The Beauty and the Beast: Covariance and Electromagnetic Media

Sebastian Schuster

Ústav Teoretické Fyziky
Matematicko-Fyzikální Fakulta
Univerzita Karlova

$22^{\text {nd }}$ October 2022, Ondřejov Lecture Camp 2022

UNIVERZITA KARLOVA
Matematicko-fyzikální
fakulta

The Menu

(1) The Aperitif: The Goal
(2) Entree: Warnings, Conventions, Introduction
(3) Main Course: Macroscopic Electrodynamics Done Right

- Relativity, Part I
- A First $3+1$ Decomposition
- The Macrocosmos

44 Dessert: The Fresnel-Fizeau Effect

- Relativity, Part II
- An Application!
(5) Digestif: Bitters

The Aperitif: The Goal

Goal

My aim will be threefold:

- Make electromagnetism in media beautiful ${ }^{1}$

[^0]
Goal

My aim will be threefold:

- Make electromagnetism in media beautiful ${ }^{1}$
- Tell you about electromagnetic media in relativity. ${ }^{2}$

[^1]My aim will be threefold:

- Make electromagnetism in media beautiful ${ }^{1}$
- Tell you about electromagnetic media in relativity. ${ }^{2}$
- Mention a nearly forgotten, neat effect from $1851 .^{3}$

[^2] $\begin{array}{llll}\text { Sebastian Schuster } & \text { (UK UTF) } & \text { Covariant Media } & \text { The Aperitif: The Goal } 2 / 26\end{array}$

Entree: Warnings, Conventions, Introduction

There once was a Sebastian in Ondřejov Who's got biased opinions on matters of electrics historical, books pedagogical, and made a comical lecture thereof.

There once was a Sebastian in Ondřejov Who's got biased opinions on matters of electrics historical, books pedagogical, and made a comical lecture thereof.

Conventions

- Signature: - + ++
- $G=c=\hbar=1$
- Sum convention: Same index once(!) up, once(!) down per term: Sum over it!
- Space-time indices: abcd $\cdots \in\{0,1,2,3\}$
- Spatial indices: $i j k l \cdots \in\{1,2,3\}$

Conventions

- Signature: - + ++
- $G=c=\hbar=1$
- Sum convention: Same index once(!) up, once(!) down per term: Sum over it!
- Space-time indices: abcd $\cdots \in\{0,1,2,3\}$
- Spatial indices: $i j k l \cdots \in\{1,2,3\}$
- I know, there's a clash in the dots.

Conventions

- Signature: - + ++
- $G=c=\hbar=1$
- Sum convention: Same index once(!) up, once(!) down per term: Sum over it!
- Space-time indices: abcd $\cdots \in\{0,1,2,3\}$
- Spatial indices: $i j k l \cdots \in\{1,2,3\}$
- I know, there's a clash in the dots. We won't meet it outside the bonus slide.

The Beauty: Microscopic Electrodynamics?

$$
\begin{aligned}
\vec{\nabla} \cdot \vec{E} & =\frac{\rho}{\epsilon_{0}} \\
\vec{\nabla} \times \vec{B} & =\mu_{0} \vec{J}+\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t} \\
\vec{\nabla} \cdot \vec{B} & =0 \\
\vec{\nabla} \times \vec{E} & =-\frac{\partial \vec{B}}{\partial t}
\end{aligned}
$$

The Beauty: Microscopic Electrodynamics with Forms?

$$
\begin{aligned}
* \mathrm{~d} * F & =\mu_{0} \mathrm{~J} \\
\mathrm{~d} F & =0
\end{aligned}
$$

The Beauty: Covariant, Microscopic Electrodynamics!

$$
\begin{aligned}
-\nabla_{a} F^{a b} & =\mu_{0} J^{b} \\
\varepsilon^{a b c d} \nabla_{a} F_{b c} & =0
\end{aligned}
$$

The Beast: Macroscopic Electrodynamics

$$
\begin{aligned}
& \vec{\nabla} \times \vec{H}=\frac{\partial \vec{D}}{\partial t}+\vec{\jmath}, \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}, \\
& \vec{\nabla} \cdot \vec{D}=\rho, \\
& \vec{\nabla} \cdot \vec{B}=0, \\
& \text { where } \vec{D}=\epsilon_{0} \vec{E}+\vec{P} \vec{P}^{\text {lin. med. }} \epsilon \vec{E}, \\
& \text { and } \vec{B}=\mu_{0}(\vec{H}+\vec{M})^{\text {lin. }}= \\
&=\text { med. } \mu \vec{H}
\end{aligned}
$$

The Beast: Macroscopic Electrodynamics

$$
\begin{aligned}
\vec{\nabla} \times \vec{H} & =\frac{\partial \vec{D}}{\partial t}+\vec{\jmath} \\
\vec{\nabla} \times \vec{E} & =-\frac{\partial \vec{B}}{\partial t}, \\
\vec{\nabla} \cdot \vec{D} & =\rho \\
\vec{\nabla} \cdot \vec{B} & =0 \\
\text { where } \vec{D} & =\epsilon_{0} \vec{E}+\vec{P} \text { lin. med. } \epsilon \vec{E}, \\
\text { and } \vec{B} & =\mu_{0}(\vec{H}+\vec{M})^{\text {lin. med. }} \mu \vec{H}
\end{aligned}
$$

Let's add a bit of clarification.

The Beast: Macroscopic Electrodynamics

$$
\begin{aligned}
& \vec{\nabla} \times \vec{H}=\frac{\partial \vec{D}}{\partial t}+\vec{\jmath}, \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}, \\
& \vec{\nabla} \cdot \vec{D}=\rho, \\
& \vec{\nabla} \cdot \vec{B}=0, \\
& \text { where } \vec{D}=\epsilon_{0} \vec{E}+\vec{P} \vec{P}^{\text {lin. } . \text { med. }} \epsilon \vec{E}, \\
& \text { and } \vec{B}=\mu_{0}(\vec{H}+\vec{M})^{\text {lin. }}= \\
&=\text { med. } \mu \vec{H}
\end{aligned}
$$

Let's add a bit of clarificeetiont forget $\epsilon=\epsilon_{0} \epsilon_{r}$ and $\mu=\mu_{0} \mu_{\mathrm{r}}$

The Beast: Macroscopic Electrodynamics

ϵ and μ can be matrices. We need birefringence and stuff.

$$
\begin{aligned}
\vec{\nabla} \times \vec{H} & =\frac{\partial \vec{D}}{\partial t}+\vec{\jmath} \\
\vec{\nabla} \times \vec{E} & =-\frac{\partial \vec{B}}{\partial t}, \\
\vec{\nabla} \cdot \vec{D} & =\rho \\
\vec{\nabla} \cdot \vec{B} & =0 \\
\text { where } \vec{D} & =\epsilon_{0} \vec{E}+\vec{P} \text { lin. med. } \epsilon \vec{E}, \\
\text { and } \vec{B} & =\mu_{0}(\vec{H}+\vec{M})^{\text {lin. med. }} \mu \vec{H}
\end{aligned}
$$

Let's add a bit of clarifieationot forget $\epsilon=\epsilon_{0} \epsilon_{\mathrm{r}}$ and $\mu=\mu_{0} \mu_{\mathrm{r}}$

The Beast: Macroscopic Electrodynamics

ϵ and μ can be matrices. We need birefringence and stuff.

$$
\begin{aligned}
\vec{\nabla} \times \vec{H} & =\frac{\partial \vec{D}}{\partial t}+\vec{\jmath} \\
\vec{\nabla} \times \vec{E} & =-\frac{\partial \vec{B}}{\partial t}, \\
\vec{\nabla} \cdot \vec{D} & =\rho \\
\vec{\nabla} \cdot \vec{B} & =0 \\
\text { where } \vec{D} & =\epsilon_{0} \vec{E}+\vec{P} \text { lin. med. } \epsilon \vec{E}, \\
\text { and } \vec{B} & =\mu_{0}(\vec{H}+\vec{M})^{\text {lin. med. }} \mu \vec{H}
\end{aligned}
$$

Let's add a bit of clarifieqtionot forget $\epsilon=\epsilon_{0} \epsilon_{\mathrm{r}}$ and $\mu=\mu_{0} \mu_{\mathrm{r}}$

The Beast: Macroscopic Electrodynamics

ϵ and μ can be matrices. We need birefringence and stuff.

$$
\begin{aligned}
\vec{\nabla} \times \vec{H} & \frac{\partial \vec{D}}{\partial t}+\vec{\jmath}, \\
\vec{\nabla} \cdot \vec{D} & =\rho \\
\vec{\nabla} \cdot \vec{B} & =0 \\
\text { where } \vec{D} & =\epsilon_{0} \vec{E}+\vec{P} \\
\text { and } \vec{B} & =\mu_{0}(\vec{H}+\vec{M})^{\text {lin. med. }} \epsilon \vec{E}, \\
= & \text { med. } \mu \vec{H}
\end{aligned}
$$

Let's add a bit of clarifieqtionot forget $\epsilon=\epsilon_{0} \epsilon_{\mathrm{r}}$ and $\mu=\mu_{0} \mu_{\mathrm{r}}$

The Beast: Macroscopic Electrodynamics

ϵ and μ can be matrices. We need birefringence and stuff.

$$
\begin{aligned}
& \vec{\nabla} \times \vec{H}=\frac{\partial \vec{D}}{\partial t}+\vec{\jmath}, \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}, \\
& \vec{\nabla} \cdot \vec{D}=\rho,
\end{aligned}
$$

need the index of refrac-

$$
\text { and } \vec{B}+i)^{\prime} \mu_{0}(\vec{H}=\vec{M}) \text { lin. med. } \mu \vec{H}
$$

Let's add a bit of clarifieqtionot forget $\epsilon=\epsilon_{0} \epsilon_{\mathrm{r}}$ and $\mu=\mu_{0} \mu_{\mathrm{r}}$

The Beast: Macroscopic Electrodynamics

ϵ and μ can be matrices. We need birefringence and stuff.

$$
\begin{aligned}
& \vec{\nabla} \times \vec{H}=\frac{\partial \vec{D}}{\partial t}+\vec{\jmath}, \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}, \\
& \vec{\nabla} \cdot \vec{D}=\rho,
\end{aligned}
$$

need the index of refract-

$$
\text { and } \vec{B}+i n_{1}^{\prime}!(\vec{H}=v \vec{M}) \text { lin. med. } \mu \vec{H}
$$

Let's add a bit of clarifieqtionot forget $\epsilon=\epsilon_{0} \epsilon_{\mathrm{r}}$ and $\mu=\mu_{0} \mu_{\mathrm{r}}$

The Beast at Macroscopic Electrodynamics

ϵ and μ can be matrices. We: need birefringence and stuff.

$$
\begin{aligned}
& \vec{\nabla} \times \vec{H}=\frac{\partial \vec{D}}{\partial t}+\vec{\gamma}, \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}, \\
& \vec{\nabla} \cdot \vec{D}=\rho,
\end{aligned}
$$

we need the index of refrac-

$$
\text { and } \vec{B} \text { ton! } \mu_{0}(\vec{H}=v \vec{M}) \text { lin. med. } \mu \vec{H}
$$

Let's add a bit of clarifieqtionot forget $\epsilon=\epsilon_{0} \epsilon_{\mathrm{r}}$ and $\mu=\mu_{0} \mu_{\mathrm{r}}$

The Beadstit Macroscopic Electrodynamics

ϵ and μ can be matrices. We need= birefringence and stuff.

$$
E
$$

Main Course: Macroscopic Electrodynamics Done Right

What's the Deal with F?

If we had done the derivation, we'd have seen: ${ }^{4}$

$$
\left(F_{a b}\right)_{a, b \in\{0,1,2,3\}}=\left(\begin{array}{cccc}
0 & -E_{1} & -E_{2} & -E_{3} \\
E_{1} & 0 & B_{3} & -B_{2} \\
E_{2} & -B_{3} & 0 & B_{1} \\
E_{3} & B_{2} & -B_{1} & 0
\end{array}\right)
$$

[^3]
What's the Deal with F?

If we had done the derivation, we'd have seen: ${ }^{4}$

$$
\left(F_{a b}\right)_{a, b \in\{0,1,2,3\}}=\left(\begin{array}{cccc}
0 & -E_{1} & -E_{2} & -E_{3} \\
E_{1} & 0 & B_{3} & -B_{2} \\
E_{2} & -B_{3} & 0 & B_{1} \\
E_{3} & B_{2} & -B_{1} & 0
\end{array}\right)
$$

What does this mean? Let's step back a bit.

[^4]
What's the Deal with F?

If we had done the derivation, we'd have seen: ${ }^{4}$

$$
\left(F_{a b}\right)_{a, b \in\{0,1,2,3\}}=\left(\begin{array}{cccc}
0 & -E_{1} & -E_{2} & -E_{3} \\
E_{1} & 0 & B_{3} & -B_{2} \\
E_{2} & -B_{3} & 0 & B_{1} \\
E_{3} & B_{2} & -B_{1} & 0
\end{array}\right)
$$

What does this mean? Let's step back a bit.

- This is what we measure as \vec{E} and \vec{B}

[^5]
What's the Deal with F?

If we had done the derivation, we'd have seen: ${ }^{4}$

$$
\left(F_{a b}\right)_{a, b \in\{0,1,2,3\}}=\left(\begin{array}{cccc}
0 & -E_{1} & -E_{2} & -E_{3} \\
E_{1} & 0 & B_{3} & -B_{2} \\
E_{2} & -B_{3} & 0 & B_{1} \\
E_{3} & B_{2} & -B_{1} & 0
\end{array}\right)
$$

What does this mean? Let's step back a bit.

- This is what we measure as \vec{E} and \vec{B}
- Other observers will disagree. What do they see?

[^6]
Observers and Four-Velocities

- We are all insignificant, infinitesimal point particles.

Source: Gourgoulhon—Special Relativity in General Frames, p. 260

Observers and Four-Velocities

- We are all insignificant, infinitesimal point particles.
- Any observer follows their (time-like) curve in space-time

Source: Gourgoulhon—Special Relativity in General Frames, p. 260

Observers and Four-Velocities

- We are all insignificant, infinitesimal point particles.
- Any observer follows their (time-like) curve in space-time
- This means, curve has tangent vector u^{a} s.t.

$$
u^{a} u_{a}=u^{a} g_{a b} u^{b}=-1 .
$$

Source: Gourgoulhon—Special Relativity in General Frames, p. 260

Observers and Four-Velocities

- We are all insignificant, infinitesimal point particles.
- Any observer follows their (time-like) curve in space-time
- This means, curve has tangent vector u^{a} s.t.

$$
u^{a} u_{a}=u^{a} g_{a b} u^{b}=-1 .
$$

- Good exercise: Define 4-acceleration: $a^{a}:=u^{b} \nabla_{b} u^{a}=: \frac{\mathrm{d} u}{\mathrm{~d} \tau}$. Show $u_{a} a^{a}=0$.

Source: Gourgoulhon—Special Relativity in General Frames, p. 260

Observers and Four-Velocities

- We are all insignificant, infinitesimal point particles.
- Any observer follows their (time-like) curve in space-time
- This means, curve has tangent vector u^{a} s.t.

$$
u^{a} u_{a}=u^{a} g_{a b} u^{b}=-1 .
$$

- Good exercise: Define 4-acceleration: $a^{a}:=u^{b} \nabla_{b} u^{a}=: \frac{\mathrm{d} u}{\mathrm{~d} \tau}$. Show $u_{a} a^{a}=0$.
- At given time* t_{α}, there is (a) a time-like direction along the curve, (b) a spatial 3 -space transverse to it.

Source: Gourgoulhon-Special Relativity in General Frames, p. 260

Main Course: Macroscopic Electrodynamics Done Right: A First $3+1$ Decomposition

Nearly There!

- Look at $\varepsilon_{a b c d} u^{a}$.
- What happens if we contract this with a second u ?

Nearly There!

- Look at $\varepsilon_{\text {abcd }} u^{a}$.
- What happens if we contract this with a second u ?
- $\varepsilon_{a b c d} u^{a} u^{b}$ is a classic example of 'symmetric times* antisymmetric'-its 0

Nearly There!

- Look at $\varepsilon_{\text {abcd }} u^{a}$.
- What happens if we contract this with a second u ?
- $\varepsilon_{a b c d} u^{a} u^{b}$ is a classic example of 'symmetric times* antisymmetric'-its 0
- We know $F_{a b}$ is antisymmetric. ${ }^{5}$

[^7]
Nearly There!

- Look at $\varepsilon_{a b c d} u^{a}$.
- What happens if we contract this with a second u ?
- $\varepsilon_{a b c d} u^{a} u^{b}$ is a classic example of 'symmetric times* antisymmetric'-its 0
- We know $F_{a b}$ is antisymmetric. ${ }^{5}$
- Using our symmetry knowledge of F and the previous slide, we know there has to be a decomposition of the form:

$$
F_{a b}=u_{a} E_{b}-u_{b} E_{a}+\varepsilon_{a b c d} u^{c} B^{d}
$$

- Here: $u_{a} B^{a}=u_{a} E^{a}=0$

[^8]
Nearly There!

- Look at $\varepsilon_{a b c d} u^{a}$.
- What happens if we contract this with a second u ?
- $\varepsilon_{a b c d} u^{a} u^{b}$ is a classic example of 'symmetric times* antisymmetric'-its 0
- We know $F_{a b}$ is antisymmetric. ${ }^{5}$
- Using our symmetry knowledge of F and the previous slide, we know there has to be a decomposition of the form:

$$
F_{a b}=u_{a} E_{b}-u_{b} E_{a}+\varepsilon_{a b c d} u^{c} B^{d}
$$

- Here: $u_{a} B^{a}=u_{a} E^{a}=0$
- Degrees of freedom: ${ }^{6}$
- F: Antisymmetric 2-tensor $\rightarrow 6$
- Two 4-vectors with one condition each $\rightarrow 3+3$

[^9]
Main Course: Macroscopic Electrodynamics Done Right: The Macrocosmos

What Do We Need?

- Remember/Remind ourselves of the macroscopic Maxwell equations:

$$
\begin{aligned}
\vec{\nabla} \times \vec{H} & =\frac{\partial \vec{D}}{\partial t}+\vec{\jmath} \\
\vec{\nabla} \times \vec{E} & =-\frac{\partial \vec{B}}{\partial t} \\
\vec{\nabla} \cdot \vec{D} & =\rho \\
\vec{\nabla} \cdot \vec{B} & =0
\end{aligned}
$$

What Do We Need?

- Remember/Remind ourselves of the macroscopic Maxwell equations:

$$
\begin{aligned}
\vec{\nabla} \times \vec{H} & =\frac{\partial \vec{D}}{\partial t}+\vec{\jmath} \\
\vec{\nabla} \times \vec{E} & =-\frac{\partial \vec{B}}{\partial t} \\
\vec{\nabla} \cdot \vec{D} & =\rho \\
\vec{\nabla} \cdot \vec{B} & =0
\end{aligned}
$$

- The microscopic Maxwell equations we could solve for \vec{E} and \vec{B}

What Do We Need?

- Remember/Remind ourselves of the macroscopic Maxwell equations:

$$
\begin{aligned}
\vec{\nabla} \times \vec{H} & =\frac{\partial \vec{D}}{\partial t}+\vec{\jmath} \\
\vec{\nabla} \times \vec{E} & =-\frac{\partial \vec{B}}{\partial t} \\
\vec{\nabla} \cdot \vec{D} & =\rho \\
\vec{\nabla} \cdot \vec{B} & =0
\end{aligned}
$$

- The microscopic Maxwell equations we could solve for \vec{E} and \vec{B}
- But what about \vec{D} and \vec{H} ?

What Do We Need?

- Remember/Remind ourselves of the macroscopic Maxwell equations:

$$
\begin{aligned}
\vec{\nabla} \times \vec{H} & =\frac{\partial \vec{D}}{\partial t}+\vec{\jmath}, \\
\vec{\nabla} \times \vec{E} & =-\frac{\partial \vec{B}}{\partial t}, \\
\vec{\nabla} \cdot \vec{D} & =\rho, \\
\vec{\nabla} \cdot \vec{B} & =0
\end{aligned}
$$

- The microscopic Maxwell equations we could solve for \vec{E} and \vec{B}
- But what about \vec{D} and \vec{H} ?
- We need to link those to \vec{E} and $\vec{B}!\Longrightarrow$ 'Constitutive relations'

A Brief Word from Our Assumptions

Now we need to think at least a bit about the type of media we want to describe.

A Brief Word from Our Assumptions

Now we need to think at least a bit about the type of media we want to describe.

- Linear. Linear is good.

A Brief Word from Our Assumptions

Now we need to think at least a bit about the type of media we want to describe.

- Linear. Linear is good.
- Real. Complex and relativistic gets ugly quick.

A Brief Word from Our Assumptions

Now we need to think at least a bit about the type of media we want to describe.

- Linear. Linear is good.
- Real. Complex and relativistic gets ugly quick.
- But neither homogeneous nor isotropic is needed in the following!

A Brief Word from Our Assumptions

Now we need to think at least a bit about the type of media we want to describe.

- Linear. Linear is good.
- Real. Complex and relativistic gets ugly quick.
- But neither homogeneous nor isotropic is needed in the following!
- Hence: Permittivity, permeability

A Brief Word from Our Assumptions

Now we need to think at least a bit about the type of media we want to describe.

- Linear. Linear is good.
- Real. Complex and relativistic gets ugly quick.
- But neither homogeneous nor isotropic is needed in the following!
- Hence: Permittivity, permeability, and so on...

Constitutive Relations for Linear Electromagnetism

- The constitutive relations are:

$$
\text { ‘fields' }(\vec{E}, \vec{B}) \quad \stackrel{\text { lin. }}{\mapsto} \quad \text { 'excitations' }(\vec{D}, \vec{H})
$$

Constitutive Relations for Linear Electromagnetism

- The constitutive relations are:

$$
\text { 'fields' }(\vec{E}, \vec{B}) \quad \stackrel{\text { lin. }}{\mapsto} \quad \text { 'excitations' }(\vec{D}, \vec{H})
$$

- Naively, but thinking of 'anisotropic':

$$
\begin{array}{lr}
\vec{D}=\epsilon \vec{E} & , \\
\vec{H}= & \mu^{-1} \vec{B} .
\end{array}
$$

Constitutive Relations for Linear Electromagnetism

- The constitutive relations are:

$$
\text { 'fields' }(\vec{E}, \vec{B}) \quad \stackrel{\text { lin. }}{\mapsto} \quad \text { excitations' }(\vec{D}, \vec{H})
$$

- Naively, but thinking of 'anisotropic':

$$
\begin{array}{lr}
\vec{D}=\epsilon \vec{E} & \\
\vec{H}= & \mu^{-1} \vec{B} .
\end{array}
$$

- Is this the most general, linear map $(\vec{E}, \vec{B}) \mapsto(\vec{D}, \vec{H})$?

Constitutive Relations for Linear Electromagnetism

- The constitutive relations are:

$$
\text { 'fields' }(\vec{E}, \vec{B}) \quad \stackrel{\text { lin. }}{\mapsto} \quad \text { 'excitations' }(\vec{D}, \vec{H})
$$

- Naively, but thinking of 'anisotropic':

$$
\begin{aligned}
& \vec{D}=\epsilon \vec{E}+\zeta \vec{B}, \\
& \vec{H}=\zeta^{\dagger} \vec{E}+\mu^{-1} \vec{B} .
\end{aligned}
$$

- Is this the most general, linear map $(\vec{E}, \vec{B}) \mapsto(\vec{D}, \vec{H})$?
- ζ is a new matrix, called 'magneto-electric tensor/matrix'.

Constitutive Relations for Linear Electromagnetism

- The constitutive relations are:

$$
\text { 'fields' }(\vec{E}, \vec{B}) \quad \stackrel{\text { lin. }}{\mapsto} \quad \text { 'excitations' }(\vec{D}, \vec{H})
$$

- Naively, but thinking of 'anisotropic':

$$
\begin{aligned}
& \vec{D}=\epsilon \vec{E}+\zeta \vec{B}, \\
& \vec{H}=\zeta^{\dagger} \vec{E}+\mu^{-1} \vec{B} .
\end{aligned}
$$

- Is this the most general, linear map $(\vec{E}, \vec{B}) \mapsto(\vec{D}, \vec{H})$?
- ζ is a new matrix, called 'magneto-electric tensor/matrix'.
- $\epsilon, \mu^{-1}, \zeta$ are all 3×3 matrices

Ingredients

- We look (at most) for a linear, invertible map $\mathbb{R}^{6} \rightarrow \mathbb{R}^{6}$
- It is natural to assume a similar structure for (\vec{D}, \vec{H}), i.e., collect them in a antisymmetric tensor $G^{a b}$
- We will call this the 'excitation tensor'

Ingredients

- We look (at most) for a linear, invertible map $\mathbb{R}^{6} \rightarrow \mathbb{R}^{6}$
- It is natural to assume a similar structure for (\vec{D}, \vec{H}), i.e., collect them in a antisymmetric tensor $G^{a b}$
- We will call this the 'excitation tensor'
- So, we look for a map Z :

$$
G^{a b}=Z^{a b c d} F_{c d} .
$$

Properties of the Constitutive Tensor

- Since both F and G are antisymmetric:

$$
Z^{a b c d}=-Z^{b a c d}=-Z^{a b d c}=Z^{b a d c}
$$

Properties of the Constitutive Tensor

- Since both F and G are antisymmetric:

$$
Z^{a b c d}=-Z^{b a c d}=-Z^{a b d c}=Z^{b a d c}
$$

- Because there should be a Lagrangian for macroscopic electrodynamics:

$$
Z^{a b c d}=Z^{c d a b}
$$

Properties of the Constitutive Tensor

- Since both F and G are antisymmetric:

$$
Z^{a b c d}=-Z^{b a c d}=-Z^{a b d c}=Z^{b a d c}
$$

- Because there should be a Lagrangian for macroscopic electrodynamics:

$$
Z^{a b c d}=Z^{c d a b}
$$

- Hence, d.o.f. counting:

$$
\# G L(6)=36 \quad \text { symmetric } \rightarrow 21
$$

A Good Guess Is Good Enough

- What can we expect for $Z^{a b c d}$ once an observer u^{a} is fixed?

A Good Guess Is Good Enough

- What can we expect for $Z^{\text {abcd }}$ once an observer u^{a} is fixed?
- In general, each index can be ' 0 ' or ' i '

A Good Guess Is Good Enough

- What can we expect for $Z^{a b c d}$ once an observer u^{a} is fixed?
- In general, each index can be ' 0 ' or ' i '
- After harder thought, introduce

$$
t^{a}{ }_{b}:=-u^{a} u_{b}, \quad h_{b}^{a}:=g^{a}{ }_{b}+u^{a} u_{b}
$$

meaning $\delta^{a}{ }_{b}=t^{a}{ }_{b}+h^{a}{ }_{b}$

A Good Guess Is Good Enough

- What can we expect for $Z^{a b c d}$ once an observer u^{a} is fixed?
- In general, each index can be ' 0 ' or ' i '
- After harder thought, introduce

$$
t^{a}{ }_{b}:=-u^{a} u_{b}, \quad h_{b}^{a}:=g^{a}{ }_{b}+u^{a} u_{b}
$$

meaning $\delta^{a}{ }_{b}=t^{a}{ }_{b}+h^{a}{ }_{b}$

- Note:

$$
\begin{aligned}
& ‘ X^{0} \leftrightarrow t^{a}{ }_{b} X^{b}, \quad ‘ X^{i}, \leftrightarrow h^{a}{ }_{b} X^{b}, \\
& \varepsilon^{i j k} \leftrightarrow \varepsilon^{a b c d} u_{a} .
\end{aligned}
$$

A Good Guess Is Good Enough

- What can we expect for $Z^{a b c d}$ once an observer u^{a} is fixed?
- In general, each index can be ' 0 ' or ' i '
- After harder thought, introduce

$$
t^{a}{ }_{b}:=-u^{a} u_{b}, \quad h_{b}^{a}:=g^{a}{ }_{b}+u^{a} u_{b}
$$

meaning $\delta^{a}{ }_{b}=t^{a}{ }_{b}+h^{a}{ }_{b}$

- Note:

$$
\begin{aligned}
& \cdot X^{0} \leftrightarrow t^{a}{ }_{b} X^{b}, \\
& \varepsilon^{i j k} \leftrightarrow \varepsilon^{a b c d} X^{i} \leftrightarrow h^{a}{ }_{b} X^{b}, \\
&
\end{aligned}
$$

- Finally: (Less trivial exercise ())

$$
\begin{aligned}
\varepsilon_{c d}{ }^{a f} \varepsilon^{e b c d} u_{e} u_{f} & =-2\left(g^{a b}+u^{a} u^{b}\right)=-2 h^{a b} \\
g^{b_{1} c_{1}} \cdots g^{b_{n} c_{n}} \varepsilon_{c_{1} \ldots c_{n}} \varepsilon^{a_{1} \ldots a_{n}} & \left.=-n!g^{b_{1} c_{1}} \cdots g^{b_{n} c_{n}} \delta^{a_{1}}{ }_{\left[c_{1}\right.}^{\cdots} \delta^{a_{n}}{ }_{\left.c_{n}\right]}\right]
\end{aligned}
$$

The Constitutive Tensor and Its Orthonormal Decomposition ${ }^{7}$

- Define for any $q^{a b}$ s.t. $u_{a} q^{a b}=q^{a b} u_{b}=0$:

$$
Q^{a b c d}\left[q^{\circ \circ}\right]:=u^{a} u^{d} q^{b c}+u^{b} u^{c} q^{a d}-u^{b} u^{d} q^{a c}-u^{a} u^{c} q^{b d}
$$

- After quite some work (exercise ©) we finally get something along the lines of

$$
Z^{a b c d}=\frac{1}{2}\left(Q_{q \rightarrow \epsilon_{u}}^{a b c d}+\left(* Q_{q \rightarrow \mu_{u}^{-1}}^{a b c d} *\right)+\left(* Q_{q \rightarrow \zeta_{u}}^{a b c d}\right)+\left(Q_{q \rightarrow \zeta_{u}^{T}}^{a b c d} *\right)\right)
$$

where $* M, M *, * M *$ are the left-, right-, and double-dual of M, respectively.

[^10]
Inversion

- The other way around: $\epsilon, \mu^{-1}, \zeta, \zeta^{T}$ in terms of $Z^{a b c d}$
- This is another ...doable? exercise
- One gets:

$$
\begin{aligned}
\epsilon_{v}^{a b} & =-2 Z^{d a c b} v_{d} v_{c}, & \zeta_{v}^{a b} & =2(* Z)^{d a c b} v_{d} v_{c}, \\
{\left[\mu_{v}^{-1}\right]^{a b} } & =2(* Z *)^{d a c b} v_{d} v_{c}, & {\left[\zeta_{v}^{\dagger}\right]^{a b} } & =2(Z *)^{d a c b} v_{d} v_{c} .
\end{aligned}
$$

Back to Square One: The Maxwell Equations

- So-what have we done? What horrors have we conjured? What evils unleashed? What atrocities committed? What sanity sacrificed?

Back to Square One: The Maxwell Equations

- So-what have we done? What horrors have we conjured? What evils unleashed? What atrocities committed? What sanity sacrificed?
- Well-we've got a compact, macroscopic version of Maxwell's equations:

$$
\begin{aligned}
-\nabla_{a} G^{a b} & =J^{b}, \\
\varepsilon^{a b c d} \nabla_{b} F_{c d} & =0, \\
G^{a b} & =Z^{a b c d} F_{c d}
\end{aligned}
$$

Back to Square One: The Maxwell Equations

- So-what have we done? What horrors have we conjured? What evils unleashed? What atrocities committed? What sanity sacrificed?
- Well-we've got a compact, macroscopic version of Maxwell's equations:

$$
\begin{aligned}
-\nabla_{a} G^{a b} & =J^{b} \\
\varepsilon^{a b c d} \nabla_{b} F_{c d} & =0 \\
G^{a b} & =Z^{a b c d} F_{c d}
\end{aligned}
$$

- Note: This is actually shorter than the average macroscopic Maxwell's equations of experimental physics and more general!

A Tamed Beast. . . ?

A Tamed Beast. . .?

I promised something nice. This didn't always look nice. So, I'm gonna brainwash you into believing me!

A Tamed Beast. . .?

I promised something nice. This didn't always look nice. So, I'm gonna brainwash you into believing me!

Dessert: The Fresnel-Fizeau Effect

Reminder on Boosts

Going from one inertial frame to a different inertial frame involves:

- Rotations in space
- Translations (in space and time)
- Boosts (velocity/Lorentz transformations)

Reminder on Boosts

Going from one inertial frame to a different inertial frame involves:

- Rotations in space
- Translations (in space and time)
- Boosts (velocity/Lorentz transformations)

$$
\begin{aligned}
& x^{a} \quad \mapsto \quad x^{\prime a}=\Lambda^{a}{ }_{b} x^{b}, \\
& \omega_{a} \quad \mapsto \quad \omega_{a}^{\prime}=\Lambda_{a}^{b} \omega_{b}=\left(\Lambda^{-1}\right)^{b}{ }_{a} \omega_{b},
\end{aligned}
$$

where for a simple boost in x-direction (direction ' 1 ')

$$
\Lambda^{a}{ }_{b}=\left(\begin{array}{cccc}
\cosh \eta & -\sinh \eta & 0 & 0 \\
-\sinh \eta & \cosh \eta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & -\gamma \beta & 0 & 0 \\
-\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \text { with } \quad \gamma=\frac{1}{\sqrt{1-\beta^{2}}}, \beta=v / c
$$

Addenda on Boosts

- If inertial frames not collinear, Λ 's quickly become a mess
- If two observer move inertially along u^{a} and v^{a}, respectively,

$$
u^{a} v_{a}=\gamma
$$

- So what's the general strategy?

Addenda on Boosts

- If inertial frames not collinear, Λ 's quickly become a mess
- If two observer move inertially along u^{a} and v^{a}, respectively,

$$
u^{a} v_{a}=\gamma
$$

- So what's the general strategy?
(1) Decompose a tensor T w.r.t. u

Addenda on Boosts

- If inertial frames not collinear, Λ 's quickly become a mess
- If two observer move inertially along u^{a} and v^{a}, respectively,

$$
u^{a} v_{a}=\gamma
$$

- So what's the general strategy?
(1) Decompose a tensor T w.r.t. u
(2) Express T in terms of these orthogonally decomposed components

Addenda on Boosts

- If inertial frames not collinear, Λ 's quickly become a mess
- If two observer move inertially along u^{a} and v^{a}, respectively,

$$
u^{a} v_{a}=\gamma
$$

- So what's the general strategy?
(1) Decompose a tensor T w.r.t. u
(2) Express T in terms of these orthogonally decomposed components
(3) Decompose this expression w.r.t. v

Dessert: The Fresnel-Fizeau Effect: An Application!

An Application! An Application! The Relativist Has an Application!

- Say, a medium is homogeneous, isotropic, and has no magneto-electric effects in a given rest frame u.
- Then it is completely described for this observer by ϵ and μ^{-1}, both scalars now
- (Ok-ish exercise) We get:

$$
Z^{a b c d}=\frac{\mu^{-1}}{2}\left[\left(h^{a c}-\epsilon \mu u^{a} u^{c}\right)\left(h^{b d}-\epsilon \mu u^{b} u^{d}\right)-\left(h^{a d}-\epsilon \mu u^{a} u^{d}\right)\left(h^{b c}-\epsilon \mu u^{b} u^{c}\right)\right]
$$

An Application! An Application! The Relativist Has an Application!

- Say, a medium is homogeneous, isotropic, and has no magneto-electric effects in a given rest frame u.
- Then it is completely described for this observer by ϵ and μ^{-1}, both scalars now
- (Ok-ish exercise) We get:

$$
Z^{a b c d}=\frac{\mu^{-1}}{2}\left[\left(h^{a c}-\epsilon \mu u^{a} u^{c}\right)\left(h^{b d}-\epsilon \mu u^{b} u^{d}\right)-\left(h^{a d}-\epsilon \mu u^{a} u^{d}\right)\left(h^{b c}-\epsilon \mu u^{b} u^{c}\right)\right]
$$

- Trust me, this will prove useful! Swear!

Going through the Motions

- Let's perform the algorithm above
- This could be an exercise. I suggest [SV17; Sch18], however. ${ }^{8}$

[^11]
Going through the Motions

- Let's perform the algorithm above
- This could be an exercise. I suggest [SV17; Sch18], however. ${ }^{8}$
- We get with $h_{v}^{b d}:=g^{b d}+v^{b} v^{d}$:

$$
\begin{gathered}
\epsilon_{v}^{b d}=\epsilon h_{v}^{b d}+\left(\epsilon-\mu^{-1}\right)\left[(u \cdot v)^{2} h_{v}^{b d}-h_{v}^{b e} h_{e f} h_{v}^{f d}\right] \\
{\left[\mu_{v}^{-1}\right]^{b d}=\frac{h_{v}^{b d}}{\mu}+\left(\mu^{-1}-\epsilon\right)\left((u \cdot v)^{2} h_{v}^{b d}-h_{v}^{b e} h_{e f} h_{v}^{f d}\right)} \\
\zeta_{v}^{a c}=\left(\epsilon-\mu^{-1}\right)(u \cdot v)\left(\epsilon^{a c e f} v_{e} u_{f}\right)
\end{gathered}
$$

[^12]
What This Shows

- Isotropy gets broken
- Magneto-electric effects appear: $\vec{D} \neq \vec{D}(\vec{E}), \vec{D}=\vec{D}(\vec{E}, \vec{B})$
- $(u \cdot v)^{2}=\gamma^{2}$ appears, as expected for non-vanishing second rank tensors

What This Shows

- Isotropy gets broken
- Magneto-electric effects appear: $\vec{D} \neq \vec{D}(\vec{E}), \vec{D}=\vec{D}(\vec{E}, \vec{B})$
- $(u \cdot v)^{2}=\gamma^{2}$ appears, as expected for non-vanishing second rank tensors
- And one more thing...

What This IS

- In 1851, Fizeau wanted to measure the dragging of light in a moving medium (water)
- He found some dragging, but not as much as predicted by aether theories

What This IS: The Fresnel-Fizeau Effect

- In 1851, Fizeau wanted to measure the dragging of light in a moving medium (water)
- He found some dragging, but not as much as predicted by aether theories
- It did, however, significantly inspire Einstein ${ }^{9}$
${ }^{9}$ Mentioned repeatedly in [Jac75], but never explained. . .

What This IS: The Fresnel-Fizeau Effect

- In 1851, Fizeau wanted to measure the dragging of light in a moving medium (water)
- He found some dragging, but not as much as predicted by aether theories
- It did, however, significantly inspire Einstein ${ }^{9}$
- Relativity gets exactly the measured dragging

[^13]
What This IS: The Fresnel-Fizeau Effect

- In 1851, Fizeau wanted to measure the dragging of light in a moving medium (water)
- He found some dragging, but not as much as predicted by aether theories
- It did, however, significantly inspire Einstein ${ }^{9}$
- Relativity gets exactly the measured dragging
- Usually, shown (or asked to show [Jac75]) perturbatively ([Pos62]) or not at all.

[^14]
What This IS: The Fresnel-Fizeau Effect

- In 1851, Fizeau wanted to measure the dragging of light in a moving medium (water)
- He found some dragging, but not as much as predicted by aether theories
- It did, however, significantly inspire Einstein ${ }^{9}$
- Relativity gets exactly the measured dragging
- Usually, shown (or asked to show [Jac75]) perturbatively ([Pos62]) or not at all.
- The above is exact and more general than just for inertial frames! YAY!

[^15]
Digestif: Bitters

Alas, the Bitters

- Conventions, conventions, conventions: ${ }^{10}$
- The metric
${ }^{10}$ And not the fun ones involving cosplay.

Alas, the Bitters

- Conventions, conventions, conventions: ${ }^{10}$
- The metric (particle physicists are just wrong)
${ }^{10}$ And not the fun ones involving cosplay.

Alas, the Bitters

- Conventions, conventions, conventions: ${ }^{10}$
- The metric (particle physicists are just wrong)
- Boys-Post vs. Tellegen constitutive relations
${ }^{10}$ And not the fun ones involving cosplay.

Alas, the Bitters

- Conventions, conventions, conventions: ${ }^{10}$
- The metric (particle physicists are just wrong)
- Boys-Post vs. Tellegen constitutive relations $((E, B) \mapsto(D, H)$ vs $(E, H) \mapsto(D, B)$, respectively; the latter is like complaining about the 'wrong sign' of the electron charge...)
${ }^{10}$ And not the fun ones involving cosplay.

Alas, the Bitters

- Conventions, conventions, conventions: ${ }^{10}$
- The metric (particle physicists are just wrong)
- Boys-Post vs. Tellegen constitutive relations $((E, B) \mapsto(D, H)$ vs $(E, H) \mapsto(D, B)$, respectively; the latter is like complaining about the 'wrong sign' of the electron charge...)
- The names, oh god, the names of E, B, D, H, G, F, \ldots O
${ }^{10}$ And not the fun ones involving cosplay.

Alas, the Bitters

- Conventions, conventions, conventions: ${ }^{10}$
- The metric (particle physicists are just wrong)
- Boys-Post vs. Tellegen constitutive relations $((E, B) \mapsto(D, H)$ vs $(E, H) \mapsto(D, B)$, respectively; the latter is like complaining about the 'wrong sign' of the electron charge...)
- The names, oh god, the names of E, B, D, H, G, F, \ldots (I won't even list them at all...)
${ }^{10}$ And not the fun ones involving cosplay.

Alas, the Bitters

- Conventions, conventions, conventions: ${ }^{10}$
- The metric (particle physicists are just wrong)
- Boys-Post vs. Tellegen constitutive relations $((E, B) \mapsto(D, H)$ vs $(E, H) \mapsto(D, B)$, respectively; the latter is like complaining about the 'wrong sign' of the electron charge...)
- The names, oh god, the names of E, B, D, H, G, F, \ldots (I won't even list them at all...)
- Units
${ }^{10}$ And not the fun ones involving cosplay.

Alas, the Bitters

- Conventions, conventions, conventions: ${ }^{10}$
- The metric (particle physicists are just wrong)
- Boys-Post vs. Tellegen constitutive relations $((E, B) \mapsto(D, H)$ vs $(E, H) \mapsto(D, B)$, respectively; the latter is like complaining about the 'wrong sign' of the electron charge...)
- The names, oh god, the names of E, B, D, H, G, F, \ldots (I won't even list them at all....)
- Units (I probably messed them up, somewhere)
${ }^{10}$ And not the fun ones involving cosplay.

Alas, the Bitters

- Conventions, conventions, conventions: ${ }^{10}$
- The metric (particle physicists are just wrong)
- Boys-Post vs. Tellegen constitutive relations $((E, B) \mapsto(D, H)$ vs $(E, H) \mapsto(D, B)$, respectively; the latter is like complaining about the 'wrong sign' of the electron charge...)
- The names, oh god, the names of E, B, D, H, G, F, \ldots (I won't even list them at all....)
- Units (I probably messed them up, somewhere)
- Where to put Hodge stars $*$ or factors of 2
${ }^{10}$ And not the fun ones involving cosplay.

Alas, the Bitters

- Conventions, conventions, conventions: ${ }^{10}$
- The metric (particle physicists are just wrong)
- Boys-Post vs. Tellegen constitutive relations $((E, B) \mapsto(D, H)$ vs $(E, H) \mapsto(D, B)$, respectively; the latter is like complaining about the 'wrong sign' of the electron charge...)
- The names, oh god, the names of E, B, D, H, G, F, \ldots (I won't even list them at all...)
- Units (I probably messed them up, somewhere)
- Where to put Hodge stars * or factors of 2 (peer pressure acted on me)
${ }^{10}$ And not the fun ones involving cosplay.

Alas, the Bitters

- Conventions, conventions, conventions: ${ }^{10}$
- Controversy!
- Abraham vs. Minkowski
${ }^{10}$ And not the fun ones involving cosplay.

Alas, the Bitters

- Conventions, conventions, conventions: ${ }^{10}$
- Controversy!
- Abraham vs. Minkowski (I have a suspicion, but the fight rages on)
${ }^{10}$ And not the fun ones involving cosplay.

Alas, the Bitters

- Conventions, conventions, conventions: ${ }^{10}$
- Controversy!
- Abraham vs. Minkowski (I have a suspicion, but the fight rages on)
- Free and bound charges $\xrightarrow{\text { ??? }}$ well-defined continuum theory of a medium
${ }^{10}$ And not the fun ones involving cosplay.

Alas, the Bitters

- Conventions, conventions, conventions: ${ }^{10}$
- Controversy!
- Abraham vs. Minkowski (I have a suspicion, but the fight rages on)
- Free and bound charges $\xrightarrow{\text { ??? }}$ well-defined continuum theory of a medium (I don't even know enough to comment)
${ }^{10}$ And not the fun ones involving cosplay.

Alas, the Bitters

- Conventions, conventions, conventions: ${ }^{10}$
- Controversy!
- Complications!
- Dissipation
${ }^{10}$ And not the fun ones involving cosplay.

Alas, the Bitters

- Conventions, conventions, conventions: ${ }^{10}$
- Controversy!
- Complications!
- Dissipation (magneto-electric tensor vs. complex materials)
${ }^{10}$ And not the fun ones involving cosplay.

Alas, the Bitters

- Conventions, conventions, conventions: ${ }^{10}$
- Controversy!
- Complications!
- Dissipation (magneto-electric tensor vs. complex materials)
- Birefringence, Fresnel equation, Finsler space-times
${ }^{10}$ And not the fun ones involving cosplay.

Alas, the Bitters

- Conventions, conventions, conventions: ${ }^{10}$
- Controversy!
- Complications!
- Dissipation (magneto-electric tensor vs. complex materials)
- Birefringence, Fresnel equation, Finsler space-times
- Pre-metric electromagnetism and deriving a metric
${ }^{10}$ And not the fun ones involving cosplay.

If we fbabows bave offended, Thint but this, and all is mended, That you bave but flumbered bere $\mathfrak{W b i l e}$ thefe vifions did appear.

Thank you!

References I

Nothing above was new, but little is presented coherently in one place. Less so in a modern or legible form.

Cho09 Y. Choquet-Bruhat. General Relativity and the Einstein Equations. ISBN: 978-0-19-923072-3 (Oxford University Press, 2009).

FN14 L. Filipe O. Costa \& J. Natário. Gravito-electromagnetic analogies. General Relativity and Gravitation 46, 1792. doi:10.1007/s10714-014-1792-1. arviv: 1207.0465 (2014).

Gou13 É. Gourgoulhon. Special Relativity in General Frames. ISBN: 978-3-642-37275-9. doi:10.1007/978-3-642-37276-6 (Springer, 2013).

HO03 F. W. Hehl \& Y. N. Obukhov. Foundations of Classical Electrodynamics. ISBN: 3-7643-4222-6 (Birkhäuser, 2003).

Jac75 J. D. Jackson. Classical Electrodynamics. 2nd ed. ISBN: 0-471-43132-X (John Wiley \& Sons, 1975).

References II

LL84 L. D. Landau \& E. M. Lifshitz. Electrodynamics of Continuous Media. 2nd ed. ISBN: 0-08-030276-9 (Pergamon Press, 1984).

MTW73 C. W. Misner, K. S. Thorne \& J. A. Wheeler. Gravitation. ISBn: 0-7167-0334-3 (W. H. Freeman, 1973). Reprinted by Princeton University Press, ISBN: 978-0-691-17779-3.

Pos62 E. J. Post. Formal Structure of Electromagnetics. (North-Holland, 1962). Reprinted by Dover Publications, ISBN: 978-0-486-65427-0.

Sch18 S. Schuster. Black Hole Evaporation: Sparsity in Analogue and General Relativistic Space-Times. PhD thesis (Victoria University of Wellington, Dec. 2018). doi:10.26686/wgtn.17134433.v1. arXiv: 1901.05648.

SV17 S. Schuster \& M. Visser. Effective metrics and a fully covariant description of constitutive tensors in electrodynamics. Physical Review D 96, 124019. doi:10.1103/PhysRevD.96.124019. arXiv: 1706.06280 (Dec. 2017).

Fresnel Equation and Rubilar-Tamm Tensor

- The Tamm-Rubilar tensor (density) ${ }^{11}$

$$
G^{a b c d} \propto \frac{1}{4!} \varepsilon_{e f g h} \varepsilon_{i j k l} Z^{e f i}\left(a Z^{b|g j| c} Z^{d) h k l}\right.
$$

has interesting info!

- Contracted with four wave covectors k_{a} it gives a quartic Fresnel wave surface
- This describes all possible behaviour of linear electromagnetism: Birefringence, metrics,

[^16]
[^0]: ${ }^{1}$ For suitable choices of beauty.

[^1]: ${ }^{1}$ For suitable choices of beauty.
 ${ }^{2}$ Hopefully self-contained and simple.

[^2]: ${ }^{1}$ For suitable choices of beauty.
 ${ }^{2}$ Hopefully self-contained and simple.
 ${ }^{3}$ That's 10 years before the Maxwell equations connected to this all. 54 before Einstein's annus mirabilis.

[^3]: ${ }^{4}$ If I converted sign conventions correctly.

[^4]: ${ }^{4}$ If I converted sign conventions correctly.

[^5]: ${ }^{4}$ If I converted sign conventions correctly.

[^6]: ${ }^{4}$ If I converted sign conventions correctly.

[^7]: ${ }^{5}$ Because of reasons.

[^8]: ${ }^{5}$ Because of reasons.

[^9]: ${ }^{5}$ Because of reasons.
 ${ }^{6} 3+1$ dimensions are important here!

[^10]: ${ }^{7} \mathfrak{W}$ arning! The natural naming convention here is different from the Bel decompositon in GR or gravitomagnetism! And probably more defensible. . . ©

[^11]: ${ }^{8}$ Shameless self-promotion.

[^12]: ${ }^{8}$ Shameless self-promotion.

[^13]: ${ }^{9}$ Mentioned repeatedly in [Jac75], but never explained. . .

[^14]: ${ }^{9}$ Mentioned repeatedly in [Jac75], but never explained. . .

[^15]: ${ }^{9}$ Mentioned repeatedly in [Jac75], but never explained. . .

[^16]: ${ }^{11}$ Modulo missed factors of $\operatorname{det} g, 2$'s, signs—the source was [HO03], which doesn't have the easiest notation.

