Sebaftian Schufter
 sebastian.schuster@utf.mff.cuni.cz

Limbus Poftdoctōrum Infernum Acadēmīx

Ventūrus mox ad ūniverfitātēs prope vōs
$22^{\text {nd }}$ October 2023, Světlá pod Blaníkem

UNIVERZITA KARLOVA Matematicko-fyzikální fakulta

Motivation

QUID EST ERGO TEMPES? SI NEMO EX ME QUAERAT, SCIO, SWO AERENTI EXPLICARE VELIM, NESCIO:

WHAT IS TIME THEN? IF NOBODY ASKS ME, 1 KNOW; BUT IF I WERE DESIROUS TO EXPLAINIT TO ONE THAT SHOULD ASK ME, PLAINLY I KNOW NOT.

- AUGUSTINE OF HIPPO
[St 01, Liber IX, cap. XIV]? I didn't start it! [Mor+14] did! I must not be outdone in pretentiousness!

Motivation

QUID EST ERGO TEMPUS? SI NEMO EX ME QUAERAT, SCIO, SN OLAERENTI EXPLICARE VELIM, NESCIO:

WHAT IS TIME THEN? IF NOBODY ASKS ME, 1 KNOW: BUT IF I WERE DESIROUS TO EXPLAINIT TO ONE THAT SHOULD ASK ME, PLAINLY I KNOW NOT.

- AUGUSTINE OF HIPPO

"What an entirely baunted time to be alive."
 - Tamsyn Muir, Nona the Ninth

[St 01, Liber IX, cap. XIV]? I didn't start it! [Mor+14] did! I must not be outdone in pretentiousness!

Outline

(1) Exordium: Timely Warnings and Background

- Fluff
- Technicalities
(2) Repetitio: Of Times Classical
(3) Liber: Time in Quantum Mechanics
- A No-Go Theorem
- The Forbidden Fruits-POVMs

4 Conclusio: Modern Times

- Quantum Clocks and Gauge Theory
- Applications: QG + X

EXORDIƯM: PREREQUISITES:AND CONVENTIONS

Warning! 'tis the Seafon

- Physics is magic without magic. ${ }^{1}$ She time is ripe for an appzopziate prefentation.
- I consider humour $=\int$ dlearning

[^0]
Warning! 'tis the Seafon

- Physics is magic without magic. ${ }^{1}$ She time iz ripe foz an appzopziate pzejentation.
- I consider humour $=\int$ dlearning-stop me if it's too much. ${ }^{2}$

[^1]
Warning! 'tis the Seafon

- Physics is magic without magic. ${ }^{1}$ She time is ripe foz an appzopziate prejentation.
- I consider humour $=\int$ dlearning-stop me if it's too much. ${ }^{2}$
- I like big words and I cannot lie

[^2]
Warning! 'tis the Seafon

- Physics is magic without magic. ${ }^{1}$ She time is ripe foz an appzopziate prejentation.
- I consider humour $=\int$ dlearning-stop me if it's too much. ${ }^{2}$
- I like big words and I cannot lie-Stipulate cessation, and I shall surcease or extemporize and expound.

[^3]
Warning! 'tis the Seafon

- Physics is magic without magic. ${ }^{1}$ She time is ripe foz an appzopziate prejentation.
- I consider humour $=\int$ dlearning-stop me if it's too much. ${ }^{2}$
- I like big words and I cannot lie-Stipulate cessation, and I shall surcease or extemporize and expound.
- Life-changing info: $\Delta t_{\text {questions received }}>\Delta t_{\text {awkward silence }}$

[^4]
Warning! 'tis the Seafon

- Physics is magic without magic. ${ }^{1}$ She time iz ripe foz an appzopziate pzejentation.
- I consider humour $=\int$ dlearning-stop me if it's too much. ${ }^{2}$
- I like big words and I cannot lie-Stipulate cessation, and I shall surcease or extemporize and expound.
- Life-changing info: $\Delta t_{\text {questions received }}>\Delta t_{\text {awkward silence }}$
- Things I consider good exercises are in green

[^5]
Warning! 'tis the Seafon

- Physics is magic without magic. ${ }^{1}$ The time is ripe foz an appzopziate prejentation.
- I consider humour $=\int$ dlearning-stop me if it's too much. ${ }^{2}$
- I like big words and I cannot lie-Stipulate cessation, and I shall surcease or extemporize and expound.
- Life-changing info: $\Delta t_{\text {questions received }}>\Delta t_{\text {awkward silence }}$
- Things I consider good exercises are in green
- I'm not an expert on (most of) this.

[^6]
EXORDIUAT: PREREQUISLEESAND CONVENTIONS: TECHNICALITIES

Required Background

Main part:

- Quantum mechanics
- Special relativity
- Fourier transformations

Only nice-to-have:

- Having heard of measure theory
- A bit of complex analysis

For the last exciting bit:

- Having heard of the $3+1$ decomposition of GR

Required Background

Main part:

- Quantum mechanics
- Special relativity
- Fourier transformations

Only nice-to-have:

- Having heard of measure theory
- A bit of complex analysis

For the last exciting bit:

- Having heard of the $3+1$ decomposition of GR

Quantum Theory's Problem(s) in a Nuthell

- The Party Line: The 'Copenhagen interpretation'

Quantum Theory's Problem(s) in a Nutfhell

- The Party Line: The 'Copenhagen interpretation'
- The highlights:
- Woitulate II: Measurements of state $|\Psi\rangle$ with an operator \hat{A} yield an eigenvalue a of eigenstate $|a\rangle$ of \hat{A} according to the Born rule with a probability

$$
\mathrm{d} P(a)=|\langle\Psi \mid a\rangle|^{2} \mathrm{~d} a .
$$

After the measurement, the system is now in state $|a\rangle$.

- Woitulate III: A (closed) system evolves unitarily according to the Schrödinger equation:

$$
|\Psi(t)\rangle=U\left(t ; t_{0}\right)\left|\Psi\left(t_{0}\right)\right\rangle .
$$

Extended to mixed states:

$$
\hat{\rho}(t)=U\left(t ; t_{0}\right) \hat{\rho}\left(t_{0}\right) U^{\dagger}\left(t ; t_{0}\right) .
$$

Quantum Theory's Problem(s) in a Nutfhell

- The Party Line: The 'Copenhagen interpretation'
- The highlights:
- Woitulate II: Measurements of state $|\Psi\rangle$ with an operator \hat{A} yield an eigenvalue a of eigenstate $|a\rangle$ of \hat{A} according to the Born rule with a probability

$$
\mathrm{d} P(a)=|\langle\Psi \mid a\rangle|^{2} \mathrm{~d} a .
$$

After the measurement, the system is now in state $|a\rangle$.

- Woitulate III: A (closed) system evolves unitarily according to the Schrödinger equation:

$$
|\Psi(t)\rangle=U\left(t ; t_{0}\right)\left|\Psi\left(t_{0}\right)\right\rangle .
$$

Extended to mixed states:

$$
\hat{\rho}(t)=U\left(t ; t_{0}\right) \hat{\rho}\left(t_{0}\right) U^{\dagger}\left(t ; t_{0}\right) .
$$

- This either is a fully contradictory statement about Ψ 's time evolution, or one needs a 'Heisenberg cut' clearly separating 'classical' measurements from 'quantum' evolution.

REPETITIO: OF TIMES CLASSICAL

Detour: Some Refults about Fourier Tranfformations

- Thevzem ($\mathfrak{\text { Onch}}$ (arel): On the set of Schwartz functions ${ }^{3} \mathcal{S}$, the Fourier transform \mathcal{F} is an isometry.
${ }^{3} \mathcal{S}\left(\mathbb{R}^{n}\right):=\left\{\phi \in C^{\infty}\left(\mathbb{R}^{n}\right)\left|\forall \alpha, \beta \in \mathbb{N}_{0}^{n}: \sup _{x \in \mathbb{R}^{n}}\right| x^{\alpha} D^{\beta} \phi(x) \mid<\infty\right\}$

Detour: Some Refults about Fourier Tranfformations

- Thevzem (O (ancherel): On the set of Schwartz functions ${ }^{3} \mathcal{S}$, the Fourier transform \mathcal{F} is an isometry.
- As \mathcal{S} is dense in $L^{1}(\mathbb{R})$ and $L^{2}(\mathbb{R})$, this extends the Fourier transform to $f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$.
- For discrete Fourier transforms, this is \$arieual: Theozem.
${ }^{3} \mathcal{S}\left(\mathbb{R}^{n}\right):=\left\{\phi \in C^{\infty}\left(\mathbb{R}^{n}\right)\left|\forall \alpha, \beta \in \mathbb{N}_{0}^{n}: \sup _{x \in \mathbb{R}^{n}}\right| x^{\alpha} D^{\beta} \phi(x) \mid<\infty\right\}$

Detour: Some Refults about Fourier Tranfformations

- Thebzem (O (ancherel): On the set of Schwartz functions ${ }^{3} \mathcal{S}$, the Fourier transform \mathcal{F} is an isometry.
- As \mathcal{S} is dense in $L^{1}(\mathbb{R})$ and $L^{2}(\mathbb{R})$, this extends the Fourier transform to $f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$.
- For discrete Fourier transforms, this is \$arieual: Theozem.
- More importantly: There's physics here.

$$
{ }^{3} \mathcal{S}\left(\mathbb{R}^{n}\right):=\left\{\phi \in C^{\infty}\left(\mathbb{R}^{n}\right)\left|\forall \alpha, \beta \in \mathbb{N}_{0}^{n}: \sup _{x \in \mathbb{R}^{n}}\right| x^{\alpha} D^{\beta} \phi(x) \mid<\infty\right\}
$$

Uncertainty Principles of Claffical Phyfics ${ }^{4}$

- Roughly speaking:
- Canonically conjugate variables \Longrightarrow Fourier transform
- Uncertainty + boundedness/asymtpotic conditions \Longrightarrow Uncertainty 'principles'

[^7]
Uncertainty Principles of Claffical Phyfics ${ }^{4}$

- Roughly speaking:
- Canonically conjugate variables \Longrightarrow Fourier transform
- Uncertainty + boundedness/asymtpotic conditions \Longrightarrow Uncertainty 'principles'
- What sounds beretical is common sense to electric engineers: Ruppemuillerta nncertainty pzinciple holds in (classical) signal analysis

[^8]
Uncertainty Principles of Claffical Phyfics ${ }^{4}$

- Roughly speaking:
- Canonically conjugate variables \Longrightarrow Fourier transform
- Uncertainty + boundedness/asymtpotic conditions \Longrightarrow Uncertainty 'principles'
- What sounds beretical is common sense to electric engineers: Ruppemillere vacertainty principle holds in (classical) signal analysis
- Homework/Quiz for the musicians.

[^9] https://www. youtube.com/watch?v=isznXyN104Q

Liber Non Ex Tempore - Time(?) in Quantum Mechanics

Redux: Time in Quantum Mechanics-Part I, Uncertainty Principles

- So far: Schrödinger equation Measurement process

Redux: Time in Quantum Mechanics-Part I, Uncertainty Principles

- So far: Schrödinger equation Measurement process-but there's more.

Redux: Time in Quantum Mechanics-Part I, Uncertainty Principles

- So far: Schrödinger equation Measurement process-but there's more.
- For the canonically conjugated \hat{x} and \hat{p} we have Heisenberg's uncertainty relations:

$$
\begin{equation*}
\sigma_{x} \sigma_{p} \geq \frac{\hbar}{2} \tag{1}
\end{equation*}
$$

Redux: Time in Quantum Mechanics-Part I, Uncertainty Principles

- So far: Schrödinger equation Measurement process-but there's more.
- For the canonically conjugated \hat{x} and \hat{p} we have Heisenberg's uncertainty relations:

$$
\begin{equation*}
\sigma_{x} \sigma_{p} \geq \frac{\hbar}{2} \tag{1}
\end{equation*}
$$

- More generally, defining for any Hermitian \hat{M} the standard deviation as

$$
\sigma_{M}:=\sqrt{\left\langle\hat{M}^{2}\right\rangle-\langle\hat{M}\rangle^{2}}
$$

we have for any two operators \hat{A}, \hat{B} :

$$
\sigma_{A} \sigma_{B} \geq \frac{1}{2}|\langle[\hat{A}, \hat{B}]\rangle|
$$

Redux: Time in Quantum Mechanics-Part I, Uncertainty Principles

- So far: Schrödinger equation Measurement process-but there's more.
- For the canonically conjugated \hat{x} and \hat{p} we have Heisenberg's uncertainty relations:

$$
\begin{equation*}
\sigma_{x} \sigma_{p} \geq \frac{\hbar}{2} \tag{1}
\end{equation*}
$$

- More generally, defining for any Hermitian \hat{M} the standard deviation as

$$
\sigma_{M}:=\sqrt{\left\langle\hat{M}^{2}\right\rangle-\langle\hat{M}\rangle^{2}}
$$

we have for any two operators \hat{A}, \hat{B} :

$$
\sigma_{A} \sigma_{B} \geq \frac{1}{2}|\langle[\hat{A}, \hat{B}]\rangle|
$$

- There are subtleties regarding boundary conditions...

Redux: 'Time in Quantum Mechanics-Part II, Time-Energy Uncertainty

- We also have (things like) [MT45]: ${ }^{5}$

$$
\Delta \tau \Delta E \geq \frac{\pi^{2} \hbar}{2}
$$

${ }^{5}$ I have the feeling that this should be $\frac{\hbar}{2}$. Didn't have the time to read and double-check [MT45], though...

Redux: 'Time in Quantum Mechanics-Part II, Time-Energy Uncertainty

- We also have (things like) [MT45]: ${ }^{5}$

$$
\Delta \tau \Delta E \geq \frac{\pi^{2} \hbar}{2}
$$

- Used very liberally for anything particle creation. Successfully.
${ }^{5}$ I have the feeling that this should be $\frac{\hbar}{2}$. Didn't have the time to read and double-check [MT45], though...

Redux: Time in Quantum Mechanics-Part II, Time-Energy Uncertainty

- We also have (things like) [MT45]: ${ }^{5}$

$$
\Delta \tau \Delta E \geq \frac{\pi^{2} \hbar}{2}
$$

- Used very liberally for anything particle creation. Successfully.
- More general versions read

$$
\sigma_{H} \sigma_{B} /\left|\frac{\mathrm{d}\langle\hat{B}\rangle}{\mathrm{d} t}\right| \geq \frac{\hbar}{2}
$$

- Deriving it (or more general versions) always relies more or less on ...
${ }^{5}$ I have the feeling that this should be $\frac{\hbar}{2}$. Didn't have the time to read and double-check [MT45], though...

Redux: Time in Quantum Mechanics-Part II, Time-Energy Uncertainty

- We also have (things like) [MT45]. ${ }^{5}$

$$
\Delta \tau \Delta E \geq \frac{\pi^{2} \hbar}{2}
$$

- Used very liberally for anything particle creation. Successfully.
- More general versions read

$$
\sigma_{H} \sigma_{B} /\left|\frac{\mathrm{d}\langle\hat{B}\rangle}{\mathrm{d} t}\right| \geq \frac{\hbar}{2}
$$

- Deriving it (or more general versions) always relies more or less on ... other methods.
${ }^{5}$ I have the feeling that this should be $\frac{\hbar}{2}$. Didn't have the time to read and double-check [MT45], though...

Redux: Time in Quantum Mechanics-Part II, Time-Energy Uncertainty

- We also have (things like) [MT45]: ${ }^{5}$

$$
\Delta \tau \Delta E \geq \frac{\pi^{2} \hbar}{2}
$$

- Used very liberally for anything particle creation. Successfully.
- More general versions read

$$
\sigma_{H} \sigma_{B} /\left|\frac{\mathrm{d}\langle\hat{B}\rangle}{\mathrm{d} t}\right| \geq \frac{\hbar}{2}
$$

- Deriving it (or more general versions) always relies more or less on ... other methods.
- But why?
${ }^{5}$ I have the feeling that this should be $\frac{\hbar}{2}$. Didn't have the time to read and double-check [MT45], though...

Liber Non Ex Tempore - Time(?) in

 Quaantum Mechanics:Time and The Clash'Should I stay or fbould I go?'

Back-of-the-envelope ... problems? SR+QM

- Assume an (elemental) clock of mass m, a light signal of temporal width $\Delta \tau$ and arrival time t.

Back-of-the-envelope ... problems? SR+QM

- Assume an (elemental) clock of mass m, a light signal of temporal width $\Delta \tau$ and arrival time t.
- Use (1) to get:
- Frequency uncertainty $1 /(4 \pi \Delta \tau)$
- Recoil uncertainty $\hbar /(2 c \Delta \tau)$
- Uncertain velocity, implicitly as

$$
\frac{m c \beta}{\sqrt{1-\beta^{2}}}=\frac{\hbar}{2 c \Delta \tau}
$$

gives to $\Delta \tau$ in addition $\Delta t=\left(1-\sqrt{1-\beta^{2}}\right) t$

Back-of-the-envelope ... problems? SR+QM

- Assume an (elemental) clock of mass m, a light signal of temporal width $\Delta \tau$ and arrival time t.
- Use (1) to get:
- Frequency uncertainty $1 /(4 \pi \Delta \tau)$
- Recoil uncertainty $\hbar /(2 c \Delta \tau)$
- Uncertain velocity, implicitly as

$$
\frac{m c \beta}{\sqrt{1-\beta^{2}}}=\frac{\hbar}{2 c \Delta \tau}
$$

gives to $\Delta \tau$ in addition $\Delta t=\left(1-\sqrt{1-\beta^{2}}\right) t$

- Similar calculations give uncertainties for position x through uncertainty in β

Back-of-the-envelope ... problems? SR+QM

- Assume an (elemental) clock of mass m, a light signal of temporal width $\Delta \tau$ and arrival time t.
- Use (1) to get:
- Frequency uncertainty $1 /(4 \pi \Delta \tau)$
- Recoil uncertainty $\hbar /(2 c \Delta \tau)$
- Uncertain velocity, implicitly as

$$
\frac{m c \beta}{\sqrt{1-\beta^{2}}}=\frac{\hbar}{2 c \Delta \tau}
$$

gives to $\Delta \tau$ in addition $\Delta t=\left(1-\sqrt{1-\beta^{2}}\right) t$

- Similar calculations give uncertainties for position x through uncertainty in β
- \$2oblem: Horrible numbers for elementary particles as 'rulers' or 'clocks'.

Back-of-the-envelope ... problems? SR+QM

- Assume an (elemental) clock of mass m, a light signal of temporal width $\Delta \tau$ and arrival time t.
- Use (1) to get:
- Frequency uncertainty $1 /(4 \pi \Delta \tau)$
- Recoil uncertainty $\hbar /(2 c \Delta \tau)$
- Uncertain velocity, implicitly as

$$
\frac{m c \beta}{\sqrt{1-\beta^{2}}}=\frac{\hbar}{2 c \Delta \tau}
$$

gives to $\Delta \tau$ in addition $\Delta t=\left(1-\sqrt{1-\beta^{2}}\right) t$

- Similar calculations give uncertainties for position x through uncertainty in β
- Droblem: Horrible numbers for elementary particles as 'rulers' or 'clocks'.
- Bigger \$2oblem: Assuming SR and QM even work simultaneously.

Back-of-the-envelope ... problems? SR+QM

- Assume an (elemental) clock of mass m, a light signal of temporal width $\Delta \tau$ and arrival time t.
- Use (1) to get:
- Frequency uncertainty $1 /(4 \pi \Delta \tau)$
- Recoil uncertainty $\hbar /(2 c \Delta \tau)$
- Uncertain velocity, implicitly as

$$
\frac{m c \beta}{\sqrt{1-\beta^{2}}}=\frac{\hbar}{2 c \Delta \tau}
$$

gives to $\Delta \tau$ in addition $\Delta t=\left(1-\sqrt{1-\beta^{2}}\right) t$

- Similar calculations give uncertainties for position x through uncertainty in β
- \$2oblem: Horrible numbers for elementary particles as 'rulers' or 'clocks'.
- $\mathfrak{B i g g e r}$ Droblem: Assuming SR and QM even work simultaneously. Let's make it worse.

The Theorem-À la Schrödinger ${ }^{6}$

- We don't need SR to suffer. We're theorists.

The Theorem-A la Schrödinger ${ }^{6}$

- We don't need SR to suffer. We're theorists.
- Assume a Hermitian time operator \hat{T}, its eigenvalues would be a clock measurement

The Theorem- \AA la Schrödinger ${ }^{6}$

- We don't need SR to suffer. We're theorists.
- Assume a Hermitian time operator \hat{T}, its eigenvalues would be a clock measurement
- Assume a general wave function

$$
\begin{equation*}
\Psi(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{-i \omega t} c(x, \omega) \mathrm{d} \omega \tag{2}
\end{equation*}
$$

The Theorem- \AA la Schrödinger ${ }^{6}$

- We don't need SR to suffer. We're theorists.
- Assume a Hermitian time operator \hat{T}; its eigenvalues would be a clock measurement
- Assume a general wave function

$$
\begin{equation*}
\Psi(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{-i \omega t} c(x, \omega) \mathrm{d} \omega \tag{2}
\end{equation*}
$$

- Then we would have that

$$
\forall t: \hat{T} \Psi-t \Psi=0
$$

The Theorem - \AA la Schrödinger ${ }^{6}$

- We don't need SR to suffer. We're theorists.
- Assume a Hermitian time operator \hat{T}; its eigenvalues would be a clock measurement
- Assume a general wave function

$$
\begin{equation*}
\Psi(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{-i \omega t} c(x, \omega) \mathrm{d} \omega \tag{2}
\end{equation*}
$$

- Then we would have that

$$
\forall t: \hat{T} \Psi-t \Psi=0
$$

- Let's combine this with (2), though with finite integral boundaries:

$$
\int_{\omega_{0}}^{\omega_{1}}\left[e^{-i \omega t} \hat{T} c(x, \omega)-t e^{-i \omega t} c(x, \omega)\right] \mathrm{d} \omega=0
$$

The Theorem-À la Schrödinger ${ }^{7}$ (continued)

- One partial integration later:

$$
\begin{equation*}
\int_{\omega_{0}}^{\omega_{1}}\left[e^{-i \omega t} \widehat{T} c(x, \omega)+i\left(\frac{\partial}{\partial \omega} e^{-i \omega t}\right) c(x, \omega)\right] \mathrm{d} \omega=i\left[e^{-i \omega_{1} t} c\left(x, \omega_{1}\right)-e^{-i \omega_{0} t} c\left(x, \omega_{0}\right)\right] \tag{3}
\end{equation*}
$$

The Theorem - \AA la Schrödinger ${ }^{7}$ (continued)

- One partial integration later:

$$
\begin{equation*}
\int_{\omega_{0}}^{\omega_{1}}\left[e^{-i \omega t} \hat{T} c(x, \omega)+i\left(\frac{\partial}{\partial \omega} e^{-i \omega t}\right) c(x, \omega)\right] \mathrm{d} \omega=i\left[e^{-i \omega_{1} t} c\left(x, \omega_{1}\right)-e^{-i \omega_{0} t} c\left(x, \omega_{0}\right)\right] \tag{3}
\end{equation*}
$$

- For $\omega_{0,1}$ sufficiently large, (2) guarantees RHS of (3) $\rightarrow 0$, so:

$$
\hat{T} c(x, \omega)-i \frac{\partial}{\partial \omega} c(x, \omega)=0 \quad \Longleftrightarrow \quad \hat{T}^{\dagger} c^{*}(x, \omega)+i \frac{\partial}{\partial \omega} c^{*}(x, \omega)=0
$$

The Theorem - \AA la Schrödinger ${ }^{7}$ (continued)

- One partial integration later:

$$
\begin{equation*}
\int_{\omega_{0}}^{\omega_{1}}\left[e^{-i \omega t} \hat{T} c(x, \omega)+i\left(\frac{\partial}{\partial \omega} e^{-i \omega t}\right) c(x, \omega)\right] \mathrm{d} \omega=i\left[e^{-i \omega_{1} t} c\left(x, \omega_{1}\right)-e^{-i \omega_{0} t} c\left(x, \omega_{0}\right)\right] \tag{3}
\end{equation*}
$$

- For $\omega_{0,1}$ sufficiently large, (2) guarantees RHS of (3) $\rightarrow 0$, so:

$$
\hat{T} c(x, \omega)-i \frac{\partial}{\partial \omega} c(x, \omega)=0 \quad \Longleftrightarrow \quad \hat{T}^{\dagger} c^{*}(x, \omega)+i \frac{\partial}{\partial \omega} c^{*}(x, \omega)=0
$$

- Whence

$$
\frac{\partial}{\partial \omega}|c(x, \omega)|^{2}=i\left(c \hat{T}^{\dagger} c^{*}-c^{*} \hat{T} c\right) \stackrel{\text { Hermiticity }}{=} 0
$$

The Theorem - À la Schrödinger ${ }^{7}$ (continued)

- One partial integration later:

$$
\begin{equation*}
\int_{\omega_{0}}^{\omega_{1}}\left[e^{-i \omega t} \hat{T} c(x, \omega)+i\left(\frac{\partial}{\partial \omega} e^{-i \omega t}\right) c(x, \omega)\right] \mathrm{d} \omega=i\left[e^{-i \omega_{1} t} c\left(x, \omega_{1}\right)-e^{-i \omega_{0} t} c\left(x, \omega_{0}\right)\right] \tag{3}
\end{equation*}
$$

- For $\omega_{0,1}$ sufficiently large, (2) guarantees RHS of (3) $\rightarrow 0$, so:

$$
\hat{T} c(x, \omega)-i \frac{\partial}{\partial \omega} c(x, \omega)=0 \quad \Longleftrightarrow \quad \hat{T}^{\dagger} c^{*}(x, \omega)+i \frac{\partial}{\partial \omega} c^{*}(x, \omega)=0
$$

- Whence

$$
\frac{\partial}{\partial \omega}|c(x, \omega)|^{2}=i\left(c \hat{T}^{\dagger} c^{*}-c^{*} \hat{T} c\right) \stackrel{\text { Hermiticity }}{=} 0
$$

- Drum roll, please!

The Theorem-À la Schrödinger ${ }^{7}$ (continued)

- One partial integration later:

$$
\begin{equation*}
\int_{\omega_{0}}^{\omega_{1}}\left[e^{-i \omega t} \hat{T} c(x, \omega)+i\left(\frac{\partial}{\partial \omega} e^{-i \omega t}\right) c(x, \omega)\right] \mathrm{d} \omega=i\left[e^{-i \omega_{1} t} c\left(x, \omega_{1}\right)-e^{-i \omega_{0} t} c\left(x, \omega_{0}\right)\right] \tag{3}
\end{equation*}
$$

- For $\omega_{0,1}$ sufficiently large, (2) guarantees RHS of (3) $\rightarrow 0$, so:

$$
\hat{T} c(x, \omega)-i \frac{\partial}{\partial \omega} c(x, \omega)=0 \quad \Leftrightarrow \quad \hat{T}^{\dagger} c^{*}(x, \omega)+i \frac{\partial}{\partial \omega} c^{*}(x, \omega)=0
$$

- Whence

$$
\frac{\partial}{\partial \omega}|c(x, \omega)|^{2}=i\left(c \hat{T}^{\dagger} c^{*}-c^{*} \hat{T} c\right) \stackrel{\text { Hermiticity }}{=} 0
$$

- Drum roll, please!

The Theorem - À la Schrödinger ${ }^{7}$ (continued)

- One partial integration later:

$$
\begin{equation*}
\int_{\omega_{0}}^{\omega_{1}}\left[e^{-i \omega t} \hat{T} c(x, \omega)+i\left(\frac{\partial}{\partial \omega} e^{-i \omega t}\right) c(x, \omega)\right] \mathrm{d} \omega=i\left[e^{-i \omega_{1} t} c\left(x, \omega_{1}\right)-e^{-i \omega_{0} t} c\left(x, \omega_{0}\right)\right] \tag{3}
\end{equation*}
$$

- For $\omega_{0,1}$ sufficiently large, (2) guarantees RHS of (3) $\rightarrow 0$, so:

$$
\hat{T} c(x, \omega)-i \frac{\partial}{\partial \omega} c(x, \omega)=0 \quad \Longleftrightarrow \quad \hat{T}^{\dagger} c^{*}(x, \omega)+i \frac{\partial}{\partial \omega} c^{*}(x, \omega)=0
$$

- Whence

$$
\frac{\partial}{\partial \omega}|c(x, \omega)|^{2}=i\left(c \hat{T}^{\dagger} c^{*}-c^{*} \hat{T} c\right) \stackrel{\text { Hermiticity }}{=} 0
$$

- Drum roll, please!
- $\Longrightarrow \Psi$'s energy is either unbounded or $\Psi=0$.

The Theorem - À la Schrödinger ${ }^{7}$ (continued)

- One partial integration later:

$$
\begin{equation*}
\int_{\omega_{0}}^{\omega_{1}}\left[e^{-i \omega t} \hat{T} c(x, \omega)+i\left(\frac{\partial}{\partial \omega} e^{-i \omega t}\right) c(x, \omega)\right] \mathrm{d} \omega=i\left[e^{-i \omega_{1} t} c\left(x, \omega_{1}\right)-e^{-i \omega_{0} t} c\left(x, \omega_{0}\right)\right] \tag{3}
\end{equation*}
$$

- For $\omega_{0,1}$ sufficiently large, (2) guarantees RHS of (3) $\rightarrow 0$, so:

$$
\hat{T} c(x, \omega)-i \frac{\partial}{\partial \omega} c(x, \omega)=0 \quad \Longleftrightarrow \quad \hat{T}^{\dagger} c^{*}(x, \omega)+i \frac{\partial}{\partial \omega} c^{*}(x, \omega)=0
$$

- Whence

$$
\frac{\partial}{\partial \omega}|c(x, \omega)|^{2}=i\left(c \hat{T}^{\dagger} c^{*}-c^{*} \hat{T} c\right) \stackrel{\text { Hermiticity }}{=} 0
$$

- Drum roll, please!
- $\Longrightarrow \Psi$'s energy is either unbounded or $\Psi=0$.
- We cannot have such a time operator \hat{T}.

${ }^{7}[$ Sch31]

The Theorem-À la Schrödinger ${ }^{7}$ (continued)

- One partial integration later:

$$
\begin{equation*}
\int_{\omega_{0}}^{\omega_{1}}\left[e^{-i \omega t} \hat{T} c(x, \omega)+i\left(\frac{\partial}{\partial \omega} e^{-i \omega t}\right) c(x, \omega)\right] \mathrm{d} \omega=i\left[e^{-i \omega_{1} t} c\left(x, \omega_{1}\right)-e^{-i \omega_{0} t} c\left(x, \omega_{0}\right)\right] \tag{3}
\end{equation*}
$$

- For $\omega_{0,1}$ sufficiently large, (2) guarantees RHS of (3) $\rightarrow 0$, so:

$$
\hat{T} c(x, \omega)-i \frac{\partial}{\partial \omega} c(x, \omega)=0 \quad \Longleftrightarrow \quad \hat{T}^{\dagger} c^{*}(x, \omega)+i \frac{\partial}{\partial \omega} c^{*}(x, \omega)=0
$$

- Whence

$$
\frac{\partial}{\partial \omega}|c(x, \omega)|^{2}=i\left(c \hat{T}^{\dagger} c^{*}-c^{*} \hat{T} c\right) \stackrel{\text { Hermiticity }}{=} 0
$$

- Drum roll, please!
- $\Longrightarrow \Psi$'s energy is either unbounded or $\Psi=0$.
- We cannot have such a time operator \hat{T}.

${ }^{7}$ [Sch31]

The Theorem - À la Unruh \& Wald: The Statement

- Require \exists a sequence $\left\{\left|t_{i}\right\rangle\right\}$ s.t.
(1) Each $\left|t_{n}\right\rangle$ is an eigenstate s.t. $t_{0}<t_{1}<\ldots$
(2) $\left.\forall n: \exists t, m>n:\left|\left\langle t_{m}\right| U\left(t, t_{m}\right)\right| t_{n}\right\rangle \mid>0$-Time has to progress
(3) $\left.\forall n, t, m<n:\left|\left\langle t_{m}\right| U\left(t, t_{m}\right)\right| t_{n}\right\rangle \mid=0$-Time does not run backwards

A No-Go Theorem
For \hat{H} bounded from below, there are no \hat{T} satisfying (1)-(3).

The Theorem - À la Unruh \& Wald: The Statement

- Require \exists a sequence $\left\{\left|t_{i}\right\rangle\right\}$ s.t.
(1) Each $\left|t_{n}\right\rangle$ is an eigenstate s.t. $t_{0}<t_{1}<\ldots$
(2) $\left.\forall n: \exists t, m>n:\left|\left\langle t_{m}\right| U\left(t, t_{m}\right)\right| t_{n}\right\rangle \mid>0$-Time has to progress
(3) $\left.\forall n, t, m<n:\left|\left\langle t_{m}\right| U\left(t, t_{m}\right)\right| t_{n}\right\rangle \mid=0$-Time does not run backwards

A No-Go Theorem
For \hat{H} bounded from below, there are no \hat{T} satisfying (1)-(3).

- What they want: A time operator \hat{T} that for (at least) some initial state $\left|t_{0}\right\rangle$ evolves monotonically to the future ${ }^{8}$

[^10]
The Theorem - À la Unruh \& Wald: The Proof

Proof:

- Pick $m>n$, define for $t \in \mathbb{C}(!)$

$$
f(t):=\left\langle t_{n}\right| \exp (-i \hat{H} t)\left|t_{m}\right\rangle
$$

The Theorem - À la Unruh \& Wald: The Proof

Proof:

- Pick $m>n$, define for $t \in \mathbb{C}(!)$

$$
f(t):=\left\langle t_{n}\right| \exp (-i \hat{H} t)\left|t_{m}\right\rangle
$$

- \hat{H} bounded from below $\Longrightarrow f$ holomorphic in the lower half-plane

The Theorem - À la Unruh \& Wald: The Proof

Proof:

- Pick $m>n$, define for $t \in \mathbb{C}(!)$

$$
f(t):=\left\langle t_{n}\right| \exp (-i \hat{H} t)\left|t_{m}\right\rangle
$$

- \hat{H} bounded from below $\Longrightarrow f$ holomorphic in the lower half-plane
- $\Longrightarrow f(t)$ vanishes on open intervals $\subseteq \mathbb{R} \longrightarrow \forall t$ with $\operatorname{Im}(t) \leq 0, f(t)=0$

The Theorem - À la Unruh \& Wald: The Proof

Proof:

- Pick $m>n$, define for $t \in \mathbb{C}$ (!)

$$
f(t):=\left\langle t_{n}\right| \exp (-i \hat{H} t)\left|t_{m}\right\rangle
$$

- \hat{H} bounded from below $\Longrightarrow f$ holomorphic in the lower half-plane
- $\Longrightarrow f(t)$ vanishes on open intervals $\subseteq \mathbb{R} \longrightarrow \forall t$ with $\operatorname{Im}(t) \leq 0, f(t)=0$
- From (3): f has to vanish for $t>0 ; \Longrightarrow \forall t \in \mathbb{R}: f(t)=0$

The Theorem - À la Unruh \& Wald: The Proof

Proof:

- Pick $m>n$, define for $t \in \mathbb{C}(!)$

$$
f(t):=\left\langle t_{n}\right| \exp (-i \hat{H} t)\left|t_{m}\right\rangle
$$

- \hat{H} bounded from below $\Longrightarrow f$ holomorphic in the lower half-plane
- $\Longrightarrow f(t)$ vanishes on open intervals $\subseteq \mathbb{R} \longrightarrow \forall t$ with $\operatorname{Im}(t) \leq 0, f(t)=0$
- From (3): f has to vanish for $t>0 ; \Longrightarrow \forall t \in \mathbb{R}: f(t)=0$
- But $\forall t>0$

$$
\left\langle t_{m}\right| \exp (-i \hat{H} t)\left|t_{n}\right\rangle=\left\langle t_{n}\right| \exp (+i \hat{H} t)\left|t_{m}\right\rangle^{*}=f^{*}(-t)=0
$$

The Theorem - À la Unruh \& Wald: The Proof

Proof:

- Pick $m>n$, define for $t \in \mathbb{C}(!)$

$$
f(t):=\left\langle t_{n}\right| \exp (-i \hat{H} t)\left|t_{m}\right\rangle
$$

- \hat{H} bounded from below $\Longrightarrow f$ holomorphic in the lower half-plane
- $\Longrightarrow f(t)$ vanishes on open intervals $\subseteq \mathbb{R} \longrightarrow \forall t$ with $\operatorname{Im}(t) \leq 0, f(t)=0$
- From (3): f has to vanish for $t>0 ; \Longrightarrow \forall t \in \mathbb{R}: f(t)=0$
- But $\forall t>0$

$$
\left\langle t_{m}\right| \exp (-i \hat{H} t)\left|t_{n}\right\rangle=\left\langle t_{n}\right| \exp (+i \hat{H} t)\left|t_{m}\right\rangle^{*}=f^{*}(-t)=0
$$

- Contradiction to (3).

The Theorem - À la Unruh \& Wald: The Proof

Proof:

- Pick $m>n$, define for $t \in \mathbb{C}(!)$

$$
f(t):=\left\langle t_{n}\right| \exp (-i \hat{H} t)\left|t_{m}\right\rangle \quad \text { "Nevermore." }
$$

- \hat{H} bounded from below $\Longrightarrow f$ holomorphic in the lower half-plane
- $\Longrightarrow f(t)$ vanishes on open intervals $\subseteq \mathbb{R} \longrightarrow \forall t$ with $\operatorname{Im}(t) \leq 0, f(t)=0$
- From (3): f has to vanish for $t>0 ; \Longrightarrow \forall t \in \mathbb{R}: f(t)=0$
- But $\forall t>0$

$$
\left\langle t_{m}\right| \exp (-i \hat{H} t)\left|t_{n}\right\rangle=\left\langle t_{n}\right| \exp (+i \hat{H} t)\left|t_{m}\right\rangle^{*}=f^{*}(-t)=0
$$

- Contradiction to (3).

Archæology: It belongs in a ... digital repofitory!

The joys of being conversant in languages of darkness:

- [PW83; UW89] and more cite [Pau80] for the 'Pauli theorem'

Archæology: It belongs in a ... digital repofitory!

The joys of being conversant in languages of darkness:

- [PW83; UW89] and more cite [Pau80] for the 'Pauli theorem'
- But both [Pau80] and the original German [Pau90] actually mention this theorem in a footnote, citing [Sch31]

Archæology: It belongs in a ... digital repofitory!

The joys of being conversant in languages of darkness:

- [PW83; UW89] and more cite [Pau80] for the 'Pauli theorem'
- But both [Pau80] and the original German [Pau90] actually mention this theorem in a footnote, citing [Sch31]
- But [Sch31] is not only in German, it is not yet digitized!

Archæology: It belongs in a ... digital repofitory!

The joys of being conversant in languages of darkness:

- [PW83; UW89] and more cite [Pau80] for the 'Pauli theorem'
- But both [Pau80] and the original German [Pau90] actually mention this theorem in a footnote, citing [Sch31]
- But [Sch31] is not only in German, it is not yet digitized!
- So, one talks to keepers of forbidden knowledge, and ends up with ...

Archæology: It belongs in a ... digital repofitory!

The joys of being conversant in languages of darkness:

- [PW83; UW89] and more cite [Pau80] for the 'Pauli theorem'
- But both [Pau80] and the original German [Pau90] actually mention this theorem in a footnote, citing [Sch31]
- But [Sch31] is not only in German, it is not yet digitized!
- So, one talks to keepers of forbidden knowledge, and ends up with ...

Liber Non Ex Tempore-Time(?) in

 Quantum Mechanics: The Forbidden Fruits-POVMs
Beauty Needs Imperfections: Rethinking Meafurement

- Back to physics: How to protect time from the abyss of 'just' being a classical parameter?

Beauty Needs Imperfections: Rethinking Meafurement

- Back to physics: How to protect time from the abyss of 'just' being a classical parameter?
- Maybe the issue is the Born rule.

Beauty Needs Imperfections: Rethinking Meafurement

- Back to physics: How to protect time from the abyss of 'just' being a classical parameter?
- Maybe the issue is the Born rule.
- The Born rule gives precise results; measurements are anything but precise

Beauty Needs Imperfections: Rethinking Meafurement

- Back to physics: How to protect time from the abyss of 'just' being a classical parameter?
- Maybe the issue is the Born rule.
- The Born rule gives precise results; measurements are anything but precise
- We still need to get a sense of probability and wave functions/density matrices

Beauty Needs Imperfections: Rethinking Meafurement

- Back to physics: How to protect time from the abyss of 'just' being a classical parameter?
- Maybe the issue is the Born rule.
- The Born rule gives precise results; measurements are anything but precise
- We still need to get a sense of probability and wave functions/density matrices
- The key insight: Think more probabilistic about the Born rule

The A and Ω of Pofitive Operator-Valued Meafures

The A and Ω of Pofitive Operator-Valued Meafures (POVMs)

- Put measurement outcomes first.

The A and Ω of Pofitive Operator-Valued Meafures (POVMs)

- Put measurement outcomes first.
- In probability lingo this means: The totality Ω of our measurements form a Borel σ-algebra M

The A and Ω of Pofitive Operator-Valued Meafures (POVMs)

- Put measurement outcomes first.
- In probability lingo this means: The totality Ω of our measurements form a Borel σ-algebra M
- A POVM A is a map of outcomes to operators such that:
(1) 'Positive:' $\forall \varphi \in \mathcal{H},:\langle\varphi| A(X)|\varphi\rangle \geq 0: \Leftrightarrow \forall X \in M: A(X) \geq 0$.
(2) $A(\Omega)=\mathbb{1}_{\mathcal{H}}$
(3) For disjoint $X_{i} \in M, A\left(\cup_{i} X_{i}\right)=\sum_{i} A\left(X_{i}\right)$

The A and Ω of Pofitive Operator-Valued Meafures (POVMs)

- Put measurement outcomes first.
- In probability lingo this means: The totality Ω of our measurements form a Borel σ-algebra M
- A POVM A is a map of outcomes to operators such that:
(1) 'Positive:' $\forall \varphi \in \mathcal{H},:\langle\varphi| A(X)|\varphi\rangle \geq 0: \Leftrightarrow \forall X \in M: A(X) \geq 0$.
(2) $A(\Omega)=\mathbb{1}_{\mathcal{H}}$
(3) For disjoint $X_{i} \in M, A\left(\cup_{i} X_{i}\right)=\sum_{i} A\left(X_{i}\right)$
- The Born rule becomes

$$
P(A \mid \rho)=\operatorname{Tr}(A \hat{\rho})
$$

The A and Ω of Pofitive Operator-Valued Meafures (POVMs)

- Put measurement outcomes first.
- In probability lingo this means: The totality Ω of our measurements form a Borel σ-algebra M
- A POVM A is a map of outcomes to operators such that:
(1) 'Positive:' $\forall \varphi \in \mathcal{H},:\langle\varphi| A(X)|\varphi\rangle \geq 0: \Leftrightarrow \forall X \in M: A(X) \geq 0$.
(2) $A(\Omega)=\mathbb{1}_{\mathcal{H}}$
(3) For disjoint $X_{i} \in M, A\left(\cup_{i} X_{i}\right)=\sum_{i} A\left(X_{i}\right)$
- The Born rule becomes

$$
P(A \mid \rho)=\operatorname{Tr}(A \hat{\rho})
$$

- Let's make this a bit more familiar...

POVMs and Hermitian Operators

- The properties primarily ensure that $\langle A(X) \Psi \mid \Psi\rangle$ is a probability density

POVMs and Hermitian Operators

- The properties primarily ensure that $\langle A(X) \Psi \mid \Psi\rangle$ is a probability density
- However, this is not the same as a Hermitian operator, because only

$$
A(X)^{2} \leq A(X)
$$

POVMs and Hermitian Operators

- The properties primarily ensure that $\langle A(X) \Psi \mid \Psi\rangle$ is a probability density
- However, this is not the same as a Hermitian operator, because only

$$
A(X)^{2} \leq A(X)
$$

- That means, applying the same measurement A twice may yield yet another state

POVMs and Hermitian Operators

- The properties primarily ensure that $\langle A(X) \Psi \mid \Psi\rangle$ is a probability density
- However, this is not the same as a Hermitian operator, because only

$$
A(X)^{2} \leq A(X)
$$

- That means, applying the same measurement A twice may yield yet another state
- Meanwhile, POVMs are Hermitian operators O if and only if

$$
O(X)^{2}=O(X)
$$

That's part of \$opitulate II—and why these are called projection-valued measures (PVM)

POVMs and Hermitian Operators

- The properties primarily ensure that $\langle A(X) \Psi \mid \Psi\rangle$ is a probability density
- However, this is not the same as a Hermitian operator, because only

$$
A(X)^{2} \leq A(X)
$$

- That means, applying the same measurement A twice may yield yet another state
- Meanwhile, POVMs are Hermitian operators O if and only if

$$
O(X)^{2}=O(X)
$$

That's part of \$optulate II—and why these are called projection-valued measures (PVM)

- Neumart's Theozem: There is always some larger Hilbert space in which every POVM appears as a PVM. ${ }^{9}$

POVMs and Hermitian Operators

- The properties primarily ensure that $\langle A(X) \Psi \mid \Psi\rangle$ is a probability density
- However, this is not the same as a Hermitian operator, because only

$$
A(X)^{2} \leq A(X)
$$

- That means, applying the same measurement A twice may yield yet another state
- Meanwhile, POVMs are Hermitian operators O if and only if

$$
O(X)^{2}=O(X)
$$

That's part of Doitulate II—and why these are called projection-valued measures (PVM) $_{\text {(PI }}$)

- Neumart's Theozem: There is always some larger Hilbert space in which every POVM appears as a PVM. ${ }^{9}$

[^11]
Untimely Confequences

- Warning! Different sub-communities often use very different terminology

Untimely Confequences

- Warning! Different sub-communities often use very different terminology
- The eigenvectors of POVMs are overcomplete sets; property (2) overcounts a lot.
- If they are not overcomplete, they are PVMs (i.e., Hermitian)

Untimely Confequences

- Warning! Different sub-communities often use very different terminology
- The eigenvectors of POVMs are overcomplete sets; property (2) overcounts a lot.
- If they are not overcomplete, they are PVMs (i.e., Hermitian)
- Some things that now become possible
- Phase operators
- Coherent states ${ }^{10}$
- Open quantum systems
- Imprecise measurement (+coarse graining [Šaf +21$]$)
- Measurement problem in Quantum Field Theory [FV20]

[^12]
Timely Confequences

- Earlier attempts for time operators-like 'time of flight'

$$
\hat{t}_{\text {t.o.f. }}:=-\frac{m}{2}\left(\hat{p}^{-1} \hat{x}+\hat{x} \hat{p}^{-1}\right)
$$

work. [BFH10]

- But they are not self-adjoint!

Timely Confequences

- Earlier attempts for time operators-like 'time of flight'

$$
\hat{t}_{\mathrm{t} . \mathrm{of} .}:=-\frac{m}{2}\left(\hat{p}^{-1} \hat{x}+\hat{x} \hat{p}^{-1}\right)
$$

work. [BFH10]

- But they are not self-adjoint!
- We can get many different times 'canonically conjugate' to a given Hamiltonian

Timely Confequences

- Earlier attempts for time operators-like 'time of flight'

$$
\hat{t}_{\mathrm{t} . \mathrm{of} .}:=-\frac{m}{2}\left(\hat{p}^{-1} \hat{x}+\hat{x} \hat{p}^{-1}\right)
$$

work. [BFH10]

- But they are not self-adjoint!
- We can get many different times 'canonically conjugate' to a given Hamiltonian
- Similarly, polar decomposition of ladder operator \hat{a} with non-unitary \hat{W} :

$$
\hat{a}=\hat{W}|\widehat{a}|, \quad \text { with } \quad \widehat{a} \mid:=\hat{n}^{1 / 2}
$$

having improper eigenstates $|\theta\rangle$

$$
\hat{W}|\theta\rangle=e^{i \theta}|\theta\rangle, \quad \text { with } \quad|\theta\rangle=\sum_{n \geq 0} e^{i n \theta}|n\rangle
$$

An Example: The Harmonic Ofcillator

- The Hamiltonian:

$$
\hat{H}_{\mathrm{h} . \mathrm{o} .}=\hat{n}_{\mathrm{C}}+\frac{1}{2} \mathbb{1}
$$

An Example: The Harmonic Ofcillator

- The Hamiltonian:

$$
\hat{H}_{\mathrm{h}, \mathrm{O}}=\hat{n}_{\mathrm{C}}+\frac{1}{2} \mathbb{1} .
$$

- One possible POVM:

$$
B_{0}(f):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \theta f(\theta)|\theta\rangle\langle\theta|=\sum_{n, m \geq 0} \frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i(n-m) \theta} f(\theta) \mathrm{d} \theta|n\rangle\langle m| .
$$

An Example: The Harmonic Ofcillator

- The Hamiltonian:

$$
\hat{H}_{\mathrm{h} . \mathrm{o} .}=\hat{n}_{\mathrm{C}}+\frac{1}{2} \mathbb{1} .
$$

- One possible POVM:

$$
B_{0}(f):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \theta f(\theta)|\theta\rangle\langle\theta|=\sum_{n, m \geq 0} \frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i(n-m) \theta} f(\theta) \mathrm{d} \theta|n\rangle\langle m| .
$$

- Get one of many possible time operators for $f(\theta)=\theta$ as 'first moment' of B_{0} :

$$
\hat{T}_{0}=B_{0}(\theta)=\sum_{n \neq m \geq 0} \frac{1}{i(n-m)}|n\rangle\langle m|+\pi \mathbb{1}
$$

An Example: The Harmonic Ofcillator

- The Hamiltonian:

$$
\hat{H}_{\mathrm{h} . \mathrm{o} .}=\hat{n}_{\mathrm{C}}+\frac{1}{2} \mathbb{1} .
$$

- One possible POVM:

$$
B_{0}(f):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \theta f(\theta)|\theta\rangle\langle\theta|=\sum_{n, m \geq 0} \frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i(n-m) \theta} f(\theta) \mathrm{d} \theta|n\rangle\langle m| .
$$

- Get one of many possible time operators for $f(\theta)=\theta$ as 'first moment' of B_{0} :

$$
\hat{T}_{0}=B_{0}(\theta)=\sum_{n \neq m \geq 0} \frac{1}{i(n-m)}|n\rangle\langle m|+\pi \mathbb{1}
$$

- Choosing two different $\hat{T}_{\theta^{*}}, \hat{T}_{\theta^{\prime}}$ with $\theta^{*} \neq \theta^{\prime} \bmod 2 \pi$:

$$
\left[\hat{T}_{\theta^{*}}, \hat{T}_{\theta^{\prime}}\right] \neq 0
$$

Conclufio: Modern Times - From Clocks to Quantum Gravity

Conclufio; Modern Times - From Clocks to Quantum Gravity: Quantum Clocks and Gauge Theory

The Page-Wootters Formalifm:

- So -what's the point of so many, different times?

The Page-Wootters Formalifm:

- So-what's the point of so many, different times?
- Counterquestion: Why so many different clocks in classical physics?

The Page-Wootters Formalifm: Time is What One Reads Off of a Clock

- So-what's the point of so many, different times?
- Counterquestion: Why so many different clocks in classical physics?
- Let's work with clocks \hat{H}_{C}, not with time!

The Page-Wootters Formalifm: Time is What One Reads Off of a Clock

- So-what's the point of so many, different times?
- Counterquestion: Why so many different clocks in classical physics?
- Let's work with clocks \hat{H}_{C}, not with time!
- Separate a given Hilbert space as $\mathcal{H}=\mathcal{H}_{\mathrm{C}} \otimes \mathcal{H}_{\mathrm{R}}$

The Page-Wootters Formalifm: Time is What One Reads Off of a Clock

- So-what's the point of so many, different times?
- Counterquestion: Why so many different clocks in classical physics?
- Let's work with clocks \hat{H}_{C}, not with time!
- Separate a given Hilbert space as $\mathcal{H}=\mathcal{H}_{\mathrm{C}} \otimes \mathcal{H}_{\mathrm{R}}$
- Specify some chosen, 'initial' clock state ψ_{C}

The Page-Wootters Formalifm: Time is What One Reads Off of a Clock

- So-what's the point of so many, different times?
- Counterquestion: Why so many different clocks in classical physics?
- Let's work with clocks \hat{H}_{C}, not with time!
- Separate a given Hilbert space as $\mathcal{H}=\mathcal{H}_{\mathrm{C}} \otimes \mathcal{H}_{\mathrm{R}}$
- Specify some chosen, 'initial' clock state ψ_{C}
- Define time through evolution of this state with \hat{H}_{C} on \mathcal{H}_{C}

The Page-Wootters Formalifm: Time is What One Reads Off of a Clock

- So-what's the point of so many, different times?
- Counterquestion: Why so many different clocks in classical physics?
- Let's work with clocks \hat{H}_{C}, not with time!
- Separate a given Hilbert space as $\mathcal{H}=\mathcal{H}_{\mathrm{C}} \otimes \mathcal{H}_{\mathrm{R}}$
- Specify some chosen, 'initial' clock state ψ_{C}
- Define time through evolution of this state with \hat{H}_{C} on \mathcal{H}_{C}
- Measure time evolution of an operator \hat{A}, stationary w.r.t. \hat{H}_{C}, as

$$
E(A \mid \tau)=\operatorname{tr}\left(\hat{A} \hat{P}_{\tau} \hat{\rho}\right) / \operatorname{tr}\left(\hat{P}_{\tau} \hat{\rho}\right)
$$

where

$$
\hat{P}_{\tau}=\left|\psi_{C}(\tau)\right\rangle\left\langle\psi_{C}(\tau)\right| \otimes \mathbb{1}_{\mathrm{R}}, \quad \text { and } \quad \hat{\rho} \in \mathcal{L}(\mathcal{H})
$$

The Page-Wootters Formalifm: Pre-Cursors

A footnote in [Sch3I] anticipates this:

"An interesting application, of this is the following: if one knows of a system, composed of several, coupled subsystems, only the total energy, then it is impossible to know more about the distribution of energy across the subsystems than the statistical, timeindependent data, which already follows from the knowledge of the total energy. Except for the case that individual subsystems are in truth fully decoupled, energetically isolated from the others."

The Page-Wootters Formalifm: Pre-Cursors

A footnote in [Sch3I] anticipates this:

"An interesting application, of this is the following: if one knows of a system, composed of several, coupled subsystems, only the total energy, then it is impossible to know more about the distribution of energy across the subsystems than the statistical, timeindependent data, which already follows from the knowledge of the total energy. Except for the case that individual subsystems are in truth fully decoupled, energetically isolated from the others."

- Also, [DeW67] thinks along these lines. More on this later.

Definitely Not a Simple Solution: Gauge Theory ${ }^{11}$

- This is all rather ahistorical; Unruh \& Wald wanted to point out that Page-Wootters non-monotonic \& bad.
${ }^{11}$ I'm skipping some precursors like [GLM15; MV17].

Definitely Not a Simple Solution: Gauge Theory ${ }^{11}$

- This is all rather ahistorical; Unruh \& Wald wanted to point out that Page-Wootters non-monotonic \& bad.
- This changed drastically recently with [HSL21b] using Dirac's formalism for constraints [Dir01; Mat96]

${ }^{11}$ I'm skipping some precursors like [GLM15; MV17]. Image source: [HSL21b, p.4]

Definitely Not a Simple Solution: Gauge Theory ${ }^{11}$

- This is all rather ahistorical; Unruh \& Wald wanted to point out that Page-Wootters non-monotonic \& bad.
- This changed drastically recently with [HSL21b] using Dirac's formalism for constraints [Dir01; Mat96]
- 'Kinematical' Hilbert space has superfluous, 'gauge' info

${ }^{11}$ I'm skipping some precursors like [GLM15; MV17]. Image source: [HSL21b, p.4]

Definitely Not a Simple Solution: Gauge Theory ${ }^{11}$

- This is all rather ahistorical; Unruh \& Wald wanted to point out that Page-Wootters non-monotonic \& bad.
- This changed drastically recently with [HSL21b] using Dirac's formalism for constraints [Dir01; Mat96]
- 'Kinematical' Hilbert space has superfluous, 'gauge' info
- The 'physical Hilbert space' becomes 'clock-neutral'

${ }^{11}$ I'm skipping some precursors like [GLM15; MV17]. Image source: [HSL21b, p.4]

Definitely Not a Simple Solution: Gauge Theory ${ }^{11}$

- This is all rather ahistorical; Unruh \& Wald wanted to point out that Page-Wootters non-monotonic \& bad.
- This changed drastically recently with [HSL21b] using Dirac's formalism for constraints [Dir01; Mat96]
- 'Kinematical' Hilbert space has superfluous, 'gauge' info
- The 'physical Hilbert space' becomes 'clock-neutral'
- Choosing a clock \Longleftrightarrow Choosing a gauge condition

${ }^{11}$ I'm skipping some precursors like [GLM15; MV17]. Image source: [HSL21b, p.4]

Definitely Not a Simple Solution: Gauge Theory ${ }^{11}$

- This is all rather ahistorical; Unruh \& Wald wanted to point out that Page-Wootters non-monotonic \& bad.
- This changed drastically recently with [HSL21b] using Dirac's formalism for constraints [Dir01; Mat96]
- 'Kinematical' Hilbert space has superfluous, 'gauge' info
- The 'physical Hilbert space' becomes 'clock-neutral'
- Choosing a clock \Longleftrightarrow Choosing a gauge condition
- Monotonicity for POVM A_{C}, not its time operators

$$
A_{\mathrm{C}}(X+t)=U_{\mathrm{C}}(t) A_{\mathrm{C}}(X) U_{\mathrm{C}}^{\dagger}(t)
$$

${ }^{11}$ I'm skipping some precursors like [GLM15; MV17]. Image source: [HSL21b, p.4]

Additional Counterarguments

Kuchař had more complaints [Kuc11]:
(1) Wrong localization for relativistic particles

Additional Counterarguments-and Counter ${ }^{2}$ arguments for the Experts

Kuchař had more complaints [Kuc11]:
(1) Wrong localization for relativistic particles
\rightarrow Covariant POVM allow approximate Newton-Wigner localization [HSL21a]

Additional Counterarguments-and Counter ${ }^{2}$ arguments for the Experts

Kuchař had more complaints [Kuc11]:
(1) Wrong localization for relativistic particles
\rightarrow Covariant POVM allow approximate Newton-Wigner localization [HSL21a]
(2) Constraint violation

Additional Counterarguments-and Counter ${ }^{2}$ arguments for the Experts

Kuchař had more complaints [Kuc11]:
(1) Wrong localization for relativistic particles
\rightarrow Covariant POVM allow approximate Newton-Wigner localization [HSL21a]
(2) Constraint violation
\rightarrow PW's conditional probabilities as gauge-fixed expressions of a gauge-invariant ('clock-neutral') quantity [HSL21a]

Additional Counterarguments-and Counter ${ }^{2}$ arguments for the Experts

Kuchař had more complaints [Kuc11]:
(1) Wrong localization for relativistic particles
\rightarrow Covariant POVM allow approximate Newton-Wigner localization [HSL21a]
(2) Constraint violation
\rightarrow PW's conditional probabilities as gauge-fixed expressions of a gauge-invariant ('clock-neutral') quantity [HSL21a]
(3) Predict wrong propagators

Additional Counterarguments-and Counter ${ }^{2}$ arguments for the Experts

Kuchař had more complaints [Kuc11]:
(1) Wrong localization for relativistic particles
\rightarrow Covariant POVM allow approximate Newton-Wigner localization [HSL21a]
(2) Constraint violation
\rightarrow PW's conditional probabilities as gauge-fixed expressions of a gauge-invariant ('clock-neutral') quantity [HSL21a]
(3) Predict wrong propagators
\rightarrow Resolved by introducing a two-time conditional probability [HSL21b]

Conclufio: Modern Times - From Clocks to Quantum Gravity: Applications to the Phyficift's Stone and More

Time for Nitpickers: Gravity, Conftraints, and the "Problem of Time"TM

- GR's Hamiltonian H is odd ${ }^{12}$-it's constrained to 0
${ }^{12}$ More generally, this happens in all diffeomorphism-invariant theories.

Time for Nitpickers: Gravity, Conftraints, and the "Problem of Time"TM

- GR's Hamiltonian H is odd ${ }^{12}$-it's constrained to 0
- Classically, this is a problem, as

$$
\frac{\mathrm{d} f}{\mathrm{~d} t}=\{f, H\}+\frac{\partial f}{\partial t}
$$

${ }^{12}$ More generally, this happens in all diffeomorphism-invariant theories.

Time for Nitpickers: Gravity, Conftraints, and the "Problem of Time"TM

- GR's Hamiltonian H is odd ${ }^{12}$-it's constrained to 0
- Classically, this is a problem, as

$$
\frac{\mathrm{d} f}{\mathrm{~d} t}=\{f, H\}+\frac{\partial f}{\partial t}
$$

- Classically, resolved by [PSS10]
carefully distinguishing different roles of H, carefully distinguishing phase space and reduced phase space
${ }^{12}$ More generally, this happens in all diffeomorphism-invariant theories.

Time for Nitpickers: Gravity, Conftraints, and the "Problem of Time"TM

- GR's Hamiltonian H is odd ${ }^{12}$-it's constrained to 0
- Classically, this is a problem, as

$$
\frac{\mathrm{d} f}{\mathrm{~d} t}=\{f, H\}+\frac{\partial f}{\partial t}
$$

- Classically, resolved by [PSS10]
carefully distinguishing different roles of H, carefully distinguishing phase space and reduced phase space
- Quantum-...???
${ }^{12}$ More generally, this happens in all diffeomorphism-invariant theories.

Time for Nitpickers: Gravity, Conftraints, and the "Problem of Time"TM

- GR's Hamiltonian H is odd ${ }^{12}$-it's constrained to 0
- Classically, this is a problem, as

$$
\frac{\mathrm{d} f}{\mathrm{~d} t}=\{f, H\}+\frac{\partial f}{\partial t}
$$

- Classically, resolved by [PSS10]
carefully distinguishing different roles of H, carefully distinguishing phase space and reduced phase space
- Quantumolly,...

[^13]
Time for Nitpickers: Gravity, Conftraints, and the "Problem of Time"TM

- GR's Hamiltonian H is odd ${ }^{12}$-it's constrained to 0
- Classically, this is a problem, as

$$
\frac{\mathrm{d} f}{\mathrm{~d} t}=\{f, H\}+\frac{\partial f}{\partial t}
$$

- Classically, resolved by [PSS10]
carefully distinguishing different roles of H, carefully distinguishing phase space and reduced phase space
- Quantumolly,... parameter-time N會 dynamic time

[^14]
Time for Nitpickers: Gravity, Conftraints, and the "Problem of Time"TM

- GR's Hamiltonian H is odd ${ }^{12}$-it's constrained to 0
- Classically, this is a problem, as

$$
\frac{\mathrm{d} f}{\mathrm{~d} t}=\{f, H\}+\frac{\partial f}{\partial t}
$$

- Classically, resolved by [PSS10]
carefully distinguishing different roles of H, carefully distinguishing phase space and reduced phase space
- Quantumolly,... parameter-time 殿 dynamic time
- This was what [PW83] wanted to solve-but still all just for toy models

[^15]
Time for Nitpickers: Gravity, Conftraints, and the "Problem of Time"TM

- GR's Hamiltonian H is odd ${ }^{12}$-it's constrained to 0
- Classically, this is a problem, as

$$
\frac{\mathrm{d} f}{\mathrm{~d} t}=\{f, H\}+\frac{\partial f}{\partial t}
$$

- Classically, resolved by [PSS10]
carefully distinguishing different roles of H,
carefully distinguishing phase space and reduced phase space
- Quantumolly,... parameter-time //e dynamic time
- This was what [PW83] wanted to solve-but still all just for toy models
- Also [HSL21b] doesn't touch the full theory.

[^16]
Time for Nitpickers: Gravity, Conftraints, and the "Problem of Time"TM

- GR's Hamiltonian H is odd ${ }^{12}$-it's constrained to 0
- Classically, this is a problem, as

$$
\frac{\mathrm{d} f}{\mathrm{~d} t}=\{f, H\}+\frac{\partial f}{\partial t}
$$

- Classically, resolved by [PSS10] carefully distinguishing different roles of H, carefully distinguishing phase space and reduced phase space
- Quantumolly,... parameter-time //e dynamic time
- This was what [PW83] wanted to solve-but still all just for toy models
- Also [HSL21b] doesn't touch the full theory. I still want to mention it!

[^17]
Time for Nitpickers: Gravity, Conftraints, and the "Problem of Time"TM

- GR's Hamiltonian H is odd ${ }^{12}$-it's constrained to 0
- Classically, this is a problem, as

$$
\frac{\mathrm{d} f}{\mathrm{~d} t}=\{f, H\}+\frac{\partial f}{\partial t}
$$

- Classically, resolved by [PSS10] carefully distinguishing different roles of H, carefully distinguishing phase space and reduced phase space

- This was what [PW83] wanted to solve-but still all just for toy models
- Also [HSL21b] doesn't touch the full theory. I still want to mention it!

[^18]
Propofing Refearch Shortcuts

Propofing Refearch Shortcuts

- Wicf your Demon!
- Foz Demomitration purpojes:

Propofing Refearch Shortcuts

- Dictitivur Demon!
- Foz bemonitration purpojes:

Propofing Refearch Shortcuts

- Dicfityour Demon!
- Foz Deminitration purpojes:
- Woztolios: fifle encodings, Wnicode, Diacritices, internet

Propofing Refearch Shortcuts

- Dicfityour Demon!
- Foz Deminitration purpojes:

- Woztolios: fifle encodings, Wnicode, Diacritices, internet
- Impoztant! Galt circle

Propofing Refearch Shortcuts

- Dictivivur Demon!
- Foz Deminitration purpojes:

- Woztolios: fifle encodings, Wnicode, Diacritices, internet
- Impoztant!

Galt circle

Propofing Refearch Shortcuts

- Dicfityour bemon!
- Foz Demomitration purpojes:

3等軍 "n "

- Worteoliow: fite encodingz, Tnicode, Diacritices, internet
- Impoztant! Galt circle
- Smuccation of grauity

Propofing Refearch Shortcuts

- Dicfityour bemon!
- Foz Deminitration purpojes:

$$
\text { 3olge } \approx
$$

- Woztolios: fifle encodings, Wnicode, Diacritices, internet
- Impoztant!

Galt circle

- Smuccation of grauity

Propofing Refearch Shortcuts

- Dicfityour bemon!
- Foo pemomitration purpojes:

- Woztolios: fifle encodings, Wnicode, Diacritices, internet
- Impoztant! Galt circle
- Smuccation of grauity
- Gummoning of quantum phylicz

Propofing Refearch Shortcuts

- Dicfityour demon!
- Foz penionitration purpojes:
- Woztolios: fifle encodings, Wnicode, Diacritices, internet
- Impoztant! Galt circle
- Smuccation of grauity
- Gummoning of quantum phylicz

Propofing Refearch Shortcuts

- Dicfityour demon!
- For penionitration purpoies:
- Woztolios: fifle encodings, Wnicode, Diacritices, internet
- Impoztant! Galt circle
- Smuccation of grauity
- Eummoning of quantum phylicz
- Call demon and caft ípell!

Greater Arcana: bunum cravizy

- Finally, a bit of my own research.
- For safety reasons, still not in full

Greater Arcana: bunu gryiv

- Finally, a bit of my own research.
- For safety reasons, still not in full
- If only emergent notions of time exist (like elo travel?

Greater Arcana:

- Finally, a bit of my own research.
- For safety reasons, still not in full quantumegntiv
- If only emergent notions of time exist (like elo travel?
- Can wemake sense of Novikoy self-consistency for a state of the universe | $\left.\mathscr{E}_{\mathscr{B}}\right\rangle$ fulfilling

$$
\hat{H}\left|\mathscr{E}_{\infty}\right\rangle=0
$$

- Finally, a bit of my own research.
- For safety reasons, still not in full quantinn eqaty
- If only emergent notions of time exist (like elo travel?
- Can wemake sense of Novikoy self-consistency for a state of the universe | $\left.\mathscr{E}_{\mathscr{B}}\right\rangle$ fulfilling the Wheke

$$
\hat{H}\left|\mathscr{E}_{\infty}\right\rangle=0
$$

- We use a two-harmonic-oscillator mini-superspace; so far we can show that in this set-up no time ever passes. :)

- Finally, a bit of my own research..
- For safety reasons, still not in full quantung
- If only emergent notions of time exist (like elo travel?
- Can wemake sense of Novikoy self-consistency for a state of the universe | $\left.\mathscr{E}_{\mathscr{B}}\right\rangle$ fulfilling

$$
\hat{H}\left|\mathscr{E}_{\infty}\right\rangle=0
$$

- We use a two-harmonic-oscillator mini-superspace; so far we can show that in this set-up no time ever passes. :)
- Stay tuned, to be published in Universe special issue 'The Physics of Time Travel'

Greater Arcana: bunu gryty

- Finally, a bit of my own research..
- For safety reasons, still not in full qutantina
- If only emergent notions of time exist (like cin travel?
- Can wemake sense of Novikoy self-consistency for a state of the universe |ems fulfilling the Whe

$$
\hat{H}\left|\mathscr{E}_{\infty}\right\rangle=0
$$

- We use a two-harmonic-oscillator mini-superspace; so far we can show that in this set-up no time ever passes. :)
- Stay tuned, to be published in Universe special issue 'The Physics of Time Travel'
- There are probably extensions beyond the current, very simple model in the future...

Carpets are for Hiding Things

Things I have not talked about (and often couldn't if I wanted/needed to) with limited starting points:

Carpets are for Hiding Things

Things I have not talked about (and often couldn't if I wanted/needed to) with limited starting points:

- Quantum information applications: Processes, circuits, ...[Bau+22]

Carpets are for Hiding Things

Things I have not talked about (and often couldn't if I wanted/needed to) with limited starting points:

- Quantum information applications: Processes, circuits, ...[Bau+22]
- Quantum foundations and very ad hoc methods [Hen+20]

Carpets are for Hiding Things

Things I have not talked about (and often couldn't if I wanted/needed to) with limited starting points:

- Quantum information applications: Processes, circuits, ...[Bau+22]
- Quantum foundations and very ad hoc methods [Hen+20]
- Using gauge-theoretic rulers and clocks (classically or quantumolly) to regain familiar transformations [KHM21; GHK22]

Carpets are for Hiding Things

Things I have not talked about (and often couldn't if I wanted/needed to) with limited starting points:

- Quantum information applications: Processes, circuits, ...[Bau+22]
- Quantum foundations and very ad hoc methods [Hen+20]
- Using gauge-theoretic rulers and clocks (classically or quantumolly) to regain familiar transformations [KHM21; GHK22]
- More on time-of-flight, screens, and other derived notions of times as POVMs [Wer87; BFH10]

Carpets are for Hiding Things

Things I have not talked about (and often couldn't if I wanted/needed to) with limited starting points:

- Quantum information applications: Processes, circuits, ...[Bau+22]
- Quantum foundations and very ad hoc methods [Hen+20]
- Using gauge-theoretic rulers and clocks (classically or quantumolly) to regain familiar transformations [KHM21; GHK22]
- More on time-of-flight, screens, and other derived notions of times as POVMs [Wer87; BFH10]
- Various philosophical details [And17; AdI23]

Carpets are for Hiding Things

Things I have not talked about (and often couldn't if I wanted/needed to) with limited starting points:

- Quantum information applications: Processes, circuits, ...[Bau+22]
- Quantum foundations and very ad hoc methods [Hen+20]
- Using gauge-theoretic rulers and clocks (classically or quantumolly) to regain familiar transformations [KHM21; GHK22]
- More on time-of-flight, screens, and other derived notions of times as POVMs [Wer87; BFH10]
- Various philosophical details [And17; AdI23]
- The arrow of time [Zeh07; BF23]

Carpets are for Hiding Things

Things I have not talked about (and often couldn't if I wanted/needed to) with limited starting points:

- Quantum information applications: Processes, circuits, ...[Bau+22]
- Quantum foundations and very ad hoc methods [Hen+20]
- Using gauge-theoretic rulers and clocks (classically or quantumolly) to regain familiar transformations [KHM21; GHK22]
- More on time-of-flight, screens, and other derived notions of times as POVMs [Wer87; BFH10]
- Various philosophical details [And17; AdI23]
- The arrow of time [Zeh07; BF23]
- Experimental physics \& metrology [Э10.]

Summary

- As an external parameter in quantum theories, time is $\begin{gathered}\text { wieñ } \\ \text { 需 }\end{gathered}$

Summary

- As an external parameter in quantum theories, time is wevivt
- As such, it has many abysmally deep, fundamental questions

Summary

- As such, it has many abysmally deep, fundamental questions
- As such it invokes many diabolic subtleties and arcane skills from
- Physics
- Mathematics
- Philosophy

Summary

- As an external parameter in quantum theories, time is
- As such, it has many abysmally deep, fundamental questions
- As such it invokes many diabolic subtleties and arcane skills from
- Physics
- Mathematics
- Philosophy
- Recent years have seen mesmerizing progress

pank you uepuly.

References I

Adl23 E. Adlam. Is there causation in fundamental physics? New insights from process matrices and quantum causal modelling. Synthese 201, 152.
doi:10.1007/s11229-023-04160-z. arXiv: 2208.02721 [quant-ph] (Apr. 2023).

And17 E. Anderson. The Problem of Time. Quantum Mechanics Versus General Relativity. ISBN: 978-3-319-58846-9. doi:10.1007/978-3-319-58848-3 (Springer, 2017).

Bau+22 V. Baumann, M. Krumm, P. A. Guérin \& Č. Brukner. Noncausal Page-Wootters circuits. Physical Review Research 4, 013180.
doi:10.1103/PhysRevResearch.4.013180. arXiv: 2105.02304 [quant-ph] (Mar. 2022).

References II

Ben90 J. J. Benedetto. Uncertainty Principle Inequalities and Spectrum Estimation. in Recent Advances in Fourier Analysis and Its Applications NATO Advanced Study Institute on Fourier Analysis and Its Applicationsll Ciocco, Italy, 16 July 1989 (eds J. S. Byrnes \& J. L. Byrnes) 315 (Kluwer, 1990), 143-182. ISBN: 978-94-010-6784-3. doi:10.1007/978-94-009-0665-5_11.

BF23 D. Buchholz \& K. Fredenhagen. Arrow of time and quantum physics. arXiv: 2305. 11709 [math-ph] (2023).

BFH10 R. Brunetti, K. Fredenhagen \& M. Hoge. Time in Quantum Physics: From an External Parameter to an Intrinsic Observable. Foundation of Physics 40, 1368-1378. doi:10.1007/s10701-009-9400-z. arXiv: 0909.1899 [math-ph] (Oct. 2010).

BGL94 P. Busch, M. Grabowski \& P. J. Lahti. Time observables in quantum theory. Physics Letters A 191, 357-361. doi:10.1016/0375-9601 (94) 90785-4 (Aug. 1994).

References III

BGL95 P. Busch, M. Grabowski \& P. J. Lahti. Who Is Afraid of POV Measures? Unified Approach to Quantum Phase Observables. Annals of Physics 237, 1-11. doi:10.1006/aphy. 1995.1001 (Jan. 1995).

Bus +16 P. Busch, P. Lahti, J.-P. Pellonpää \& K. Ylinen. Quantum Measurement. ISBN: 978-3-319-43387-5 (Springer, 2016).
DeW67 B. S. DeWitt. Quantum Theory of Gravity. I. The Canonical Theory. Physical Review 160, 1113-1149 (Aug. 1967).
Dir01 P. A. M. Dirac. Lectures on Quantum Mechanics. ISBN: 978-0-486-41713-4 (Dover, 2001). Originally published by Belfer Graduate School of Science, Yeshiva University (1964).

FS97 G. B. Folland \& A. Sitaram. The Uncertainty Principle: A Mathematical Survey. Journal of Fourier Analysis and Applications 3, 207-238. doi:10. 1007/BF02649110 (May 1997).

References IV

FV20 C. J. Fewster \& R. Verch. Quantum Fields and Local Measurements. Communications in Mathematical Physics 378, 851-889.
doi:10.1007/s00220-020-03800-6. arXiv: 1810.06512 [math-ph] (July 2020).
GHK22 C. Goeller, P. A. Höhn \& J. Kirklin. Diffeomorphism-invariant observables and dynamical frames in gravity: reconciling bulk locality with general covariance. arXiv: 2206.01193 [hep-th] (2022).

GLM15 V. Giovannetti, S. Lloyd \& L. Maccone. Quantum Time. Physical Review D 92, 045033. doi:10.1103/PhysRevD.92.045033. arXiv: 1504.04215 [quant-ph] (Aug. 2015).

Hen +20 L. J. Henderson et al. Quantum Temporal Superposition: The Case of Quantum Field Theory. Physical Review Letters 125, 131602. doi:10.1103/PhysRevLett.125.131602. arXiv: 2002.06208 [quant-ph] (Sept. 2020).

References V

HSL21a P. A. Höhn, A. R. H. Smith \& M. P. E. Lock. Equivalence of Approaches to Relational Quantum Dynamics in Relativistic Settings. Frontiers in Physics 9, 181. doi:10.3389/fphy. 2021.587083. arXiv: 2007.00580 [gr-qc] (Mar. 2021).

HSL21b P. A. Höhn, A. R. H. Smith \& M. P. E. Lock. The Trinity of Relational Quantum Dynamics. Physical Review D 104, 066001. doi:10.1103/PhysRevD.104.066001. arXiv: 1912.00033 [quant-ph] (Sept. 2021).

KHM21 M. Krumm, P. A. Höhn \& M. P. Müller. Quantum reference frame transformations as symmetries and the paradox of the third particle. Quantum 5, 530. doi:10.22331/q-2021-08-27-530. arXiv: 2011.01951 [quant-ph] (2021).

Kuc11 K. V. Kuchař. Time and Interpretations of Quantum Gravity. International Journal of Modern Physics D 20, 3-86. doi:10.1142/S0218271811019347 (Supplement 1 2011). Contribution to: 4th Canadian Conference on General Relativity and Relativistic Astrophysics.

References VI

Mat96 H.-J. Matschull. Dirac's Canonical Quantization Programme. May 1996. arXiv: quant-ph/9606031.

Mor+14 E. Moreva et al. Time from quantum entanglement: An experimental illustration Physical Review A 89, 052122. doi:10.1103/PhysRevA.89.052122. arXiv: 1310. 4691 [quant-ph] (May 2014).

MT45 L. I. Mandelstam \& I. Y. Tamm. The uncertainty relation between energy and time in nonrelativistic quantum mechanics. Journal of Physics IX, 249-254. https://daarb.narod.ru/mandtamm/index-eng.html (Feb. 1945). English translation of Л. И. Мандельштам, И. Е. Тамм „Соотношение неопределённости энергия-время в нерелятивистской квантовой механике", Изв. Акад. Наук СССР (сер. физ.) 9, 122-128 (1945).

Mui22 T. Muir. Nona the Ninth. ISBN: 9781250854117 (Tor, 2022).

References VII

MV17 C. Marletto \& V. Vedral. Evolution without evolution, and without ambiguities. Physical Review D 95, 043510. doi:10.1103/PhysRevD.95.043510. arXiv: 1610.04773 [quant-ph] (Feb. 2017).

Pau80 W. Pauli. General Principles of Quantum Mechanics. English. Trans. German by P. Achuthan \& K. Venkatesan. With a forew. by C. P. Enz. ISBN: 0-387-02289-9. doi:10.1007/978-3-642-61840-6 (Springer, 1980).
Pau90 W. Pauli. Die allgemeinen Prinzipien der Wellenmechanik. German (ed N. Straumann) ISBN: 978-3-540-51949-2. doi:10.1007/978-3-642-62187-9 (Springer, 1990). Neu herausgegeben und mit historischen Anmerkungen versehen von Norbert Straumann.
PSS10 J. M. Pons, K. A. Sundermeyer \& D. C. Salisbury. Observables in classical canonical gravity: folklore demystified. Journal of Physics: Conference Series 222, 012018.
doi:10.1088/1742-6596/222/1/012018. arXiv: 1001.2726 [gr-qc] (1st Mediterranean Conference on Classical and Quantum Gravity Jan. 2010).

References VIII

PW83 D. N. Page \& W. K. Wootters. Evolution without evolution: Dynamics described by stationary observables. Physical Review D 27, 2885-2892. doi:10.1103/PhysRevD. 27.2885 (June 1983).
Šaft21 D. Šafránek, A. Aguirre, J. Schindler \& J. M. Deutsch. A Brief Introduction to Observational Entropy. Foundations of Physics 51, 101. doi:10.1007/s10701-021-00498-x. arXiv: 2008.04409 [quant-ph] (Oct. 2021)
Sch31 E. Schrödinger. Die Allgemeinen Prinzipien der Wellenmechanik. Sitzungsberichte der Preußischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse, 238-247 (Apr. 1931).
SCM18 S. Shrapnel, F. Costa \& G. Milburn. Updating the Born Rule. New Journal of Physics 20, 053010. arXiv: 1702.01845 [quant-ph] (May 2018).
St 01 St. Augustine. Confessiones. English. Trans. Latin by W. Watts. ISBN: 9780674990302. doi:10.4159/DLCL. augustine-confessions. 1912 (Harvard University Press, 401).

References IX

UW89 W. G. Unruh \& R. M. Wald. Time and the interpretation of canonical quantum gravity. Physical Review D 40, 2598-2614. doi:10.1103/PhysRevD. 40.2598 (Oct. 1989).

Wer87 R. Werner. Arrival time observables in quantum mechanics. Annales de I'Institute Henri Poincaré, section A 47, 429-449.
http://www.numdam. org/item/?id=AIHPA_1987__47_4_429_0 (1987).

Zeh07 H. D. Zeh. The Physical Basis of the Direction of Time. Fifth. ISBN: 978-3-540-68000-0. doi:10.1007/978-3-540-68001-7 (Springer, 2007).

[^0]: ${ }^{1}$ Here's a book lacking in my occult library.

[^1]: ${ }^{1}$ Here's a book lacking in my occult library.
 ${ }^{2}$ The slides are as is. Sorry, not sorry. But I did not include an animation from Un Chien Andalou! ©

[^2]: ${ }^{1}$ Here's a book lacking in my occult library.
 ${ }^{2}$ The slides are as is. Sorry, not sorry. But I did not include an animation from Un Chien Andalou! ©

[^3]: ${ }^{1}$ Here's a book lacking in my occult library.
 ${ }^{2}$ The slides are as is. Sorry, not sorry. But I did not include an animation from Un Chien Andalou! ©

[^4]: ${ }^{1}$ Here's a book lacking in my occult library.
 ${ }^{2}$ The slides are as is. Sorry, not sorry. But I did not include an animation from Un Chien Andalou! ©

[^5]: ${ }^{1}$ Here's a book lacking in my occult library.
 ${ }^{2}$ The slides are as is. Sorry, not sorry. But I did not include an animation from Un Chien Andalou! ©

[^6]: ${ }^{1}$ Here's a book lacking in my occult library.
 ${ }^{2}$ The slides are as is. Sorry, not sorry. But I did not include an animation from Un Chien Andalou! ©

[^7]: ${ }^{4}$ See [FS97] and [Ben90]

[^8]: ${ }^{4}$ See [FS97] and [Ben90]

[^9]: ${ }^{4}$ See [FS97] and [Ben90]; Image source: Jared Smith (Archspire)

[^10]: 8'Wozwåts immer, rucfwaits nimmer!'

[^11]: ${ }^{9}$ Not necessarily physically useful.

[^12]: ${ }^{10}$ They have been around before-but POVM methods fit nicely.

[^13]: ${ }^{12}$ More generally, this happens in all diffeomorphism-invariant theories.

[^14]: ${ }^{12}$ More generally, this happens in all diffeomorphism-invariant theories.

[^15]: ${ }^{12}$ More generally, this happens in all diffeomorphism-invariant theories.

[^16]: ${ }^{12}$ More generally, this happens in all diffeomorphism-invariant theories.

[^17]: ${ }^{12}$ More generally, this happens in all diffeomorphism-invariant theories.

[^18]: ${ }^{12}$ More generally, this happens in all diffeomorphism-invariant theories.

