The Beauty and the Beast: Covariance and Electromagnetic Media

Sebastian Schuster

Ústav Teoretické Fyziky Matematicko-Fyzikální Fakulta Univerzita Karlova

22nd October 2022, Ondřejov Lecture Camp 2022

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

UNIVERZITA KARLOVA Matematicko-fyzikální fakulta

Sebastian Schuster (UK UTF)

Covariant Media

The Menu

The Aperitif: The Goal

2 Entree: Warnings, Conventions, Introduction

Main Course: Macroscopic Electrodynamics Done Right

- Relativity, Part I
- A First 3 + 1 Decomposition
- The Macrocosmos
- Dessert: The Fresnel–Fizeau Effect
 - Relativity, Part II
 - An Application!

5 Digestif: Bitters

The Aperitif: The Goal

My aim will be threefold:

• Make electromagnetism in media beautiful¹

¹For suitable choices of beauty.

My aim will be threefold:

• Make electromagnetism in media beautiful¹

• Tell you about electromagnetic media in relativity.²

¹For suitable choices of beauty. ²Hopefully self-contained and simple. My aim will be threefold:

• Make electromagnetism in media beautiful¹

• Tell you about electromagnetic media in relativity.²

 \bullet Mention a nearly forgotten, neat effect from $1851.^3$

Sebastian Schuster (UK UTF)

¹For suitable choices of beauty.

²Hopefully self-contained and simple.

³That's 10 years before the Maxwell equations connected to this all. 54 before Einstein's annus mirabilis.

Entree: Warnings, Conventions, Introduction

There once was a Sebastian in Ondřejov Who's got biased opinions on matters of electrics historical, books pedagogical, and made a comical lecture thereof. There once was a Sebastian in Ondřejov Who's got biased opinions on matters of electrics historical, books pedagogical, and made a comical lecture thereof.

- Signature: -+++
- $G = c = \hbar = 1$
- Sum convention: Same index once(!) up, once(!) down per term: Sum over it!
- Space-time indices: $abcd \dots \in \{0, 1, 2, 3\}$
- Spatial indices: $ijkl \dots \in \{1, 2, 3\}$

- Signature: -+++
- $G = c = \hbar = 1$
- Sum convention: Same index once(!) up, once(!) down per term: Sum over it!
- Space-time indices: $abcd \dots \in \{0, 1, 2, 3\}$
- Spatial indices: $ijkl \dots \in \{1, 2, 3\}$
- I know, there's a clash in the dots.

- Signature: -+++
- $G = c = \hbar = 1$
- Sum convention: Same index once(!) up, once(!) down per term: Sum over it!
- Space-time indices: $\textit{abcd} \dots \in \{0, 1, 2, 3\}$
- Spatial indices: $ijkl \dots \in \{1, 2, 3\}$
- I know, there's a clash in the dots. We won't meet it outside the bonus slide.

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$
$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{j} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}$$
$$\vec{\nabla} \cdot \vec{B} = 0$$
$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

The Beauty: Microscopic Electrodynamics with Forms?

$$\mathrm{d} * \mathrm{d} * \mathrm{F} = \mu_0 J$$

 $\mathrm{d} \mathrm{F} = 0$

The Beauty: Covariant, Microscopic Electrodynamics!

$$-
abla_{a}F^{ab} = \mu_0 J^b$$
 $arepsilon^{abcd}
abla_{a}F_{bc} = 0$

$$\vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{j},$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t},$$

$$\vec{\nabla} \cdot \vec{D} = \rho,$$

$$\vec{\nabla} \cdot \vec{B} = 0,$$

where $\vec{D} = \epsilon_0 \vec{E} + \vec{P}^{\text{ lin. med.}} \epsilon \vec{E},$
and $\vec{B} = \mu_0 (\vec{H} + \vec{M})^{\text{ lin. med.}} \mu \vec{H}$

$$\vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{j},$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t},$$

$$\vec{\nabla} \cdot \vec{D} = \rho,$$

$$\vec{\nabla} \cdot \vec{B} = 0,$$

where $\vec{D} = \epsilon_0 \vec{E} + \vec{P}^{\text{ lin. med.}} \epsilon \vec{E},$
and $\vec{B} = \mu_0 (\vec{H} + \vec{M})^{\text{ lin. med.}} \mu \vec{H}$

Let's add a bit of clarification.

$$\begin{split} \vec{\nabla} \times \vec{H} &= \frac{\partial \vec{D}}{\partial t} + \vec{j}, \\ \vec{\nabla} \times \vec{E} &= -\frac{\partial \vec{B}}{\partial t}, \\ \vec{\nabla} \cdot \vec{D} &= \rho, \\ \vec{\nabla} \cdot \vec{B} &= 0, \\ \end{split}$$
where $\vec{D} &= \epsilon_0 \vec{E} + \vec{P}^{\text{ lin. med.}} \epsilon \vec{E}, \\ \text{ and } \vec{B} &= \mu_0 \left(\vec{H} + \vec{M} \right)^{\text{ lin. med.}} \mu \vec{H} \end{split}$

Let's add a bit of clarification forget $\epsilon=\epsilon_0\epsilon_{\rm r}$ and $\mu=\mu_0\mu_{\rm r}$

 ϵ and μ can be matrices. We need birefringence and stuff.

$$\vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{j},$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t},$$

$$\vec{\nabla} \cdot \vec{D} = \rho,$$

$$\vec{\nabla} \cdot \vec{B} = 0,$$

where $\vec{D} = \epsilon_0 \vec{E} + \vec{P}^{\text{ lin. med.}} \epsilon \vec{E},$
and $\vec{B} = \mu_0 (\vec{H} + \vec{M})^{\text{ lin. med.}} \mu \vec{H}$

Let's add a bit of clarification forget $\epsilon=\epsilon_0\epsilon_{\rm r}$ and $\mu=\mu_0\mu_{\rm r}$

 ϵ and μ can be matrices. We need birefringence and stuff.

$$\vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{j},$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t},$$

$$\vec{\nabla} \cdot \vec{D} = \rho,$$

$$\vec{\nabla} \cdot \vec{B} = 0,$$

where $\vec{D} = \epsilon_0 \vec{E} + \vec{P}^{\text{lin. med.}} \epsilon \vec{E},$
and $\vec{B} = \mu_0 (\vec{H} + \vec{M})^{\text{lin. med.}} \mu \vec{H}$

Let's add a bit of clarification forget $\epsilon=\epsilon_0\epsilon_{\rm r}$ and $\mu=\mu_0\mu_{\rm r}$

 ϵ and μ can be matrices. We need birefringence

, birefring.. $\vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{j},$ where $\vec{W} \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t},$ $\vec{\nabla} \cdot \vec{D} = \rho,$ $\vec{\nabla} \cdot \vec{B} = 0.$ where \vec{D} ar
'et's add a bit of clarification B' Eotern Eo. (C. I)th where C. I. . where $\vec{D} = \epsilon_0 \vec{E} + \vec{P}^{\text{lin.}} \stackrel{\text{med.}}{=} \epsilon \vec{E}$, and $\vec{B} = \mu_0 (\vec{H} + \vec{M})^{\text{lin. med.}} = \mu \vec{H}$

Let's add a bit of clarification of forget $\epsilon=\epsilon_0\epsilon_{\rm r}$ and $\mu=\mu_0\mu_{\rm r}$

 ϵ and μ can be matrices. We need birefringence

birefring.. $\vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{j},$ where $\vec{P} \cdot \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t},$ $\vec{\nabla} \cdot \vec{D} = \rho,$ $\vec{\nabla} \cdot \vec{B} = 0,$ where \vec{D} ar
'et's add a bit of clarification where $\vec{D}_{ind} \in 0$, \vec{E} , and $\vec{B} = 0$, $\vec{E} = 0$, we need the index of refraction, we need the index of refraction, \vec{E} , \vec{E} , C. I.K. Where C. X.X.X

birefring.. $\vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{j},$ $\vec{\nabla} \cdot \vec{E} = -\frac{\partial \vec{B}}{\partial t},$ $\vec{\nabla} \cdot \vec{D} = \rho,$ $\vec{\nabla} \cdot \vec{B} = 0,$ where \vec{D} ar 'et's add a bit of clarificatir ϵ and μ can be matrices. We need birefringence

that $c_p = n^{e_0 \ln \varepsilon_r \mu}$

Main Course: Macroscopic Electrodynamics Done Right

What's the Deal with *F*?

If we had done the derivation, we'd have seen:⁴

$$(F_{ab})_{a,b\in\{0,1,2,3\}} = \begin{pmatrix} 0 & -E_1 & -E_2 & -E_3 \\ E_1 & 0 & B_3 & -B_2 \\ E_2 & -B_3 & 0 & B_1 \\ E_3 & B_2 & -B_1 & 0 \end{pmatrix}$$

⁴If I converted sign conventions correctly.

What's the Deal with F?

If we had done the derivation, we'd have seen:⁴

$$(F_{ab})_{a,b\in\{0,1,2,3\}} = \begin{pmatrix} 0 & -E_1 & -E_2 & -E_3 \\ E_1 & 0 & B_3 & -B_2 \\ E_2 & -B_3 & 0 & B_1 \\ E_3 & B_2 & -B_1 & 0 \end{pmatrix}$$

What does this mean? Let's step back a bit.

⁴If I converted sign conventions correctly.

If we had done the derivation, we'd have seen:⁴

$$(F_{ab})_{a,b\in\{0,1,2,3\}} = \begin{pmatrix} 0 & -E_1 & -E_2 & -E_3 \\ E_1 & 0 & B_3 & -B_2 \\ E_2 & -B_3 & 0 & B_1 \\ E_3 & B_2 & -B_1 & 0 \end{pmatrix}$$

What does this mean? Let's step back a bit.

• This is what we measure as \vec{E} and \vec{B}

⁴If I converted sign conventions correctly.

If we had done the derivation, we'd have seen:⁴

$$(F_{ab})_{a,b\in\{0,1,2,3\}} = \begin{pmatrix} 0 & -E_1 & -E_2 & -E_3 \\ E_1 & 0 & B_3 & -B_2 \\ E_2 & -B_3 & 0 & B_1 \\ E_3 & B_2 & -B_1 & 0 \end{pmatrix}$$

What does this mean? Let's step back a bit.

- This is what we measure as \vec{E} and \vec{B}
- Other observers will disagree. What do they see?

⁴If I converted sign conventions correctly.

• We are all insignificant, infinitesimal point particles.

Source: Gourgoulhon-Special Relativity in General Frames, p.260

- We are all insignificant, infinitesimal point particles.
- Any observer follows their (time-like) curve in space-time

Source: Gourgoulhon-Special Relativity in General Frames, p.260

- We are all insignificant, infinitesimal point particles.
- Any observer follows their (time-like) curve in space-time
- This means, curve has tangent vector u^a s.t.

$$u^a u_a = u^a g_{ab} u^b = -1.$$

Source: Gourgoulhon-Special Relativity in General Frames, p.260

- We are all insignificant, infinitesimal point particles.
- Any observer follows their (time-like) curve in space-time
- This means, curve has tangent vector u^a s.t.

$$u^a u_a = u^a g_{ab} u^b = -1.$$

• Good exercise: Define 4-acceleration: $a^a := u^b \nabla_b u^a =: \frac{du}{d\tau}$. Show $u_a a^a = 0$.

Source: Gourgoulhon-Special Relativity in General Frames, p.260

- We are all insignificant, infinitesimal point particles.
- Any observer follows their (time-like) curve in space-time
- This means, curve has tangent vector u^a s.t.

$$u^a u_a = u^a g_{ab} u^b = -1.$$

- Good exercise: Define 4-acceleration: $a^a := u^b \nabla_b u^a =: \frac{du}{d\tau}$. Show $u_a a^a = 0$.
- At given time* t_α, there is (a) a time-like direction along the curve, (b) a spatial 3-space transverse to it.

Source: Gourgoulhon-Special Relativity in General Frames, p.260

Main Course: Macroscopic Electrodynamics Done Right: A First 3 + 1 Decomposition

- Look at $\varepsilon_{abcd} u^a$.
- What happens if we contract this with a second u?

- Look at $\varepsilon_{abcd} u^a$.
- What happens if we contract this with a second *u*?
- $\varepsilon_{abcd} u^a u^b$ is a classic example of 'symmetric times* antisymmetric'—its 0

- Look at $\varepsilon_{abcd} u^a$.
- What happens if we contract this with a second *u*?
- $\varepsilon_{abcd} u^a u^b$ is a classic example of 'symmetric times' antisymmetric'—its 0
- We know F_{ab} is antisymmetric.⁵

⁵Because of *reasons*.

- Look at $\varepsilon_{abcd} u^a$.
- What happens if we contract this with a second *u*?
- $\varepsilon_{abcd} u^a u^b$ is a classic example of 'symmetric times' antisymmetric'—its 0
- We know F_{ab} is antisymmetric.⁵
- Using our symmetry knowledge of *F* and the previous slide, we know there *has* to be a decomposition of the form:

$$F_{ab} = u_a E_b - u_b E_a + \varepsilon_{abcd} u^c B^d$$

• Here: $u_a B^a = u_a E^a = 0$

⁵Because of *reasons*.

- Look at $\varepsilon_{abcd} u^a$.
- What happens if we contract this with a second *u*?
- $\varepsilon_{abcd} u^a u^b$ is a classic example of 'symmetric times' antisymmetric'—its 0
- We know F_{ab} is antisymmetric.⁵
- Using our symmetry knowledge of *F* and the previous slide, we know there *has* to be a decomposition of the form:

$$F_{ab} = u_a E_b - u_b E_a + \varepsilon_{abcd} u^c B^d$$

- Here: $u_a B^a = u_a E^a = 0$
- Degrees of freedom:⁶
 - F: Antisymmetric 2-tensor \rightarrow 6
 - $\bullet\,$ Two 4-vectors with one condition each \rightarrow 3 + 3

⁵Because of *reasons*.

⁶3+1 dimensions are important here!

Sebastian Schuster (UK UTF)

Main Course: Macroscopic Electrodynamics Done Right: The Macrocosmos

$$egin{aligned} ec{
abla} imes ec{H} &= rac{\partial ec{D}}{\partial t} + ec{j}, \ ec{
abla} imes ec{
abla} imes ec{E} &= -rac{\partial ec{B}}{\partial t}, \ ec{
abla} imes ec{
bla} imes ec{D} &=
ho, \ ec{
abla} imes ec{eta} &= 0 \end{aligned}$$

$$egin{aligned} ec{
abla} imes ec{H} &= rac{\partial ec{D}}{\partial t} + ec{j}, \ ec{
abla} imes ec{
abla} imes ec{E} &= -rac{\partial ec{B}}{\partial t}, \ ec{
abla} imes ec{
bla} imes ec{D} &=
ho, \ ec{
abla} \cdot ec{B} &= 0 \end{aligned}$$

• The microscopic Maxwell equations we could solve for \vec{E} and \vec{B}

$$egin{aligned} ec{
abla} imes ec{H} &= rac{\partial ec{D}}{\partial t} + ec{\jmath}, \ ec{
abla} imes ec{eta} &= -rac{\partial ec{B}}{\partial t}, \ ec{
abla} imes ec{
bla} imes ec{D} &=
ho, \ ec{
abla} \cdot ec{B} &= 0 \end{aligned}$$

- The microscopic Maxwell equations we could solve for \vec{E} and \vec{B}
- But what about \vec{D} and \vec{H} ?

$$egin{aligned} ec{
abla} imes ec{H} &= rac{\partial ec{D}}{\partial t} + ec{\jmath}, \ ec{
abla} imes ec{eta} &= -rac{\partial ec{B}}{\partial t}, \ ec{
abla} imes ec{
bla} imes ec{D} &=
ho, \ ec{
abla} \cdot ec{B} &= 0 \end{aligned}$$

- \bullet The microscopic Maxwell equations we could solve for \vec{E} and \vec{B}
- But what about \vec{D} and \vec{H} ?
- We need to link those to \vec{E} and $\vec{B}! \implies$ 'Constitutive relations'

• Linear. Linear is good.

- Linear. Linear is good.
- Real. Complex and relativistic gets ugly quick.

- Linear. Linear is good.
- Real. Complex and relativistic gets ugly quick.
- But neither homogeneous nor isotropic is needed in the following!

- Linear. Linear is good.
- Real. Complex and relativistic gets ugly quick.
- But neither homogeneous nor isotropic is needed in the following!
- Hence: Permittivity, permeability

- Linear. Linear is good.
- Real. Complex and relativistic gets ugly quick.
- But neither homogeneous nor isotropic is needed in the following!
- Hence: Permittivity, permeability, and so on...

• The constitutive relations are:

'fields'
$$(\vec{E}, \vec{B}) \stackrel{\text{lin.}}{\mapsto}$$
 'excitations' (\vec{D}, \vec{H})

• The constitutive relations are:

'fields'
$$(\vec{E}, \vec{B}) \stackrel{\text{lin.}}{\mapsto}$$
 'excitations' (\vec{D}, \vec{H})

• Naively, but thinking of 'anisotropic':

$$\vec{D} = \epsilon \ \vec{E} \qquad , \vec{H} = \qquad \mu^{-1} \vec{B}.$$

• The constitutive relations are:

'fields'
$$(\vec{E}, \vec{B}) \stackrel{\text{lin.}}{\mapsto}$$
 'excitations' (\vec{D}, \vec{H})

• Naively, but thinking of 'anisotropic':

$$ec{D} = \epsilon \ ec{E} \qquad , \ ec{H} = \qquad \mu^{-1} ec{B}.$$

• Is this the most general, linear map $(\vec{E}, \vec{B}) \mapsto (\vec{D}, \vec{H})$?

• The constitutive relations are:

'fields'
$$(\vec{E}, \vec{B}) \stackrel{\text{lin.}}{\mapsto}$$
 'excitations' (\vec{D}, \vec{H})

• Naively, but thinking of 'anisotropic':

$$\vec{D} = \epsilon \vec{E} + \zeta \vec{B}, \vec{H} = \zeta^{\dagger} \vec{E} + \mu^{-1} \vec{B}.$$

- Is this the most general, linear map $(\vec{E}, \vec{B}) \mapsto (\vec{D}, \vec{H})$?
- ζ is a new matrix, called 'magneto-electric tensor/matrix'.

• The constitutive relations are:

'fields'
$$(\vec{E}, \vec{B}) \stackrel{\text{lin.}}{\mapsto}$$
 'excitations' (\vec{D}, \vec{H})

• Naively, but thinking of 'anisotropic':

$$\vec{D} = \epsilon \vec{E} + \zeta \vec{B}, \vec{H} = \zeta^{\dagger} \vec{E} + \mu^{-1} \vec{B}.$$

- Is this the most general, linear map $(\vec{E}, \vec{B}) \mapsto (\vec{D}, \vec{H})$?
- ζ is a new matrix, called 'magneto-electric tensor/matrix'.
- $\epsilon, \mu^{-1}, \zeta$ are all 3×3 matrices

- \bullet We look (at most) for a linear, invertible map $\mathbb{R}^6 \to \mathbb{R}^6$
- It is natural to assume a similar structure for (\vec{D}, \vec{H}) , *i.e.*, collect them in a antisymmetric tensor G^{ab}
- We will call this the 'excitation tensor'

- \bullet We look (at most) for a linear, invertible map $\mathbb{R}^6 \to \mathbb{R}^6$
- It is natural to assume a similar structure for (\vec{D}, \vec{H}) , *i.e.*, collect them in a antisymmetric tensor G^{ab}
- We will call this the 'excitation tensor'
- So, we look for a map Z:

$$G^{ab} = Z^{abcd} F_{cd}.$$

Properties of the Constitutive Tensor

• Since both F and G are antisymmetric:

$$Z^{abcd} = -Z^{bacd} = -Z^{abdc} = Z^{badc}$$

Properties of the Constitutive Tensor

• Since both F and G are antisymmetric:

$$Z^{abcd} = -Z^{bacd} = -Z^{abdc} = Z^{badc}$$

• Because there should be a Lagrangian for macroscopic electrodynamics:

$$Z^{abcd} = Z^{cdab}$$

Properties of the Constitutive Tensor

• Since both F and G are antisymmetric:

$$Z^{abcd} = -Z^{bacd} = -Z^{abdc} = Z^{badc}$$

• Because there should be a Lagrangian for macroscopic electrodynamics:

$$Z^{abcd} = Z^{cdab}$$

• Hence, d.o.f. counting:

$$\#$$
 GL(6) = 36 symmetric \rightarrow 21

• What can we expect for Z^{abcd} once an observer u^a is fixed?

- What can we expect for Z^{abcd} once an observer u^a is fixed?
- In general, each index can be '0' or 'i'

- What can we expect for Z^{abcd} once an observer u^a is fixed?
- In general, each index can be '0' or 'i'
- After harder thought, introduce

$$t^a{}_b := -u^a u_b, \qquad h^a{}_b := g^a{}_b + u^a u_b$$

meaning $\delta^a{}_b = t^a{}_b + h^a{}_b$

- What can we expect for Z^{abcd} once an observer u^a is fixed?
- In general, each index can be '0' or 'i'
- After harder thought, introduce

$$t^a{}_b := -u^a u_b, \qquad h^a{}_b := g^a{}_b + u^a u_b$$

meaning $\delta^a{}_b = t^a{}_b + h^a{}_b$

• Note:

$$\begin{array}{ll} `X^{0}`\leftrightarrow t^{a}{}_{b}X^{b}, & `X^{i}`\leftrightarrow h^{a}{}_{b}X^{b}, \\ \varepsilon^{ijk}\leftrightarrow \varepsilon^{abcd}u_{a}. \end{array}$$

- What can we expect for Z^{abcd} once an observer u^a is fixed?
- In general, each index can be '0' or 'i'
- After harder thought, introduce

$$t^a{}_b := -u^a u_b, \qquad h^a{}_b := g^a{}_b + u^a u_b$$

meaning $\delta^a{}_b = t^a{}_b + h^a{}_b$

Note:

$$\begin{array}{ll} {}^{\boldsymbol{\cdot}} X^{0}{}^{\boldsymbol{\cdot}} \leftrightarrow t^{a}{}_{b} X^{b}, & {}^{\boldsymbol{\cdot}} X^{i}{}^{\boldsymbol{\cdot}} \leftrightarrow h^{a}{}_{b} X^{b}, \\ \varepsilon^{ijk} \leftrightarrow \varepsilon^{abcd} u_{a}. \end{array}$$

• Finally: (Less trivial exercise ⁽²⁾)

$$\varepsilon_{cd}{}^{af}\varepsilon^{ebcd}u_eu_f = -2(g^{ab} + u^au^b) = -2h^{ab}$$
$$g^{b_1c_1}\cdots g^{b_nc_n}\varepsilon_{c_1\ldots c_n}\varepsilon^{a_1\ldots a_n} = -n!g^{b_1c_1}\cdots g^{b_nc_n}\delta^{a_1}{}_{[c_1}\cdots\delta^{a_n}{}_{c_n}$$

• Define for any q^{ab} s.t. $u_a q^{ab} = q^{ab} u_b = 0$:

$$Q^{abcd}[q^{\circ\circ}] := u^a u^d q^{bc} + u^b u^c q^{ad} - u^b u^d q^{ac} - u^a u^c q^{bd}$$

• After quite some work (exercise I) we finally get something along the lines of

$$Z^{abcd} = rac{1}{2} \Big(Q^{abcd}_{q o \epsilon_u} + (*Q^{abcd}_{q o \mu_u^{-1}}*) + (*Q^{abcd}_{q o \zeta_u}) + (Q^{abcd}_{q o \zeta_u^{ o}}*) \Big),$$

where *M, M*, *M* are the left-, right-, and double-dual of M, respectively.

Sebastian Schuster (UK UTF)

⁷ \mathfrak{W} arning! The natural naming convention here is *different* from the Bel decompositon in GR or gravitomagnetism! And probably more defensible... \mathfrak{S}

- The other way around: $\epsilon, \mu^{-1}, \zeta, \zeta^T$ in terms of Z^{abcd}
- This is another ... doable? exercise
- One gets:

$$\begin{aligned} \epsilon_{v}^{ab} &= -2Z^{dacb}v_{d}v_{c}, \qquad \qquad \zeta_{v}^{ab} &= 2(*Z)^{dacb}v_{d}v_{c}, \\ [\mu_{v}^{-1}]^{ab} &= 2(*Z*)^{dacb}v_{d}v_{c}, \qquad \left[\zeta_{v}^{\dagger}\right]^{ab} &= 2(Z*)^{dacb}v_{d}v_{c}. \end{aligned}$$

• So—what have we *done*? What horrors have we conjured? What evils unleashed? What atrocities committed? What sanity sacrificed?

- So—what have we *done*? What horrors have we conjured? What evils unleashed? What atrocities committed? What sanity sacrificed?
- Well—we've got a compact, macroscopic version of Maxwell's equations:

$$onumber
onumber \ -
abla_a G^{ab} = J^b,$$
 $\varepsilon^{abcd}
abla_b F_{cd} = 0,$
 $G^{ab} = Z^{abcd} F_{cd}.$

- So—what have we *done*? What horrors have we conjured? What evils unleashed? What atrocities committed? What sanity sacrificed?
- Well—we've got a compact, macroscopic version of Maxwell's equations:

$$onumber -
abla_a G^{ab} = J^b,$$
 $\varepsilon^{abcd}
abla_b F_{cd} = 0,$
 $G^{ab} = Z^{abcd} F_{cd}.$

• Note: This is actually shorter than the average macroscopic Maxwell's equations of experimental physics *and* more general!

I promised something nice. This didn't always look nice. So, I'm gonna brainwash you into believing me!

I promised something nice. This didn't always look nice. So, I'm gonna brainwash you into believing me!

Dessert: The Fresnel–Fizeau Effect

Reminder on Boosts

Going from one inertial frame to a different inertial frame involves:

- Rotations in space
- Translations (in space and time)
- Boosts (velocity/Lorentz transformations)

Reminder on Boosts

Going from one inertial frame to a different inertial frame involves:

- Rotations in space
- Translations (in space and time)
- Boosts (velocity/Lorentz transformations)

$$\begin{array}{lll} x^{a} & \mapsto & x'^{a} = \Lambda^{a}{}_{b}x^{b}, \\ \omega_{a} & \mapsto & \omega'_{a} = \Lambda^{a}{}^{b}\omega_{b} = \left(\Lambda^{-1}\right)^{b}{}_{a}\omega_{b}, \end{array}$$

where for a simple boost in x-direction (direction '1')

$$\Lambda^{a}{}_{b} = \begin{pmatrix} \cosh \eta & -\sinh \eta & 0 & 0 \\ -\sinh \eta & \cosh \eta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \text{with} \quad \gamma = \frac{1}{\sqrt{1-\beta^{2}}}, \beta = \mathbf{v}/\varepsilon$$

- If inertial frames not collinear, Λ 's quickly become a mess
- If two observer move inertially along u^a and v^a , respectively,

$$u^{a}v_{a}=\gamma$$

• So what's the general strategy?

- \bullet If inertial frames not collinear, $A{\rm 's}$ quickly become a mess
- If two observer move inertially along u^a and v^a , respectively,

$$u^{a}v_{a}=\gamma$$

- So what's the general strategy?
 - Decompose a tensor T w.r.t. u

- \bullet If inertial frames not collinear, $\Lambda {\rm 's}$ quickly become a mess
- If two observer move inertially along u^a and v^a , respectively,

$$u^{a}v_{a}=\gamma$$

- So what's the general strategy?
 - Decompose a tensor T w.r.t. u
 - 2 Express T in terms of these orthogonally decomposed components

- \bullet If inertial frames not collinear, $\Lambda {\rm 's}$ quickly become a mess
- If two observer move inertially along u^a and v^a , respectively,

$$u^{a}v_{a}=\gamma$$

- So what's the general strategy?
 - Decompose a tensor T w.r.t. u
 - **2** Express T in terms of these orthogonally decomposed components
 - **3** Decompose *this* expression w.r.t. v

Dessert: The Fresnel–Fizeau Effect: An Application!

An Application! An Application! The Relativist Has an Application!

- Say, a medium is homogeneous, isotropic, and has no magneto-electric effects in a given rest frame *u*.
- Then it is completely described for this observer by ϵ and μ^{-1} , both scalars now
- (Ok-ish exercise) We get:

$$Z^{abcd} = \frac{\mu^{-1}}{2} \Big[(h^{ac} - \epsilon \mu u^a u^c) \Big(h^{bd} - \epsilon \mu u^b u^d \Big) - \Big(h^{ad} - \epsilon \mu u^a u^d \Big) \Big(h^{bc} - \epsilon \mu u^b u^c \Big) \Big]$$

An Application! An Application! The Relativist Has an Application!

- Say, a medium is homogeneous, isotropic, and has no magneto-electric effects in a given rest frame *u*.
- Then it is completely described for this observer by ϵ and μ^{-1} , both scalars now
- (Ok-ish exercise) We get:

$$Z^{abcd} = \frac{\mu^{-1}}{2} \Big[(h^{ac} - \epsilon \mu u^a u^c) \Big(h^{bd} - \epsilon \mu u^b u^d \Big) - \Big(h^{ad} - \epsilon \mu u^a u^d \Big) \Big(h^{bc} - \epsilon \mu u^b u^c \Big) \Big]$$

• Trust me, this will prove useful! Swear!

Going through the Motions

- Let's perform the algorithm above
- This could be an exercise. T suggest [SV17; Sch18], however.⁸

⁸Shameless self-promotion.

Sebastian Schuster (UK UTF)

Going through the Motions

- Let's perform the algorithm above
- This could be an exercise. T suggest [SV17; Sch18], however.⁸
- We get with $h_v^{bd} := g^{bd} + v^b v^d$:

$$\epsilon_{v}^{bd} = \epsilon h_{v}^{bd} + (\epsilon - \mu^{-1}) \left[(u \cdot v)^{2} h_{v}^{bd} - h_{v}^{be} h_{ef} h_{v}^{fd} \right]$$
$$[\mu_{v}^{-1}]^{bd} = \frac{h_{v}^{bd}}{\mu} + (\mu^{-1} - \epsilon) \left((u \cdot v)^{2} h_{v}^{bd} - h_{v}^{be} h_{ef} h_{v}^{fd} \right)$$
$$\zeta_{v}^{ac} = (\epsilon - \mu^{-1}) (u \cdot v) \left(\epsilon^{acef} v_{e} u_{f} \right)$$

⁸Shameless self-promotion.

Sebastian Schuster (UK UTF)

• Isotropy gets broken

• Magneto-electric effects appear: $\vec{D} \neq \vec{D}(\vec{E}), \ \vec{D} = \vec{D}(\vec{E}, \vec{B})$

• $(u \cdot v)^2 = \gamma^2$ appears, as expected for non-vanishing second rank tensors

• Isotropy gets broken

• Magneto-electric effects appear: $\vec{D} \neq \vec{D}(\vec{E}), \ \vec{D} = \vec{D}(\vec{E}, \vec{B})$

• $(u \cdot v)^2 = \gamma^2$ appears, as expected for non-vanishing second rank tensors

• And one more thing...

What This *IS*

- In 1851, Fizeau wanted to measure the dragging of light in a moving medium (water)
- He found some dragging, but not as much as predicted by aether theories

- In 1851, Fizeau wanted to measure the dragging of light in a moving medium (water)
- He found some dragging, but not as much as predicted by aether theories
- It did, however, significantly inspire Einstein⁹

⁹Mentioned repeatedly in [Jac75], but never explained...

- In 1851, Fizeau wanted to measure the dragging of light in a moving medium (water)
- He found some dragging, but not as much as predicted by aether theories
- It did, however, significantly inspire Einstein⁹
- Relativity gets exactly the measured dragging

⁹Mentioned repeatedly in [Jac75], but never explained...

- In 1851, Fizeau wanted to measure the dragging of light in a moving medium (water)
- He found some dragging, but not as much as predicted by aether theories
- It did, however, significantly inspire Einstein⁹
- Relativity gets exactly the measured dragging
- Usually, shown (or asked to show [Jac75]) perturbatively ([Pos62]) or not at all.

⁹Mentioned repeatedly in [Jac75], but never explained...

- In 1851, Fizeau wanted to measure the dragging of light in a moving medium (water)
- He found some dragging, but not as much as predicted by aether theories
- It did, however, significantly inspire Einstein⁹
- Relativity gets exactly the measured dragging
- Usually, shown (or asked to show [Jac75]) perturbatively ([Pos62]) or not at all.
- The above is exact and more general than just for inertial frames! YAY!

⁹Mentioned repeatedly in [Jac75], but never explained...

Sebastian Schuster (UK UTF)

Digestif: Bitters

- Conventions, conventions, conventions:¹⁰
 - The metric

¹⁰And not the fun ones involving cosplay.

- Conventions, conventions, conventions:¹⁰
 - The metric (particle physicists are just wrong)

26 / 26

¹⁰And not the fun ones involving cosplay.

- Conventions, conventions, conventions:¹⁰
 - The metric (particle physicists are just *wrong*)
 - Boys-Post vs. Tellegen constitutive relations

¹⁰And not the fun ones involving cosplay.

- Conventions, conventions, conventions:¹⁰
 - The metric (particle physicists are just wrong)
 - Boys–Post vs. Tellegen constitutive relations ((E, B) → (D, H) vs (E, H) → (D, B), respectively; the latter is like complaining about the 'wrong sign' of the electron charge...)

26 / 26

¹⁰And not the fun ones involving cosplay.

- Conventions, conventions, conventions:¹⁰
 - The metric (particle physicists are just *wrong*)
 - Boys–Post vs. Tellegen constitutive relations ((E, B) → (D, H) vs (E, H) → (D, B), respectively; the latter is like complaining about the 'wrong sign' of the electron charge...)
 - The names, oh god, the names of E, B, D, H, G, F, \dots 3

¹⁰And not the fun ones involving cosplay.

- Conventions, conventions, conventions:¹⁰
 - The metric (particle physicists are just *wrong*)
 - Boys–Post vs. Tellegen constitutive relations ((E, B) → (D, H) vs (E, H) → (D, B), respectively; the latter is like complaining about the 'wrong sign' of the electron charge...)
 - The names, oh god, the names of E, B, D, H, G, F, \dots \Im (I won't even list them at all...)

¹⁰And not the fun ones involving cosplay.

- Conventions, conventions, conventions:¹⁰
 - The metric (particle physicists are just *wrong*)
 - Boys–Post vs. Tellegen constitutive relations ((E, B) → (D, H) vs (E, H) → (D, B), respectively; the latter is like complaining about the 'wrong sign' of the electron charge...)
 - The names, oh god, the names of E, B, D, H, G, F, \dots \Im (I won't even list them at all...)
 - Units

¹⁰And not the fun ones involving cosplay.

- Conventions, conventions, conventions:¹⁰
 - The metric (particle physicists are just *wrong*)
 - Boys–Post vs. Tellegen constitutive relations ((E, B) → (D, H) vs (E, H) → (D, B), respectively; the latter is like complaining about the 'wrong sign' of the electron charge...)
 - The names, oh god, the names of E, B, D, H, G, F, \dots \Im (I won't even list them at all...)
 - Units (I probably messed them up, somewhere)

¹⁰And not the fun ones involving cosplay.

- Conventions, conventions, conventions:¹⁰
 - The metric (particle physicists are just *wrong*)
 - Boys–Post vs. Tellegen constitutive relations ((E, B) → (D, H) vs (E, H) → (D, B), respectively; the latter is like complaining about the 'wrong sign' of the electron charge...)
 - The names, oh god, the names of E, B, D, H, G, F, \dots \Im (I won't even list them at all...)
 - Units (I probably messed them up, somewhere)
 - Where to put Hodge stars * or factors of 2

¹⁰And not the fun ones involving cosplay.

- Conventions, conventions, conventions:¹⁰
 - The metric (particle physicists are just *wrong*)
 - Boys–Post vs. Tellegen constitutive relations ((E, B) → (D, H) vs (E, H) → (D, B), respectively; the latter is like complaining about the 'wrong sign' of the electron charge...)
 - The names, oh god, the names of E, B, D, H, G, F, \dots \Im (I won't even list them at all...)
 - Units (I probably messed them up, somewhere)
 - Where to put Hodge stars * or factors of 2 (peer pressure acted on me)

¹⁰And not the fun ones involving cosplay.

• Conventions, conventions, conventions:¹⁰

- Controversy!
 - Abraham vs. Minkowski

¹⁰And not the fun ones involving cosplay.

• Conventions, conventions, conventions:¹⁰

- Controversy!
 - Abraham vs. Minkowski (I have a suspicion, but the fight rages on)

26 / 26

¹⁰And not the fun ones involving cosplay.

• Conventions, conventions, conventions:¹⁰

- Controversy!
 - Abraham vs. Minkowski (I have a suspicion, but the fight rages on)

 \bullet Free and bound charges $\xrightarrow{???}$ well-defined continuum theory of a medium

¹⁰And not the fun ones involving cosplay.

- Conventions, conventions, conventions:¹⁰
- Controversy!
 - Abraham vs. Minkowski (I have a suspicion, but the fight rages on)
 - Free and bound charges → well-defined continuum theory of a medium (I don't even know enough to comment)

¹⁰And not the fun ones involving cosplay.

- Conventions, conventions, conventions:¹⁰
- Controversy!
- Complications!
 - Dissipation

26 / 26

¹⁰And not the fun ones involving cosplay.

- Conventions, conventions, conventions:¹⁰
- Controversy!
- Complications!
 - Dissipation (magneto-electric tensor vs. complex materials)

¹⁰And not the fun ones involving cosplay.

- Conventions, conventions, conventions:¹⁰
- Controversy!
- Complications!
 - Dissipation (magneto-electric tensor vs. complex materials)
 - Birefringence, Fresnel equation, Finsler space-times

¹⁰And not the fun ones involving cosplay.

- Conventions, conventions, conventions:¹⁰
- Controversy!
- Complications!
 - Dissipation (magneto-electric tensor vs. complex materials)
 - Birefringence, Fresnel equation, Finsler space-times
 - Pre-metric electromagnetism and deriving a metric

¹⁰And not the fun ones involving cosplay.

If we shadows have offended, Think but this, and all is mended, That you have but flumbered here While these visions did appear.

References I

Nothing above was new, but little is presented coherently in one place. Less so in a modern or legible form.

- Cho09 Y. Choquet-Bruhat. *General Relativity and the Einstein Equations*. ISBN: 978-0-19-923072-3 (Oxford University Press, 2009).
- FN14 L. Filipe O. Costa & J. Natário. Gravito-electromagnetic analogies. General Relativity and Gravitation 46, 1792. doi:10.1007/s10714-014-1792-1. arviv: 1207.0465 (2014).
- Gou13 É. Gourgoulhon. Special Relativity in General Frames. ISBN: 978-3-642-37275-9. doi:10.1007/978-3-642-37276-6 (Springer, 2013).
- HO03 F. W. Hehl & Y. N. Obukhov. *Foundations of Classical Electrodynamics.* ISBN: 3-7643-4222-6 (Birkhäuser, 2003).

Jac75 J. D. Jackson. *Classical Electrodynamics.* 2nd ed. ISBN: 0-471-43132-X (John Wiley & Sons, 1975).

References II

- LL84 L. D. Landau & E. M. Lifshitz. *Electrodynamics of Continuous Media.* 2nd ed. ISBN: 0-08-030276-9 (Pergamon Press, 1984).
- MTW73 C. W. Misner, K. S. Thorne & J. A. Wheeler. *Gravitation*. ISBN: 0-7167-0334-3 (W. H. Freeman, 1973). Reprinted by Princeton University Press, ISBN: 978-0-691-17779-3.
- Pos62 E. J. Post. *Formal Structure of Electromagnetics.* (North-Holland, 1962). Reprinted by Dover Publications, ISBN: 978-0-486-65427-0.
- Sch18 S. Schuster. Black Hole Evaporation: Sparsity in Analogue and General Relativistic Space-Times. PhD thesis (Victoria University of Wellington, Dec. 2018). doi:10.26686/wgtn.17134433.v1. arXiv: 1901.05648.
- SV17 S. Schuster & M. Visser. Effective metrics and a fully covariant description of constitutive tensors in electrodynamics. *Physical Review D* 96, 124019. doi:10.1103/PhysRevD.96.124019. arXiv: 1706.06280 (Dec. 2017).

Sebastian Schuster (UK UTF)

Fresnel Equation and Rubilar-Tamm Tensor

• The Tamm–Rubilar tensor (density)¹¹

$$G^{abcd} \propto rac{1}{4!} arepsilon_{efgh} arepsilon_{ijkl} Z^{efi(a} Z^{b|gj|c} Z^{d)hkl}$$

has interesting info!

- Contracted with four wave covectors k_a it gives a quartic Fresnel wave surface
- This describes all possible behaviour of linear electromagnetism: Birefringence, metrics, ...

¹¹Modulo missed factors of det *g*, 2's, signs—the source was [HO03], which doesn't have the easiest notation. Sebastian Schuster (UK UTF) Covariant Media Bonus Slides 26 / 26