conditions x0 = 3
2g

(
F
η

− ẋ2
0

)
and 0 < ẋ0 �

√
F
η

. The fibre moves upward with

a constant deceleration − g

3 . For the ‘limiting’ initial conditions x0 = 0 and ẋ0 =
√

F
η

, an

extraordinary situation happens—exerting of a finite constant force F on the ‘zero’ mass of the
reeled fibre at x = 0 having a non-zero velocity results (in homogeneous gravitational field g)
in a ‘free-fall’ motion with deceleration − g

3 . The fibre reaches its maximal height xM = 3
2xc

at tM = 3
g

√
F
η

. When calculating the time interval between tM and the previous passage

through x = xc, we obtain just a quarter of a period of hypothetical ‘parabolic’ oscillations

T
↑
p = 4

√
3

g

√
F
η

, which is naturally higher than Ts .

6. Discussion

A physical interpretation of the complete solution to the Buquoy problem is obvious. It
follows from the analysis presented above that the damped motion of the fibre results from
the dissipative processes (of momentum and energy) during landing of the fibre on the plane.
These processes have a one-way character since the mechanical energy is dissipated into the
more inaccessible internal energy. From the point of view of effective potentials describing
the motion of a virtual particle with a unit mass in a force field, the dissipation of energy is
due to the changes of the potential for the upward motion after reaching the bottom turning
point. In terms of the reaction force, it is the work done by this force during the downward
motion of the fibre.

Various generalizations of the problem are clearly possible, for example by relaxing the
assumed conditions or by replacing the model of a continuous fibre by a system of discrete
elements (such as beads, chain links, people entering and leaving a paternoster elevator, etc).
In all such cases it would, however, be necessary to carefully specify other presumptions, and
the description of the system would go beyond the formalism of a one-dimensional motion of
a fictitious particle which was sufficient in our analysis.

Another non-trivial situation would also appear in the case when the vector of the force F
is not perpendicular to the horizontal plane (representing, e.g., a general motion of a rocket,
pulling an optical fibre used for its remote control). In such a case the fibre sag necessarily
arises, and a part of the fibre would also be dragged along the plane. The horizontal velocity
component would thus decrease with time but it could not change its sign. On the other hand,
concerning the height of the pulled fibre above the horizontal plane, similar oscillations as
in Buquoy’s problem discussed here can be expected due to the dissipation of the vertical
momentum.
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7. Conclusions

We presented the solution of a simple yet interesting problem of a one-dimensional oscillating
motion of an open system with varying mass in the field of constant exerted force plus the
gravitational force. It was shown that the energy dissipation in the system which is responsible
for damped oscillations arises from a specific velocity dependence of the effective force. Small
oscillations of the system around the equilibrium point are close to harmonic ones. A change
of the effective potential corresponding to the exerted force arises due to the change of the
velocity sign, so that in general the potential depends on the coordinate of the last turning
point.
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