Tackling the Physicality of Space-Times from Both Ends

Ana Alonso Serrano, Jessica Santiago, Sebastian Schuster, Matt Visser

Ústav Teoretické Fyziky
Matematicko-Fyzikální Fakulta
Univerzita Karlova
$25^{\text {th }}$ July 2023

UNIVERZITA KARLOVA
Matematicko-fyzikální fakulta

Outline

(1) Getting Everyone on Board

- General Relativity in Two Slides
(2) Physicality of Space-Times
- Why Worry?
- Competing Notions-General Relativity
- Inapplicable Notions-Analogues
(3) Physicality towards Space-Times
- The Context
- The Tools
- A First Toy Model
(4) Outlook

Getting Everyone on Board

My Troubles to Come

Goal: Don't leave anyone behind!

My Troubles to Come

Goal: Don't leave anyone behind!

But: The genesis of my work. . .

My Troubles to Come

Goal: Don't leave anyone behind!

But: The genesis of my work...

```
What I read:
QUANTUM ENERGY INEQUALTTES IN PREMETRIC... PHYS. REV.D D7,025019 (2018)
            Linearity: A(\alphaj+\betaJ)=\alpha\hat{A}(j)+\beta\hat{A}(\mp@subsup{\mathcal{O}}{(}{\prime})\mathrm{ forall }\alpha,\beta\inC.
            Hermiticity: \tilde{A}()\mp@subsup{)}{}{+}=\hat{A}(\hat{O}
```


Goal: Don't leave anyone behind!
 But: The genesis of my work...

A 'Where's Waldo' for bibliophile physicists

My Troubles to Come

Goal: Don't leave anyone behind! But: The genesis of my work...

A 'Where's Waldo' for bibliophile physicists.

What I publish:

$$
\int_{0}^{\infty} \exp (-\beta \cosh x) \sinh ^{2 \nu} x \mathrm{~d} x=\frac{1}{\sqrt{\pi}}\left(\frac{2}{\beta}\right)^{\nu} \Gamma\left(\frac{2 \nu+1}{2}\right) K_{v}(\beta),
$$

valid for $\operatorname{Re}(\beta)>0, \operatorname{Re}(\nu)>-1 / 2$. Applying these steps to (4) and (5)-for our chosen sparsities-results in the following sums of modified Bessel functions of the second kind $K_{\nu}(x):$

$$
\times\left[\sum_{n=0}^{\infty} \frac{(-s)^{n} \mathrm{e}^{(n+1),}}{(n+1)^{\frac{1}{2}}} K_{D+1 / 2}((n+1) z]^{-1} \frac{\lambda_{\text {Dasmal }}^{D-1}}{g(D) C_{\text {en }} A_{H}} .\right.
$$

$$
\eta_{\operatorname{mog}, E n}=\frac{D(D-1)}{2^{(D+3) / 2} \sqrt{\pi}} \frac{\Gamma\left(\frac{D-1}{2}\right)}{\Gamma\left(\frac{D+2}{2}\right)}\left\{\sum_{n=0}^{\infty}(-s)^{n} \mathrm{e}^{(n+1) \bar{n}} \frac{z^{\frac{D+3}{1}}}{(n+1)^{\frac{1}{2}}}\right.
$$

$\times\left[K_{(D-1) / 2}((n+1) z)+\frac{D}{(n+1) K} K_{(D+1) / 2}((n+1) z)\right]$
$\left.\times\left[\sum_{n=0}^{\infty}(-s)^{n} \frac{\mathrm{e}^{(n+1) \hat{\mu}}}{(n+1)^{\frac{D 1}{2}}} z^{\frac{D+1}{4}} K_{(D+1) / 2}((n+1) \mathrm{z})\right]^{-2} \frac{\lambda_{\text {lekernal }}^{D-1}}{g(D) c_{\text {cell }} A_{\mathrm{H}}}\right\}$ $\eta_{\text {vog }-\tau, n}=\frac{D-1}{2 \pi^{\frac{p-1}{2}} z^{\frac{D-1}{2}}} \Gamma \frac{\Gamma\left(\frac{D-1}{2}\right)}{\Gamma\left(\frac{D}{2}\right)}\left[\sum_{n=0}^{\infty}(-s)^{n} \mathrm{e}^{(n+1) \bar{N}}\right.$

$\eta_{\text {avel, }}=\frac{D-1}{(2 z)^{0 / 2}}\left[\sum_{n=0}^{\infty}(-s)^{n} \mathrm{e}^{(n+1))^{2}}\left(\frac{\pi}{n+1}\right)^{\frac{n_{2}}{2}} K_{D / 2}((n+1) z)\right]^{-1} \frac{\lambda_{\text {datmad }}^{D-1}}{g(D) c_{\text {eff }} A_{H}} . \quad$ (20d)

My Troubles to Come

Goal: Don't leave anyone behind! But: The genesis of my work...

What I publish:

$\int_{0}^{\infty} \exp (-\beta \cosh x) \sinh ^{2 \nu} x \mathrm{~d} x=\frac{1}{\sqrt{\pi}}\left(\frac{2}{\beta}\right)^{\nu} \Gamma\left(\frac{2 \nu+1}{2}\right) K_{l}(\beta)$,
valid for $\operatorname{Re}(\beta)>0, \operatorname{Re}(\nu)>-1 / 2$. Applying these steps to (4) and (5)-for our chosen sparsities-results in the following sums of modified Bessel functions of the second kind $K_{\nu}(x):$

$\times\left[\sum_{n=0}^{\infty} \frac{(-s)^{n} \mathrm{e}^{(n+1),}}{(n+1)^{\frac{1}{2}}} K_{D+1 / 2}((n+1) z]^{-1} \frac{\lambda_{\text {bumal }}^{D-1}}{g(D) C_{\text {cmin }} A_{H}}\right.$.
$\eta_{\operatorname{mog}, E, n}=\frac{D(D-1)}{2^{(D+3) / 2} \sqrt{\pi}^{D-2}} \frac{\Gamma\left(\frac{D-1}{2}\right)}{\Gamma\left(\frac{D+2}{2}\right)}\left\{\sum_{n=0}^{\infty}(-s)^{n} \mathrm{e}^{(n+1) \pi} \frac{z^{\frac{D+3}{1}}}{(n+1)^{\frac{D}{2}}}\right.$
$\times\left[K_{(D-1) / 2}((n+1) z)+\frac{D}{(n+1) k} K_{(D+1) / 2}((n+1) z)\right]$
$\left.\left[\sum_{n=0}^{\infty}(-s)^{n} \frac{\mathrm{e}^{(n+1) \hat{i}}}{(n+1)^{\frac{D 1}{2}}} z^{\frac{p+1}{4}} K_{(D+1) / 2}((n+1) \mathrm{z})\right]^{-2} \frac{\lambda_{\text {(Dekmal }}^{D-1}}{g(D) C_{\text {clil }} A_{\mathrm{H}}}\right\}$

$$
\eta_{\text {ave } \lambda, n}=\frac{D-1}{(2 z)^{0 / 2}}\left[\sum_{n=0}^{\infty}(-s)^{n} \mathrm{e}^{(n+1) \pi}\left(\frac{\pi}{n+1}\right)^{\frac{L_{2}}{2}} K_{D / 2}((n+1) z]^{-1} \frac{\lambda_{\text {datmal }}^{D-1}}{g(D) c_{\text {cefl }} A_{H}}\right.
$$

Let's see how it goes. . .;) ©

The Backbone: Philosophy of Science

- Physics deals with (at least) three layers:
- Our experiences (experiments)
- Our models (mathematics/theory)
- Our mapping of the two to each other (epistemology, ontology, psychology, ...)

The Backbone: Philosophy of Science

- Physics deals with (at least) three layers:
- Our experiences (experiments)
- Our models (mathematics/theory)
- Our mapping of the two to each other (epistemology, ontology, psychology, ...)
- These are often intimately related

The Backbone: Philosophy of Science

- Physics deals with (at least) three layers:
- Our experiences (experiments)
- Our models (mathematics/theory)
- Our mapping of the two to each other (epistemology, ontology, psychology, ...)
- These are often intimately related
- Warnint! I'm a physicist (and a bit of a mathematician), not a philosopher.

The Backbone: Philosophy of Science

- Physics deals with (at least) three layers:
- Our experiences (experiments)
- Our models (mathematics/theory)
- Our mapping of the two to each other (epistemology, ontology, psychology, ...)
- These are often intimately related
- Warnint! I'm a physicist (and a bit of a mathematician), not a philosopher.
- Still, philosophers' concepts can and should inform us!

The Backbone: Philosophy of Science

Tool: The Münchhausen trilemma

- Physics deals with (at least) three layers:
- Our experiences (experiments)
- Our models (mathematics/theory)
- Our mapping of the two to each other (epistemology, ontology, psychology, ...)
- These are often intimately related
- Warning! I'm a physicist (and a bit of a mathematician), not a philosopher.
- Still, philosophers' concepts can and should inform us!

Ultimate options of arguments (Albert):

- Infinite regress
- Circular reasoning
- Dogma

Image: Theodor Hosemann (1840),
https://commons.wikimedia.org/wiki/File:M\�\�nchhausen-Sumpf-Hosemann.png

The Backbone: Philosophy of Science

Tool: The Münchhausen polylemma

- Physics deals with (at least) three layers:
- Our experiences (experiments)
- Our models (mathematics/theory)
- Our mapping of the two to each other (epistemology, ontology, psychology, ...)
- These are often intimately related
- Warning! I'm a physicist (and a bit of a mathematician), not a philosopher.
- Still, philosophers' concepts can and should inform us!

Ultimate options of arguments (Albert):

- Infinite regress
- Circular reasoning
- Dogma/Experience/Psychologism (Popper, Fries)

Image: Theodor Hosemann (1840),
https://commons.wikimedia.org/wiki/File:M\�\�nchhausen-Sumpf-Hosemann.png

The Backbone: Philosophy of Science

Tool: The Münchhausen polylemma

- Physics deals with (at least) three layers:
- Our experiences (experiments)
- Our models (mathematics/theory)
- Our mapping of the two to each other (epistemology, ontology, psychology, ...)
- These are often intimately related
- Warning! I'm a physicist (and a bit of a mathematician), not a philosopher.
- Still, philosophers' concepts can and should inform us!

Ultimate options of arguments (Albert):

- Infinite regress
- Circular reasoning
- Dogma/Experience/Psychologism (Popper, Fries)
- Contradiction (???)

Image: Theodor Hosemann (1840),
https://commons.wikimedia.org/wiki/File:M\�\�nchhausen-Sumpf-Hosemann.png

Getting Everyone on Board:

General Relativity in Two Slides

Reminder: Special Relativity

Special relativity:

- Distinguish past and present by the speed of light:
- Relativity Principle: All uniformly moving frames ('inertial frames') see the same physics
- Constancy of $c:$ In all inertial frames, the speed of light (in vacuum) c is the same. It's 1 .

Reminder: Special Relativity

Special relativity:

- Distinguish past and present by the speed of light:
- Relativity Principle: All uniformly moving frames ('inertial frames') see the same physics
- Constancy of $c:$ In all inertial frames, the speed of light (in vacuum) c is the same. It's 1 .
- In Cartesian coordinates, this defines a Lorentzian metric

$$
\eta=\operatorname{diag}(-1,+1,+1,+1)
$$

Reminder: Special Relativity

Special relativity:

- Distinguish past and present by the speed of light:
- Relativity Principle: All uniformly moving frames ('inertial frames') see the same physics
- Constancy of c : In all inertial frames, the speed of light (in vacuum) c is the same. It's 1 .
- In Cartesian coordinates, this defines a Lorentzian metric

$$
\eta=\operatorname{diag}(-1,+1,+1,+1)
$$

- $\left(\mathbb{R}^{4}, \eta\right)$ is Minkowski space

Reminder: Special Relativity

Special relativity:

- Distinguish past and present by the speed of light:
- Relativity Principle: All uniformly moving frames ('inertial frames') see the same physics
- Constancy of $c:$ In all inertial frames, the speed of light (in vacuum) c is the same. It's 1.
- In Cartesian coordinates, this defines a Lorentzian metric

$$
\eta=\operatorname{diag}(-1,+1,+1,+1)
$$

- $\left(\mathbb{R}^{4}, \eta\right)$ is Minkowski space
- We call two events' X and Y separation:
- space-like if $\eta(X-Y, X-Y)=: \eta_{a b}(X-Y)^{a}(X-Y)^{b}>0$
- null/light-like if $\eta(X-Y, X-Y)=: \eta_{a b}(X-Y)^{a}(X-Y)^{b}=0$
- time-like if $\eta(X-Y, X-Y)=: \eta_{a b}(X-Y)^{a}(X-Y)^{b}<0$

Reminder: Special Relativity

Special relativity:

- Distinguish past and present by the speed of light:
- Relativity Principle: All uniformly moving frames ('inertial frames') see the same physics
- Constancy of $c:$ In all inertial frames, the speed of light (in vacuum) c is the same. It's 1.
- In Cartesian coordinates, this defines a Lorentzian metric

$$
\eta=\operatorname{diag}(-1,+1,+1,+1)
$$

- $\left(\mathbb{R}^{4}, \eta\right)$ is Minkowski space
- We call two events' X and Y separation:
- space-like if $\eta(X-Y, X-Y)=: \eta_{a b}(X-Y)^{a}(X-Y)^{b}>0$
- null/light-like if $\eta(X-Y, X-Y)=: \eta_{a b}(X-Y)^{a}(X-Y)^{b}$
- time-like if $\eta(X-Y, X-Y)=: \eta_{a b}(X-Y)^{a}(X-Y)^{b}<0$
- \Longrightarrow Relativity of simultaneity,

Lorentz boosts instead of Galileo 'boosts'

General Relativity [GR] Done Quick

- Localize the lightcone! Allow it to change direction!

General Relativity [GR] Done Quick

- Localize the lightcone! Allow it to change direction!
- The metric becomes a function of the space-time coordinates

General Relativity [GR] Done Quick

- Localize the lightcone! Allow it to change direction!
- The metric becomes a function of the space-time coordinates
- The metric has to fulfil the Einstein equation:

$$
G_{a b}(g)+\Lambda g_{a b}=8 \pi T_{a b} \frac{G}{c^{4}}
$$

General Relativity [GR] Done Quick

- Localize the lightcone! Allow it to change direction!
- The metric becomes a function of the space-time coordinates
- The metric has to fulfil the Einstein equation:

$$
G_{a b}(g)+\Lambda g_{a b}=8 \pi T_{a b} \frac{G}{c^{4}}
$$

- This only looks simple. It's only quasi-linear, and a coupled system for the ten components of $g_{a b}$ with 2 physical d.o.f.

General Relativity [GR] Done Quick

- Localize the lightcone! Allow it to change direction!
- The metric becomes a function of the space-time coordinates
- The metric has to fulfil the Einstein equation:

$$
G_{a b}(g)+\Lambda g_{a b}=8 \pi T_{a b} \frac{G}{c^{4}}
$$

- This only looks simple. It's only quasi-linear, and a coupled system for the ten components of $g_{a b}$ with 2 physical d.o.f.
- Here it is as a PDE:
$\frac{1}{2} \partial_{c} g^{c f}\left[\partial_{a} g_{b f}+\partial_{b} g_{a f}-\partial_{f} g_{a b}\right]-\frac{1}{2} \partial_{b} g^{c f}\left[\partial_{a} g_{c f}\right]+\frac{1}{4} g^{c g}\left[\partial_{m} g_{c g}+\partial_{c} g_{m g}-\right.$ $\left.\partial_{g} g_{m c}\right] g^{m f}\left[\partial_{a} g_{b f}+\partial_{b} g_{a f}-\partial_{f} g_{a b}\right]-\frac{1}{4} g^{c g}\left[\partial_{m} g_{b g}+\partial_{b} g_{m g}-\partial_{g} g_{m b}\right] g^{m f}\left[\partial_{a} g_{c f}+\right.$ $\left.\partial_{c} g_{a f}-\partial_{f} g_{a c}\right]-\frac{1}{2} g_{a b} g^{d e}\left(\frac{1}{2} \partial_{c} g^{c f}\left[\partial_{e} g_{d f}+\partial_{d} g_{e f}-\partial_{f} g_{e d}\right]-\frac{1}{2} \partial_{d} g^{c f}\left[\partial_{e} g_{c f}+\partial_{c} g_{e f}-\right.\right.$ $\left.\partial_{f} g_{e c}\right]+\frac{1}{4} g^{c f}\left[\partial_{m} g_{c f}+\partial_{c} g_{m f}-\partial_{f} g_{m c}\right] g^{m g}\left[\partial_{e} g_{d g}+\partial_{d} g_{e g}-\partial_{g} g_{e d}\right]-\frac{1}{4} g^{c f}\left[\partial_{m} g_{d f}+\right.$ $\left.\left.\partial_{d} g_{m f}-\partial_{f} g_{m d}\right] g^{m g}\left[\partial_{e} g_{c g}+\partial_{c} g_{e g}-\partial_{g} g_{e c}\right]\right)+\Lambda g_{a b}=\frac{8 \pi G}{c^{4}} T_{a b}$

General Relativity [GR] Done Quick

- Localize the lightcone! Allow it to change direction!
- The metric becomes a function of the space-time coordinates
- The metric has to fulfil the Einstein equation:

$$
G_{a b}(g)+\Lambda g_{a b}=8 \pi T_{a b} \frac{G}{c^{4}}
$$

- This only looks simple. It's only quasi-linear, and a coupled system for the ten components of $g_{a b}$ with 2 physical d.o.f.
- A moment of silence for numerical relativists. They need to discretize this. And then code the discretization...

Physicality of Space-Times

Caveats \& Conventions, Part I

- Signature: - + ++
- $G=c=\hbar=1$
- Space-time indices: abcd ...
- Spatial indices: ijkl...
- Quasi-Cartesian coordinates where frames appear, no hatted indices needed

Physicality of Space-Times: Why Worry?

[\$Parent], Where Do Space-Times Come From?

- Primarily, we take a space-time (M, g) from $G R$

[\$Parent], Where Do Space-Times Come From?

- Primarily, we take a space-time (M, g) from GR
- More generally, any theory with (at least) g as output

[\$Parent], Where Do Space-Times Come From?

- Primarily, we take a space-time (M, g) from $G R$
- More generally, any theory with (at least) g as output
- Usually, this means field equations (PDE) involving g and stuff (like $T_{a b}$)

[\$Parent], Where Do Space-Times Come From?

- Primarily, we take a space-time (M, g) from GR
- More generally, any theory with (at least) g as output
- Usually, this means field equations (PDE) involving g and stuff (like $T_{a b}$)
- Even more generally: Effective space-time geometries as in analogues

[\$Parent], Where Do Space-Times Come From?

- Primarily, we take a space-time (M, g) from GR
- More generally, any theory with (at least) g as output
- Usually, this means field equations (PDE) involving g and stuff (like $T_{a b}$)
- Even more generally: Effective space-time geometries as in analogues
- GR is what we know best; let's start there

Two Ways to Solve Einstein's Equations

$$
\text { Einstein's Equation: } \quad R_{a b}-\frac{1}{2} R g_{a b}=8 \pi T_{a b}
$$

Integration

- Fix T; decide on matter content
- Integrate PDE (barb) on LHS, get g
- Think about metric and its physics
- The usual approach

Differentiation/‘Reverse Engineering’/

'Metric Engineering’

- Fix g; decide what the metric should do
- Differentiate g (easy) in LHS to get T
- Think about what this matter is (barb)

Gödel Solution and Wormholes

- Gödel (1949): GR doesn't fulfil Mach's principle. Proof: His Universe.
- Metric:
with $t, x, y, z \in(-\infty, \infty)$:

$$
\mathrm{d} s^{2}=-\frac{1}{2 \omega^{2}}\left[-\left(\mathrm{d} t+e^{x} \mathrm{~d} y\right)^{2}+\mathrm{d} x^{2}+\frac{1}{2} e^{2 x} \mathrm{~d} y^{2}+\mathrm{d} z^{2}\right] .
$$

- Homogeneous
- Base manifold \mathbb{R}^{4}
- At every point rotating about an axis

Gödel Solution and Wormholes

- Gödel (1949): GR doesn't fulfil Mach's
- Metric:
principle. Proof: His Universe.

$$
\begin{aligned}
& \text { with } t, x, y, z \in(-\infty, \infty) \text { : } \\
& \qquad \mathrm{d} s^{2}=-\frac{1}{2 \omega^{2}}\left[-\left(\mathrm{d} t+e^{x} \mathrm{~d} y\right)^{2}+\mathrm{d} x^{2}+\frac{1}{2} e^{2 x} \mathrm{~d} y^{2}+\mathrm{d} z^{2}\right]
\end{aligned}
$$

Since, furthermore, R is a constant, the relativistic field equations (with the x_{0}-lines as world lines of matter), i.e., the equations ${ }^{8}$

$$
R_{i k}-\frac{1}{2} g_{i k} R=8 \pi \kappa \rho u_{i} u_{k}+\lambda g_{i k}
$$

are satisfied (for a given value of ρ), if we put

$$
1 / a^{2}=8 \pi \kappa \rho, \quad \lambda=-R / 2=-1 / 2 a^{2}=-4 \pi \kappa \rho .
$$

- Homogeneous
- Base manifold \mathbb{R}^{4}
- At every point rotating about an axis
- An early example of metric engineering

Gödel Solution and Wormholes

- Gödel (1949): GR doesn't fulfil Mach's principle. Proof: His Universe.
- Metric:
with $t, x, y, z \in(-\infty, \infty)$:

$$
\mathrm{d} s^{2}=-\frac{1}{2 \omega^{2}}\left[-\left(\mathrm{d} t+e^{x} \mathrm{~d} y\right)^{2}+\mathrm{d} x^{2}+\frac{1}{2} e^{2 x} \mathrm{~d} y^{2}+\mathrm{d} z^{2}\right] .
$$

- Homogeneous
- Base manifold \mathbb{R}^{4}
- At every point rotating about an axis
- An early example of metric engineering
- Closed time-like curves (CTCs) everywhere

Fiqure 31. Gbdel's universe with the irrelevant coordinate z suppressed. The space is rotationally symmetric about any point; the diagram represents correctly the rotational symmetry about the axis $r=0$, and the time invariance. The light cone opens out and tips over as r increases (see line L) resulting in closed timelike curves. The diagram does not correctly represent the fact that all points are in fact equivalent.

[^0]
Gödel Solution and Wormholes

- Morris \& Thorne, doi:10.1119/1.15620 and

Morris, Thorne \& Yurtsever, doi:10.1103/PhysRevLett.61.1446:
Spherically symmetric, (possibly) traversible wormholes

$$
\begin{aligned}
& \text { with } I \in(-\infty, \infty) \text { : } \\
& \qquad \mathrm{d} s^{2}=-e^{2 \phi(I)} \mathrm{d} t^{2}+\mathrm{d} l^{2}+r^{2}(I)\left(\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right)
\end{aligned}
$$

with 2 patches, glued at throat:

$$
=-e^{2 \phi_{ \pm}(r)} \mathrm{d} t^{2}+\frac{\mathrm{d} r^{2}}{1-b_{ \pm}(r) / r}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right)
$$

- Modified theories of gravity can easily accommodate various wormholes
- Visualized for Interstellar

Image source: Morris \& Thorne '88doi:10.1119/1.15620

The Alcubierre Warp Drive ${ }^{3}$

In generic Natário form: ${ }^{1}$

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+\delta_{i j}\left(\mathrm{~d} x^{i}-v^{i}(x, y, z, t) \mathrm{d} t\right)\left(\mathrm{d} x^{j}-v^{j}(x, y, z, t) \mathrm{d} t\right)
$$

- ADM split, originally including global hyperbolicity
- Unit lapse, flat spatial slices
- \mathbf{v} as 'Newtonian' ${ }^{2}$ velocity of a region of space-time
- No description of how this is generated/built

[^1]
Adding Mass to a Warp Drive ${ }^{5}$

- Assume well-defined (extension) of ADM mass
- Three options:
- Warp bubble is moving in a massive background
- Warp bubble has mass (possibly even a horizon)
- Warp bubble hides mass (a 'payload'/'spaceship')
- Alluded to in literature: Payloads.
${ }^{5}$ Santiago, SeSc, Visser '22 arXiv:2205.15950

Adding Mass to a Warp Drive ${ }^{5}$

- Assume well-defined (extension) of ADM mass
- Three options:
- Warp bubble is moving in a massive background
- Warp bubble has mass (possibly even a horizon)
- Warp bubble hides mass (a 'payload'/'spaceship')
- Alluded to in literature: Payloads. Due to reverse-engineering irrelevant/boring/trivial.
- The other two are more interesting, but still violate the NEC ${ }^{4}$

[^2]
Adding Mass to a Warp Drive ${ }^{5}$

- Assume well-defined (extension) of ADM mass
- Three options:
- Warp bubble is moving in a massive background
- Warp bubble has mass (possibly even a horizon)
- Warp bubble hides mass (a 'payload'/'spaceship')
- Alluded to in literature: Payloads. Due to reverse-engineering Pevant/boring/trivial.
- The other two are more interesting, but still violate the NEC

[^3]
Adding Mass to a Warp Drive ${ }^{5}$

- Assume well-defined (extension) of ADM mass
- Three options:
- Warp bubble is moving in a massive background
- Warp bubble has mass (possibly even a horizon)
- Warp bubble hides mass (a 'payload'/'spaceship')
- Alluded to in literature: Payloads. Due to reverse-engineering Pevant/boring/trivial.
- The other two are more interesting, but still violate the NEC ${ }^{4}$
- They hint at theoretical applications

[^4]
Adding Mass to a Warp Drive ${ }^{5}$

- Assume well-defined (extension) of ADM mass
- Three options:
- Warp bubble is moving in a massive background
- Warp bubble has mass (possibly even a horizon)
- Warp bubble hides mass (a 'payload'/'spaceship')
- Alluded to in literature: Payloads. Due to reverse-engineering Pevant/boring/trivial.
- The other two are more interesting,
- They hint at theoretical applications

[^5]
Tractor Beams: Modifying the Warp Drive

There is more one can do. ${ }^{6}$

- Slightly modify the metric to: ${ }^{7}$

$$
\begin{aligned}
& v_{x}(t, x, y, z)=k(t, z) \times h\left(x^{2}+y^{2}\right), \\
& v_{y}(t, x, y, z)=k(t, z) y h\left(x^{2}+y^{2}\right), \\
& v_{z}(t, x, y, z)=v(t, z) f\left(x^{2}+y^{2}\right) .
\end{aligned}
$$

- Use functions k, h, v to make this into a beam along the z-axis
- Assume a spherical cow in a vacuum flat cow in this space-time perpendicular to beam \& that beam hits it from the left
- Calculate the force on its surface from stress-energy tensor
- Explicit calculation shows (again) violations of NEC
${ }^{6}$ Santiago, SeSc, Visser '21 arXiv:2106.05002
${ }^{7} \mathfrak{W}$ arning! This does not include the original Alcubierre metric!

A Visualization of Tractor Beams

The Supposed Tool: Pointwise Energy Conditions ${ }^{8}$

Interpretation	WEC	SEC	NEC
'geometric'a	\forall timelike $V: G_{a b} V^{a} V^{b} \geq 0$	\forall timelike $V: R_{a b} V^{a} V^{b} \geq 0$	\forall null $k: R_{a b} k^{a} k^{b} \geq 0$
physical	\forall timelike $V: T_{a b} V^{a} V^{b} \geq 0$	\forall timelike $V:\left(T_{a b}-\frac{1}{2} T_{a b}\right) V^{a} V^{b} \geq 0$	\forall null $k: T_{a b} k^{a} k^{b} \geq 0$
effective	$\rho \geq 0 \& \forall \hat{a}: \rho+p_{\hat{a}} \geq 0$	$\rho+\sum_{\hat{a}} p_{\hat{a}} \geq 0 \& \forall \hat{a}: \rho+p_{\hat{a}} \geq 0$	$\forall a ̂: \rho+p_{\hat{a}} \geq 0$
Interpretation	DEC	+ TEC +	
'geometric'	\forall timelike $V, W: G_{a b} V^{a} W^{b} \geq 0$	$\operatorname{tr}(G) \geq 0$	
physical	\forall timelike $V, W: T_{a b} V^{a} W^{b} \geq 0$	$\operatorname{tr}(T) \geq 0$	
effective	$\rho \geq 0 \& \forall \hat{a}: \rho \geq\left\|p_{\hat{a}}\right\|$	$\rho-\sum_{\hat{a}} p_{\hat{a}} \geq 0$	

${ }^{a}$ A.k.a. 'convergence conditions' (CC)

$$
\mathrm{DEC} \Longrightarrow \mathrm{WEC} \Longrightarrow \mathrm{NEC} \Longleftarrow \mathrm{SEC}
$$

[^6]
The Supposed Tool: Pointwise Energy Conditions ${ }^{8}$

Interpretation	WEC	SEC	NEC
'geometric'a	\forall timelike $V: G_{a b} V^{a} V^{b} \geq 0$	\forall timelike $V: R_{a b} V^{a} V^{b} \geq 0$	\forall null $k: R_{a b} k^{a} k^{b} \geq 0$
physical	\forall timelike $V: T_{a b} V^{a} V^{b} \geq 0$	\forall timelike $V:\left(T_{a b}-\frac{1}{2} T_{a b}\right) V^{a} V^{b} \geq 0$	\forall null $k: T_{a b} k^{a} k^{b} \geq 0$
effective	$\rho \geq 0 \& \forall \hat{a}: \rho+p_{\hat{a}} \geq 0$	$\rho+\sum_{\hat{a}} p_{\hat{a}} \geq 0 \& \forall \hat{a}: \rho+p_{\hat{a}} \geq 0$	$\forall a ̂: \rho+p_{\hat{a}} \geq 0$
Interpretation	DEC	+ TEC +	
'geometric'	\forall timelike $V, W: G_{a b} V^{a} W^{b} \geq 0$	$\operatorname{tr}(G) \geq 0$	
physical	\forall timelike $V, W: T_{a b} V^{a} W^{b} \geq 0$	$\operatorname{tr}(T) \geq 0$	
effective	$\rho \geq 0 \& \forall \hat{a}: \rho \geq\left\|p_{\hat{a}}\right\|$	$\rho-\sum_{\hat{a}} p_{\hat{a}} \geq 0$	

${ }^{a}$ A.k.a. 'convergence conditions' (CC)

$$
\mathrm{DEC} \Longrightarrow \mathrm{WEC} \Longrightarrow \mathrm{NEC} \Longleftarrow \mathrm{SEC}
$$

As the name suggests-the NEC is the weakest.;

[^7]
Their Uses \& Their Issues ${ }^{10}$

They find much use
(mostly in mathematical relativity):

- Stand-in for unknown equations of state
- Positive mass theorems
- Singularity theorems (cosmological and black holes)
- Cosmic no-hair theorem ($\Lambda>0$ approaches de Sitter)
- 'Ruling out' exotic space-times

There is an increasing list of physically viable violations of various kinds:
${ }^{10}$ Martín-Moruno \& Visser '17 arXiv:1702.05915

Their Uses \& Their Issues ${ }^{10}$

They find much use (mostly in mathematical relativity):

- Stand-in for unknown equations of state
- Positive mass theorems
- Singularity theorems (cosmological and black holes)
- Cosmic no-hair theorem ($\Lambda>0$ approaches de Sitter)
- 'Ruling out' exotic space-times

There is an increasing list of physically viable violations of various kinds:
TEC

- EoS of neutron star matter $\longrightarrow \dagger(\leq 1961)^{9}$

[^8]
Their Uses \& Their Issues ${ }^{10}$

They find much use (mostly in mathematical relativity):

- Stand-in for unknown equations of state
- Positive mass theorems
- Singularity theorems (cosmological and black holes)
- Cosmic no-hair theorem ($\Lambda>0$ approaches de Sitter)
- 'Ruling out' exotic space-times

There is an increasing list of physically viable violations of various kinds:

TEC
NEC

- EoS of neutron star matter $\longrightarrow+(\leq 1961)^{9}$
- Non-minimally coupled, classical scalar fields
- Casimir effect

[^9]
Their Uses \& Their Issues ${ }^{10}$

They find much use (mostly in mathematical relativity):

- Stand-in for unknown equations of state
- Positive mass theorems
- Singularity theorems (cosmological and black holes)
- Cosmic no-hair theorem ($\Lambda>0$ approaches de Sitter)
- 'Ruling out' exotic space-times

There is an increasing list of physically viable violations of various kinds:

TEC
NEC

WEC

- EoS of neutron star matter $\longrightarrow+(\leq 1961)^{9}$
- Non-minimally coupled, classical scalar fields
- Casimir effect
- $\Lambda<0$

[^10]
Their Uses \& Their Issues ${ }^{10}$

They find much use (mostly in mathematical relativity):

- Stand-in for unknown equations of state
- Positive mass theorems
- Singularity theorems (cosmological and black holes)
- Cosmic no-hair theorem ($\Lambda>0$ approaches de Sitter)
- 'Ruling out' exotic space-times

There is an increasing list of physically viable violations of various kinds:

TEC
NEC

WEC SEC

- EoS of neutron star matter $\longrightarrow \dagger(\leq 1961)^{9}$
- Non-minimally coupled, classical scalar fields
- Casimir effect
- $\Lambda<0$
- $\Lambda>0$
- Massive, minimally-coupled, non-tachyonic scalar fields (e.g., inflatons)
- Present accelerated cosmological expansion

[^11]
Their Uses \& Their Issues ${ }^{10}$

They find much use (mostly in mathematical relativity):

- Stand-in for unknown equations of state
- Positive mass theorems
- Singularity theorems (cosmological and black holes)
- Cosmic no-hair theorem ($\Lambda>0$ approaches de Sitter)
- 'Ruling out' exotic space-times

There is an increasing list of physically viable violations of various kinds:

TEC
NEC

DEC

- EoS of neutron star matter $\longrightarrow+(\leq 1961)^{9}$
- Non-minimally coupled, classical scalar fields
- Casimir effect
- $\Lambda<0$
- $\Lambda>0$
- Massive, minimally-coupled, non-tachyonic scalar fields (e.g., inflatons)
- Present accelerated cosmological expansion
- [...]

[^12]
Physicality of Space-Times:

Competing Notions-General Relativity

Physical Solutions: The Good, the Bad, the Ugly

- Theorists (usually) evaluate physics' objects based on 'physicality'
- This is by no means a clear concept:

Physical Solutions: The Good, the Bad, the Ugly

- Theorists (usually) evaluate physics' objects based on 'physicality'
- This is by no means a clear concept:
- Different, 'obviously physical' notions of inextensibility may compete (Manchak 2021, doi:10.1007/978-3-030-64187-0_17)

Physical Solutions: The Good, the Bad, the Ugly

- Theorists (usually) evaluate physics' objects based on 'physicality'
- This is by no means a clear concept:
- Different, 'obviously physical' notions of inextensibility may compete (Manchak 2021, doi:10.1007/978-3-030-64187-0_17)
- Some notions are not falsifiable (e.g., excluding a single point)

Physical Solutions: The Good, the Bad, the Ugly

- Theorists (usually) evaluate physics' objects based on 'physicality'
- This is by no means a clear concept:
- Different, 'obviously physical' notions of inextensibility may compete (Manchak 2021, doi:10.1007/978-3-030-64187-0_17)
- Some notions are not falsifiable (e.g., excluding a single point)
- GR may have different claims on physicality than other theories of gravity

Physical Solutions: The Good, the Bad, the Ugly

- Theorists (usually) evaluate physics' objects based on 'physicality'
- This is by no means a clear concept:
- Different, 'obviously physical' notions of inextensibility may compete (Manchak 2021, doi:10.1007/978-3-030-64187-0_17)
- Some notions are not falsifiable (e.g., excluding a single point)
- GR may have different claims on physicality than other theories of gravity
- Quantum theory will not agree with classical theory

Physical Solutions: The Good, the Bad, the Ugly

- Theorists (usually) evaluate physics' objects based on 'physicality'
- This is by no means a clear concept:
- Different, 'obviously physical' notions of inextensibility may compete (Manchak 2021, doi:10.1007/978-3-030-64187-0_17)
- Some notions are not falsifiable (e.g., excluding a single point)
- GR may have different claims on physicality than other theories of gravity
- Quantum theory will not agree with classical theory
- Analogue metrics differ from astrophysical metrics

Physical Solutions: The Good, the Bad, the Ugly

- Theorists (usually) evaluate physics' objects based on 'physicality'
- This is by no means a clear concept:
- Different, 'obviously physical' notions of inextensibility may compete (Manchak 2021, doi:10.1007/978-3-030-64187-0_17)
- Some notions are not falsifiable (e.g., excluding a single point)
- GR may have different claims on physicality than other theories of gravity
- Quantum theory will not agree with classical theory
- Analogue metrics differ from astrophysical metrics
- Toy/local models need not fulfil all 'physicalities' (\rightarrow utility of homogeneous magnetic fields!)

Some Examples in General Relativity

- The classic: Presence of singularities (in the sense of inextendible geodesics)

Causality Conditions + Energy Conditions + Curvature Conditions

Some Examples in General Relativity

- The classic: Presence of singularities (in the sense of inextendible geodesics)

Causality Conditions + Energy Conditions + Curvature Conditions

- Global hyperbolicity $1 /{ }^{3}$ cosmology

Some Examples in General Relativity

- The classic: Presence of singularities (in the sense of inextendible geodesics)

- Less well-known: Inextendibility 險 chronological/causal/... ${ }^{11}$

[^13]
Some Examples in General Relativity

－The classic：Presence of singularities（in the sense of inextendible geodesics）

- Global hyperbolicity 垠 cosmology
- Less well－known：Inextendibility 友 chronological／causal／．．．${ }^{11}$
- Bitter：Hole－free／inextendibility N／唇CTCs．．．${ }^{12}$

[^14]
Some Examples in General Relativity

－The classic：Presence of singularities（in the sense of inextendible geodesics）

> 場
> Causality Conditions + Energy Conditions + Curvature Conditions

- Less well－known：Inextendibility 友 chronological／causal／．．．${ }^{11}$
- Bitter：Hole－free／inextendibility N／艮CTCs．．．${ }^{12}$

[^15]Physicality of Space-Times:
Inapplicable Notions-Analogues

Quick Example: Fluid Analogues

- Perturbations ϕ_{1} on a potential flow $\mathbf{v}=-\nabla \phi_{0}$ have to fulfil

$$
\square \phi_{1}:=\frac{1}{\sqrt{-g_{\text {eff }}}} \partial_{\mu}\left(\sqrt{-g_{\text {eff }}} g_{\text {eff }}^{\mu \nu} \partial_{\nu} \phi_{1}\right)=0 .
$$

with

$$
\mathrm{d} s^{2}=-\frac{\rho}{c_{\mathrm{s}}}\left[\left(c_{\mathrm{s}}^{2}-\mathbf{v}^{2}\right) \mathrm{d} t^{2}-2 v_{i} \mathrm{~d} x^{i} \mathrm{~d} t+\mathbb{1} \mathrm{d} \mathbf{x}^{2}\right]=: \quad g_{\mu \nu}^{\text {eff }} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}
$$

Quick Example: Fluid Analogues

- Perturbations ϕ_{1} on a potential flow $\mathbf{v}=-\nabla \phi_{0}$ have to fulfil

$$
\square \phi_{1}:=\frac{1}{\sqrt{-g_{\text {eff }}}} \partial_{\mu}\left(\sqrt{-g_{\text {eff }}} g_{\text {eff }}^{\mu \nu} \partial_{\nu} \phi_{1}\right)=0 .
$$

with

$$
\mathrm{d} s^{2}=-\frac{\rho}{c_{\mathrm{s}}}\left[\left(c_{\mathrm{s}}^{2}-\mathbf{v}^{2}\right) \mathrm{d} t^{2}-2 v_{i} \mathrm{~d} x^{i} \mathrm{~d} t+\mathbb{1} \mathrm{d} \mathbf{x}^{2}\right]=: \quad g_{\mu \nu}^{\text {eff }} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}
$$

- The irrotational vortex, a.k.a. draining bath tub, gives a background flow

$$
\mathbf{v}=-\nabla \phi_{0}=\frac{A \hat{r}+B \hat{\theta}}{r}
$$

Quick Example: Fluid Analogues

- Perturbations ϕ_{1} on a potential flow $\mathbf{v}=-\nabla \phi_{0}$ have to fulfil

$$
\square \phi_{1}:=\frac{1}{\sqrt{-g_{\text {eff }}}} \partial_{\mu}\left(\sqrt{-g_{\text {eff }}} g_{\text {eff }}^{\mu \nu} \partial_{\nu} \phi_{1}\right)=0 .
$$

with

$$
\mathrm{d} s^{2}=-\frac{\rho}{c_{\mathrm{s}}}\left[\left(c_{\mathrm{s}}^{2}-\mathbf{v}^{2}\right) \mathrm{d} t^{2}-2 v_{i} \mathrm{~d} x^{i} \mathrm{~d} t+\mathbb{1} \mathrm{d} \mathbf{x}^{2}\right]=: \quad g_{\mu \nu}^{\text {eff }} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}
$$

- The irrotational vortex, a.k.a. draining bath tub, gives a background flow

$$
\mathbf{v}=-\nabla \phi_{0}=\frac{A \hat{r}+B \hat{\theta}}{r}
$$

- This looks something like

Counterfactuals ${ }^{13}$

- For the draining bathtub:

$$
\mathbf{v}=-\nabla \phi_{0}=\frac{A \hat{r}+B \hat{\theta}}{r}
$$

- Suppose, the resulting metric

$$
\mathrm{d} s^{2}=-\frac{\rho}{c_{\mathrm{s}}}\left[\left(c_{\mathrm{s}}^{2}-\frac{A^{2}+B^{2}}{r^{2}}\right) \mathrm{d} t^{2}-2 \frac{A}{r} \mathrm{~d} r \mathrm{~d} t-2 B \mathrm{~d} \theta \mathrm{~d} t+\mathrm{d} r^{2}+r^{2} \mathrm{~d} \theta^{2}+\mathrm{d} z^{2}\right]
$$

did arise from GR

- Then we could link $T_{a b}$ and $G_{a b}$

Counterfactuals ${ }^{13}$

- For the draining bathtub:

$$
\mathbf{v}=-\nabla \phi_{0}=\frac{A \hat{r}+B \hat{\theta}}{r}
$$

- Suppose, the resulting metric

$$
\mathrm{d} s^{2}=-\frac{\rho}{c_{\mathrm{s}}}\left[\left(c_{\mathrm{s}}^{2}-\frac{A^{2}+B^{2}}{r^{2}}\right) \mathrm{d} t^{2}-2 \frac{A}{r} \mathrm{~d} r \mathrm{~d} t-2 B \mathrm{~d} \theta \mathrm{~d} t+\mathrm{d} r^{2}+r^{2} \mathrm{~d} \theta^{2}+\mathrm{d} z^{2}\right]
$$

did arise from GR

- Then we could link $T_{a b}$ and $G_{a b}$
- Then

$$
G_{\mu \nu}^{\mathrm{eff}} V^{\mu} V^{\nu}=-\frac{A^{2}+B^{2}}{r^{4} \rho c_{\mathrm{s}}}
$$

Counterfactuals ${ }^{13}$

- For the draining bathtub:

$$
\mathbf{v}=-\nabla \phi_{0}=\frac{A \hat{r}+B \hat{\theta}}{r}
$$

- Suppose, the resulting metric

$$
\mathrm{d} s^{2}=-\frac{\rho}{c_{\mathrm{s}}}\left[\left(c_{\mathrm{s}}^{2}-\frac{A^{2}+B^{2}}{r^{2}}\right) \mathrm{d} t^{2}-2 \frac{A}{r} \mathrm{~d} r \mathrm{~d} t-2 B \mathrm{~d} \theta \mathrm{~d} t+\mathrm{d} r^{2}+r^{2} \mathrm{~d} \theta^{2}+\mathrm{d} z^{2}\right]
$$

did arise from GR

- Then we could link $T_{a b}$ and $G_{a b}$
- Then

$$
G_{\mu \nu}^{\mathrm{eff}} V^{\mu} V^{\nu}=-\frac{A^{2}+B^{2}}{r^{4} \rho c_{\mathrm{s}}}
$$

- This violates the WEC.
- This is not a surprise; the metric isn't GR.

[^16]
Counterfactuals ${ }^{13}$

- For the draining bathtub:

$$
\mathbf{v}=-\nabla \phi_{0}=\frac{A \hat{r}+B \hat{\theta}}{r}
$$

- Suppose, the resulting metric

$$
\mathrm{d} s^{2}=-\frac{\rho}{c_{\mathrm{s}}}\left[\left(c_{\mathrm{s}}^{2}-\frac{A^{2}+B^{2}}{r^{2}}\right) \mathrm{d} t^{2}-2 \frac{A}{r} \mathrm{~d} r \mathrm{~d} t-2 B \mathrm{~d} \theta \mathrm{~d} t+\mathrm{d} r^{2}+r^{2} \mathrm{~d} \theta^{2}+\mathrm{d} z^{2}\right]
$$

did arise from GR

- Then we could link $T_{a b}$ and $G_{a b}$
- Then

$$
G_{\mu \nu}^{\text {eff }} V^{\mu} V^{\nu}=-\frac{A^{2}+B^{2}}{r^{4} \rho c_{\mathrm{s}}}
$$

- This violates the WEC.
- This is not a surprise; the metric isn't GR.
- But neither can we say with certainty where physical metrics come from...

${ }^{13}$ SeSc 2023 arXiv:2305.08725

Physicality towards Space-Times

Caveats \& Conventions, Part II

- Warníny! Work in progress!

Caveats \& Conventions, Part II

- Warning! Work in progress!
- There exist already nice calculations, but we're short a nifty result

Caveats \& Conventions, Part II

- Warning! Work in progress!
- There exist already nice calculations, but we're short a nifty result
- \Longrightarrow The talk's goal: Context, concepts, tools, minimal ${ }^{14}$ maths

[^17]
Caveats \& Conventions, Part II

- Warning! Work in progress!
- There exist already nice calculations, but we're short a nifty result
- \Longrightarrow The talk's goal: Context, concepts, tools, minimal ${ }^{14}$ maths
- The goal: Studying the physicality of metrics in a theory-agnostic way

[^18]
Caveats \& Conventions, Part II

- Warnínt! Work in progress!
- There exist already nice calculations, but we're short a nifty result
- \Longrightarrow The talk's goal: Context, concepts, tools, minimal ${ }^{14}$ maths
- The goal: Studying the physicality of metrics in a theory-agnostic way
- Uses simple toy model

[^19]Physicality towards Space-Times: The Context

The Problem of Time

- A generic feature of diffeomorphism-invariant theories: Tricky constraints.

$$
\begin{aligned}
\mathcal{H} & \approx 0, \\
\mathcal{H}^{i} & \approx 0 .
\end{aligned}
$$

- Classically, the problem of time ('frozen dynamics', 'gauge vs. evolution') is solved-carefully distinguish different roles of \mathcal{H}, carefully distinguish phase space and reduced phase space ${ }^{15}$

[^20]
The Problem of Time

- A generic feature of diffeomorphism-invariant theories: Tricky constraints.

$$
\begin{aligned}
\mathcal{H} & \approx 0, \\
\mathcal{H}^{i} & \approx 0 .
\end{aligned}
$$

- Classically, the problem of time ('frozen dynamics', 'gauge vs. evolution') is solved-carefully distinguish different roles of \mathcal{H}, carefully distinguish phase space and reduced phase space ${ }^{15}$
- After quantization of diffeomorphism-invariant theories, however, the problem of time remains (at least) much more hotly debated

[^21]
The Problem of Time

- A generic feature of diffeomorphism-invariant theories: Tricky constraints.

$$
\begin{aligned}
\mathcal{H} & \approx 0, \\
\mathcal{H}^{i} & \approx 0 .
\end{aligned}
$$

- Classically, the problem of time ('frozen dynamics', 'gauge vs. evolution') is solved-carefully distinguish different roles of \mathcal{H}, carefully distinguish phase space and reduced phase space ${ }^{15}$
- After quantization of diffeomorphism-invariant theories, however, the problem of time remains (at least) much more hotly debated
- Essentially: Extrinsic time (QM) versus intrinsic time (GR)

[^22]
Reminder: Geometric/Mathematical Context

In the first part, we saw:

- GR has strong theorems and no-go theorems
- Positive mass
- Singularities
- Existence and uniqueness results
- Censorship (various)

Reminder: Geometric/Mathematical Context

In the first part, we saw:

- GR has strong theorems and no-go theorems
- Positive mass
- Singularities
- Existence and uniqueness results
- Censorship (various)
- ...
- However, these rely not only on GR, but also on additional 'physicality assumptions'

Reminder: Geometric/Mathematical Context

In the first part, we saw:

- GR has strong theorems and no-go theorems
- Positive mass
- Singularities
- Existence and uniqueness results
- Censorship (various)
- ...
- However, these rely not only on GR, but also on additional 'physicality assumptions'
- Absence of these assumptions, or moving away from GR enlarges the space of solutions and 'solutions'
- Absence of these assumptions, or moving away from GR reduces available theorems and no-go theorems

The Problem

- In the absence of no-go theorems, or in the presence of quantum theory, potential problems occur
- Especially wormholes are often studied/found/claimed in- and outside of GR.

[^23]
The Problem

- In the absence of no-go theorems, or in the presence of quantum theory, potential problems occur
- Especially wormholes are often studied/found/claimed in- and outside of GR.
- Rather than fight over overly specific and often useless notions of physicality like energy conditions ${ }^{16}$ focus on the effect

[^24]
The Problem

- In the absence of no-go theorems, or in the presence of quantum theory, potential problems occur
- Especially wormholes are often studied/found/claimed in- and outside of GR.
- Rather than fight over overly specific and often useless notions of physicality like energy conditions ${ }^{16}$ focus on the effect
- Wormholes, Gödel universe, (superluminal) warp drives, Krasnikov tubes-their problem is time travel

[^25]
The Problem

- In the absence of no-go theorems, or in the presence of quantum theory, potential problems occur
- Especially wormholes are often studied/found/claimed in- and outside of GR.
- Rather than fight over overly specific and often useless notions of physicality like energy conditions ${ }^{16}$ focus on the effect
- Wormholes, Gödel universe, (superluminal) warp drives, Krasnikov tubes—their problem is time travel
- Space-times may only be emergent

[^26]
The Problem

- In the absence of no-go theorems, or in the presence of quantum theory, potential problems occur
- Especially wormholes are often studied/found/claimed in- and outside of GR.
- Rather than fight over overly specific and often useless notions of physicality like energy conditions ${ }^{16}$ focus on the effect
- Wormholes, Gödel universe, (superluminal) warp drives, Krasnikov tubes-their problem is time travel
- Space-times may only be emergent
- Evaluate the physicality of time-travel not based on space-time/CTCs, but on time's origin

[^27]
The Picture

Ambient quantum system with local clocks for subsystems with different relational times

Physicality towards Space-Times: The Tools

Positive Operator-Valued Measures

- It's a mouthful, so: POVM

Positive Operator-Valued Measures

- It's a mouthful, so: POVM
- A way to formalize imprecise measurements in quantum theory ${ }^{17}$
${ }^{17}$ Busch, Grabowski, Lahti - 'Operational Quantum Physics', ISBN: 3-540-59358-6

Positive Operator-Valued Measures

- It's a mouthful, so: POVM
- A way to formalize imprecise measurements in quantum theory ${ }^{17}$
- Ingredients:
- Hilbert space \mathcal{H} and its states $\Psi /$ density matrices $\hat{\rho}$
- The totality of measurement outcomes Ω and its σ-algebra M of subsets

[^28]
Positive Operator-Valued Measures

- It's a mouthful, so: POVM
- A way to formalize imprecise measurements in quantum theory ${ }^{17}$
- Ingredients:
- Hilbert space \mathcal{H} and its states $\Psi /$ density matrices $\hat{\rho}$
- The totality of measurement outcomes Ω and its σ-algebra M of subsets
- A POVM F is a function such that:
(1) $\forall X \in M: F(X) \geq 0$. ('positive')
(2) $F(\Omega)=\mathbb{1}_{\mathcal{H}}$
(3) For disjoint $X_{i} \in M, E\left(\cup_{i} X_{i}\right)=\sum_{i} E\left(X_{i}\right)$

[^29]
Positive Operator-Valued Measures

- It's a mouthful, so: POVM
- A way to formalize imprecise measurements in quantum theory ${ }^{17}$
- Ingredients:
- Hilbert space \mathcal{H} and its states $\Psi /$ density matrices $\hat{\rho}$
- The totality of measurement outcomes Ω and its σ-algebra M of subsets
- A POVM F is a function such that:
(1) $\forall X \in M: F(X) \geq 0$. ('positive') $\mathfrak{W a r n i n g}$: May have improper eigenstates!
(2) $F(\Omega)=\mathbb{1}_{\mathcal{H}}$
(3) For disjoint $X_{i} \in M, E\left(\cup_{i} X_{i}\right)=\sum_{i} E\left(X_{i}\right)$
- The Born rule reads

$$
P(F \mid \rho)=\operatorname{Tr}(F \hat{\rho})
$$

[^30]
Positive Operator-Valued Measures

- It's a mouthful, so: POVM
- A way to formalize imprecise measurements in quantum theory ${ }^{17}$
- Ingredients:
- Hilbert space \mathcal{H} and its states $\Psi /$ density matrices $\hat{\rho}$
- The totality of measurement outcomes Ω and its σ-algebra M of subsets
- A POVM F is a function such that:
(1) $\forall X \in M: F(X) \geq 0$. ('positive') Warning! May have improper eigenstates!
(2) $F(\Omega)=\mathbb{1}_{\mathcal{H}}$
(3) For disjoint $X_{i} \in M, E\left(\cup_{i} X_{i}\right)=\sum_{i} E\left(X_{i}\right)$
- The Born rule reads

$$
P(F \mid \rho)=\operatorname{Tr}(F \hat{\rho})
$$

- Projection-valued measures exchange (1) for the stricter $E(X)^{2}=E(X)$; \Longleftrightarrow standard QM operators

[^31]
The Page-Wootters Formalism: Steps towards Relational Quantum Time

- 'Times is what one reads off a clock.' ${ }^{18}$
- First attempt: A self-adjoint operator ('clock') canonically conjugate to a/the Hamiltonian
${ }^{18}$ Paraphrasing Einstein's 1905 article on special relativity.

The Page-Wootters Formalism: Steps towards Relational Quantum Time

- 'Times is what one reads off a clock.' ${ }^{18}$
- First attempt: A self-adjoint operator ('clock') canonically conjugate to a/the Hamiltonian
- Problem: Pauli's(?) no-go result (Pauli 1990, doi:10.1007/978--3-642-62187-9, p.84)

[^32]
The Page-Wootters Formalism: Steps towards Relational Quantum Time

- 'Times is what one reads off a clock.' ${ }^{18}$
- First attempt: A self-adjoint operator ('clock') canonically conjugate to a/the Hamiltonian
- Problem: Pauli's(?) no-go result (Pauli 1990, doi:10.1007/978--3-642-62187-9, p.84)

Page-Wootters formalism (Page, Wootters 1983 doi:10.1103/PhysRevD.27.2885)

- Separate full Hilbert space: $\mathcal{H}=\mathcal{H}_{\mathrm{C}} \otimes \mathcal{H}_{\mathrm{R}}$

[^33]
The Page-Wootters Formalism: Steps towards Relational Quantum Time

- 'Times is what one reads off a clock.' ${ }^{18}$
- First attempt: A self-adjoint operator ('clock') canonically conjugate to a/the Hamiltonian
- Problem: Pauli's(?) no-go result (Pauli 1990, doi:10.1007/978--3-642-62187-9, p.84)

Page-Wootters formalism (Page, Wootters 1983 doi:10.1103/PhysRevD.27.2885)

- Separate full Hilbert space: $\mathcal{H}=\mathcal{H}_{\mathrm{C}} \otimes \mathcal{H}_{\mathrm{R}}$
- Introduce a clock Hamiltonian \hat{H}_{C} of a subsystem

[^34]
The Page-Wootters Formalism: Steps towards Relational Quantum Time

- 'Times is what one reads off a clock.' ${ }^{18}$
- First attempt: A self-adjoint operator ('clock') canonically conjugate to a/the Hamiltonian
- Problem: Pauli's(?) no-go result (Pauli 1990, doi:10.1007/978--3-642-62187-9, p.84)

Page-Wootters formalism (Page, Wootters 1983 doi: 10.1103/PhysRevD.27.2885)

- Separate full Hilbert space: $\mathcal{H}=\mathcal{H}_{\mathrm{C}} \otimes \mathcal{H}_{\mathrm{R}}$
- Introduce a clock Hamiltonian \hat{H}_{C} of a subsystem
- Specify some chosen, 'initial' clock state ψ_{C}

[^35]
The Page-Wootters Formalism: Steps towards Relational Quantum Time

- 'Times is what one reads off a clock.' ${ }^{18}$
- First attempt: A self-adjoint operator ('clock') canonically conjugate to a/the Hamiltonian
- Problem: Pauli's(?) no-go result (Pauli 1990, doi:10.1007/978--3-642-62187-9, p.84)

Page-Wootters formalism (Page, Wootters 1983 doi: 10.1103/PhysRevD.27.2885)

- Separate full Hilbert space: $\mathcal{H}=\mathcal{H}_{\mathrm{C}} \otimes \mathcal{H}_{\mathrm{R}}$
- Introduce a clock Hamiltonian \hat{H}_{C} of a subsystem
- Specify some chosen, 'initial' clock state ψ_{C}
- Define time through evolution of this state with \hat{H}_{C}

[^36]
The Page-Wootters Formalism: Steps towards Relational Quantum Time

- 'Times is what one reads off a clock.' ${ }^{18}$
- First attempt: A self-adjoint operator ('clock') canonically conjugate to a/the Hamiltonian
- Problem: Pauli's(?) no-go result (Pauli 1990, doi:10.1007/978--3-642-62187-9, p.84)

Page-Wootters formalism (Page, Wootters 1983 doi:10.1103/PhysRevD.27.2885)

- Separate full Hilbert space: $\mathcal{H}=\mathcal{H}_{\mathrm{C}} \otimes \mathcal{H}_{\mathrm{R}}$
- Introduce a clock Hamiltonian \hat{H}_{C} of a subsystem
- Specify some chosen, 'initial' clock state ψ_{C}
- Define time through evolution of this state with \hat{H}_{C}
- Measure time evolution of an operator \hat{A}, stationary w.r.t. \hat{H}_{C}, as

$$
E(A \mid \tau)=\operatorname{tr}\left(\hat{A} \hat{P}_{\tau} \hat{\rho}\right) / \operatorname{tr}\left(\hat{P}_{\tau} \hat{\rho}\right)
$$

where

$$
\hat{P}_{\tau}=\left|\psi_{C}(\tau)\right\rangle\left\langle\psi_{C}(\tau)\right| \otimes \mathbb{1}_{\mathrm{R}}, \quad \text { and } \quad \hat{\rho} \in \mathcal{L}(\mathcal{H})
$$

[^37]
Relational Time: Other Perspectives

- Meanwhile, POVM are another alternative (Busch et al. 1994 doi:10.1016/0375-9601(94)90785-4)
- Here, a non-unique time-operator appears as the first moment of a POVM

Relational Time: Other Perspectives

- Meanwhile, POVM are another alternative (Busch et al. 1994 doi:10.1016/0375-9601(94)90785-4)
- Here, a non-unique time-operator appears as the first moment of a POVM
- Höhn, Smith, Lock, Ahmadi (among others) placed the PW formalism on a gauge-theoretic footing, ${ }^{19}$ and refined it using POVMs

[^38]
Relational Time: Other Perspectives

- Meanwhile, POVM are another alternative (Busch et al. 1994 doi:10.1016/0375-9601(94)90785-4)
- Here, a non-unique time-operator appears as the first moment of a POVM
- Höhn, Smith, Lock, Ahmadi (among others) placed the PW formalism on a gauge-theoretic footing, ${ }^{19}$ and refined it using POVMs
- This also addressed various criticisms ${ }^{20}$ aimed at the original formulation of PW
${ }^{19}$ E.g., arXiv:1912.00033 and arXiv:2007.00580.
${ }^{20}$ Unruh, Wald 1989 doi:10.1103/PhysRevD.40.2598, Kuchař 2011/1991, doi:10.1142/S0218271811019347

Relational Time: Other Perspectives

- Meanwhile, POVM are another alternative (Busch et al. 1994 doi:10.1016/0375-9601(94)90785-4)
- Here, a non-unique time-operator appears as the first moment of a POVM
- Höhn, Smith, Lock, Ahmadi (among others) placed the PW formalism on a gauge-theoretic footing, ${ }^{19}$ and refined it using POVMs
- This also addressed various criticisms ${ }^{20}$ aimed at the original formulation of PW
${ }^{19}$ E.g., arXiv:1912.00033 and arXiv:2007.00580.
${ }^{20}$ Unruh, Wald 1989 doi:10.1103/PhysRevD.40.2598, Kuchař 2011/1991, doi:10.1142/S0218271811019347

Relational Time: Other Perspectives

- Meanwhile, POVM are another alternative (Busch et al. 1994 doi:10.1016/0375-9601(94)90785-4)
- Here, a non-unique time-operator appears as the first moment of a POVM
- Höhn, Smith, Lock, Ahmadi (among others) placed the PW formalism on a gauge-theoretic footing, ${ }^{19}$ and refined it using POVMs
- This also addressed various criticisms ${ }^{20}$ aimed at the original formulation of PW
- A time observable of a clock, \hat{H}_{C}, is a POVM E_{T} covariant under \hat{H}_{C} 's time translation group, i.e.

$$
E_{T}(X+t)=U_{\mathrm{C}}(t) E_{T}(X) U_{\mathrm{C}}^{\dagger}(t)
$$

[^39]
Relational Time: Other Perspectives

- Meanwhile, POVM are another alternative (Busch et al. 1994 doi:10.1016/0375-9601(94)90785-4)
- Here, a non-unique time-operator appears as the first moment of a POVM
- Höhn, Smith, Lock, Ahmadi (among others) placed the PW formalism on a gauge-theoretic footing, ${ }^{19}$ and refined it using POVMs
- This also addressed various criticisms ${ }^{20}$ aimed at the original formulation of PW
- A time observable of a clock, \hat{H}_{C}, is a POVM E_{T} covariant under \hat{H}_{C} 's time translation group, i.e.

$$
E_{T}(X+t)=U_{\mathrm{C}}(t) E_{T}(X) U_{\mathrm{C}}^{\dagger}(t)
$$

- For us of particular relevance: The POVM bit of these developments.
${ }^{19}$ E.g., arXiv:1912.00033 and arXiv:2007.00580.
${ }^{20}$ Unruh, Wald 1989 doi:10.1103/PhysRevD.40.2598, Kuchař 2011/1991, doi:10.1142/S0218271811019347

Physicality towards Space-Times: A First Toy Model

When a Physicist Gets Stuck: The Harmonic Oscillator

- Separate Hilbert space as:

$$
\hat{H}_{\mathrm{C}}=\hat{n}_{\mathrm{C}}+\frac{1}{2} \mathbb{1}_{\mathrm{C}} .
$$

- Define non-unitary \hat{W} through

$$
\hat{a}=\hat{W} \widehat{|a|}, \quad \text { with } \quad \widehat{|a|}:=\hat{n}^{1 / 2}
$$

having improper eigenstates $|\theta\rangle$

$$
\hat{W}|\theta\rangle=e^{i \theta}|\theta\rangle, \quad \text { with } \quad|\theta\rangle=\sum_{n \geq 0} e^{i n \theta}|n\rangle .
$$

- The relevant POVM:

$$
B_{0}(f):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \theta f(\theta)|\theta\rangle\langle\theta|=\sum_{n, m \geq 0} \frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i(n-m) \theta} f(\theta) \mathrm{d} \theta|n\rangle\langle m| .
$$

- Get one of many possible time operators for $f(\theta)=\theta$ as:

$$
\hat{T}_{0}=B_{0}(\theta)=\sum_{n \neq m \geq 0} \frac{1}{i(n-m)}|n\rangle\langle m|+\pi \mathbb{1}
$$

Modify Toy Model of Quantum Cosmology

Source: Kiefer 1990, doi:10.1016/0550-3213(90)90271-E

- Modify minisuperspace of closed Friedmann universe + conformally coupled scalar:

$$
\hat{H} \Psi(\varphi, \chi)=\left(\frac{\partial^{2}}{\partial \varphi^{2}}-\omega_{\varphi}^{2} \varphi^{2}-\frac{\partial^{2}}{\partial \chi^{2}}+\omega_{\chi}^{2} \chi^{2}\right) \Psi=0
$$

- Normalizability of Ψ gives two integers n_{φ}, n_{χ} fulfilling

$$
\frac{\omega_{\varphi}}{\omega_{\chi}}=\frac{2 n_{\chi}+1}{2 n_{\varphi}+1}
$$

- Instead of φ, use phase as in harmonic oscillator as time; larger range for φ than a in QC

Outlook

Objectives

- Distinguish:
- Periodic clock
- Periodic clock with calendar

- Time travel

Objectives

- Distinguish:
- Periodic clock
- Periodic clock with calendar
- Time travel

- Make self-consistency non-binary by getting a notion of 'close to' self-consistency

Objectives

- Distinguish:
- Periodic clock
- Periodic clock with calendar

- Time travel
- Make self-consistency non-binary by getting a notion of 'close to' self-consistency
- Long term goal: Using entropy for closed systems ${ }^{21}$, rule out time travel thermodynamically with only a relative notion of time.

[^40]
Objectives

- Distinguish:
- Periodic clock
- Periodic clock with calendar

- Time travel
- Make self-consistency non-binary by getting a notion of 'close to' self-consistency
- Long term goal: Using entropy for closed systems ${ }^{21}$, rule out time travel thermodynamically with only a relative notion of time.
- Aim for arguments against space-times with CTCs, while staying agnostic about precise space-time notions of physicality

[^41]
Summary

- Physicality needs context
- Please, don't evaluate physicality only based on energy conditions
- Please, use energy conditions correctly
- Let's explore
- what 'unphysical' space-times can teach us,
- what limits space-times in the first place.

Thank you!

References: Part I—Santiago, SeSc, Visser arXiv:2105.03079, arXiv:2106.05002, arXiv:2205.15950; Part II—Höhn et al. arXiv:1912.00033, SeSc arXiv:2305.08725, [Alonso-Serrano, SeSc, Visser—To Appear]

References I

AFP09 G. Auletta, M. Fortunato \& G. Parisi. Quantum Mechanics. ISBN: 978-0-521-86963-8 (Cambridge University Press, 2009).

Alc94 M. Alcubierre. The warp drive: hyper-fast travel within general relativity. Classical and Quantum Gravity 11, L73. doi:10.1088/0264-9381/11/5/001. arXiv: gr-qc/0009013 [gr-qc] (1994).

BGL94 P. Busch, M. Grabowski \& P. J. Lahti. Time observables in quantum theory. Physics Letters A 191, 357-361. doi:10.1016/0375-9601(94)90785-4 (Aug. 1994).

BGL95a P. Busch, M. Grabowski \& P. J. Lahti. Operational Quantum Measurement. ISBN: 3-540-59358-6 (Springer, 1995).

BGL95b P. Busch, M. Grabowski \& P. J. Lahti. Who Is Afraid of POV Measures? Unified Approach to Quantum Phase Observables. Annals of Physics 237, 1-11. doi:10.1006/aphy.1995.1001 (Jan. 1995).

BV02 C. Barcelo \& M. Visser. Twilight for the energy conditions? International Journal of Modern Physics D 11, 1553-1560. doi:10.1142/S0218271802002888. arXiv: gr-qc/0205066 [gr-qc] (Mar. 2002).

References II

Cur17 E. Curiel. in Towards a Theory of Spacetime Theories (eds D. Lehmkuhl, G. Schiemann \& E. Scholz) 43-104 (Springer, 2017). ISBN: 978-1-4939-3209-2. doi:10.1007/978-1-4939-3210-8_3. arXiv: 1405.0403 [physics.hist-ph].

FPS18 C. J. Fewster, C. Pfeifer \& D. Siemssen. Quantum energy inequalities in premetric electrodynamics. Physical Review D 97, 025019. doi:10.1103/PhysRevD.97.025019. arXiv: 1709.01760 (Jan. 2018).

Göd49 K. Gödel. An Example of a New Type of Cosmological Solutions of Einstein's Field Equations of Gravitation. Review of Modern Physics 21, 447-450. doi:10.1103/RevModPhys.21. 447 (July 1949).

HE74 S. W. Hawking \& G. F. R. Ellis. The large scale structure of space-time. ISBN: 978-0-521-09906-6. doi:10.1017/CB09780511524646 (Cambridge University Press, 1974).

HSL21a P. A. Höhn, A. R. H. Smith \& M. P. E. Lock. Equivalence of Approaches to Relational Quantum Dynamics in Relativistic Settings. Frontiers in Physics 9, 181. doi:10.3389/fphy.2021.587083. arXiv: 2007.00580 [gr-qc] (Mar. 2021).

References III

HSL21b P. A. Höhn, A. R. H. Smith \& M. P. E. Lock. The Trinity of Relational Quantum Dynamics. Physical Review D 104, 066001. doi:10.1103/PhysRevD.104.066001. arXiv: 1912.00033 [quant-ph] (Sept. 2021).

Kie90 C. Kiefer. Wave packets in quantum cosmology and the cosmological constant. Nuclear Physics B 341, 273-293. doi:10.1016/0550-3213(90) 90271-E (Sept. 1990).

Kuc11 K. V. Kuchař. Time and Interpretations of Quantum Gravity. International Journal of Modern Physics D 20, 3-86. doi:10.1142/S0218271811019347 (Supplement 1 2011). Contribution to: 4th Canadian Conference on General Relativity and Relativistic Astrophysics.

Man09 JB. Manchak. On the Existence of "Time Machine" in General Relativity. Philosophy of Science 76, 1020-1026. doi:10.1086/605806. https://sites.socsci.uci.edu/~jmanchak/oteotmigr.pdf (2009).

References IV

Man21 JB. Manchak. in Hajnal Andréka and István Németi on the Unity of Science: From Computing to Relativity Theory Through Algebraic Logic (eds J. Madarász \& G. Székely) 409-425 (Springer, 2021). ISBN: 978-3-030-64186-3. doi:10.1007/978-3-030-64187-0_17. http://philsci-archive.pitt.edu/14882/.

MT88 M. S. Morris \& K. S. Thorne. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. American Journal of Physics 56, 395. doi:10.1119/1. 15620 (July 1988).

MV17 P. Martín-Moruno \& M. Visser. in Wormholes, Warp Drives and Energy Conditions (ed F. S. N. Lobo) 193-213 (Springer, 2017). ISBN: 978-3-319-55181-4. doi:10.1007/978-3-319-55182-1_9. arXiv: 1702.05915 [gr-qc].

Nat02 J. Natário. Warp drive with zero expansion. Classical and Quantum Gravity 19, 1157. doi:10.1088/0264-9381/19/6/308. arXiv: gr-qc/0110086 [gr-qc] (Mar. 2002).

References V

Pau90 W. Pauli. Die allgemeinen Prinzipien der Wellenmechanik. German (ed N. Straumann) ISBN: 978-3-540-51949-2. doi:10.1007/978-3-642-62187-9 (Springer, 1990). Neu herausgegeben und mit historischen Anmerkungen versehen von Norbert Straumann.

PS16 C. Pfeifer \& D. Siemssen. Electromagnetic potential in pre-metric electrodynamics: Causal structure, propagators and quantization. Physical Review D 93, 105046. doi:10.1103/PhysRevD.93.105046. arXiv: 1602.00946 (May 2016).

PSS10 J. M. Pons, K. A. Sundermeyer \& D. C. Salisbury. Observables in classical canonical gravity: folklore demystified. Journal of Physics: Conference Series 222, 012018. doi:10.1088/1742-6596/222/1/012018. arXiv: 1001.2726 [gr-qc] (1st Mediterranean Conference on Classical and Quantum Gravity Jan. 2010).

PW83 D. N. Page \& W. K. Wootters. Evolution without evolution: Dynamics described by stationary observables. Physical Review D 27, 2885-2892.
doi:10.1103/PhysRevD. 27.2885 (June 1983).

References VI

Sch21 S. Schuster. Sparsity of Hawking Radiation in $D+1$ Space-Time Dimensions for Massless and Massive Particles. Classical and Quantum Gravity 38, 047002. doi:10.1088/1361-6382/abd144. arXiv: 1910.07256 [gr-qc] (Feb. 2021).

Sch23 S. Schuster. Frenemies with Physicality: Manufacturing Manifold Metrics. Essay written for the Gravity Research Foundation 2023 Awards for Essays on Gravitation. Mar. 2023. arXiv: 2305.08725 [gr-qc].

ŠDA19 D. Šafránek, J. M. Deutsch \& A. Aguirre. Quantum coarse-grained entropy and thermalization in closed systems. Physical Review A 99, 012103. doi:10.1103/PhysRevA.99.012103. arXiv: 1803.00665 [quant-ph] (Jan. 2019).

SSV21 J. Santiago, S. Schuster \& M. Visser. Tractor beams, pressor beams, and stressor beams in general relativity. Universe 7, 271. doi:10.3390/universe7080271. arXiv: 2106.05002 [gr-qc] (July 2021). Invited for submission by Universe.

SSV22 J. Santiago, S. Schuster \& M. Visser. Generic warp drives violate the null energy condition. Physical Review D 105, 064038. doi:10.1103/PhysRevD.105.064038. arXiv: 2105.03079 [gr-qc] (Mar. 2022).

References VII

UW89 W. G. Unruh \& R. M. Wald. Time and the interpretation of canonical quantum gravity. Physical Review D 40, 2598-2614. doi:10.1103/PhysRevD. 40.2598 (Oct. 1989).

Zel62 Y. B. Zel'dovich. The equation of state at ultrahigh densities and its relativistic limitations. Soviet Physics JETP 14, 1143-1147.
http://jetp.ras.ru/cgi-bin/e/index/r/41/5/p1609?a=list (May 1962).
Translation of Zhur. Eksptl'. i Teoret. Fiz. 41 (1961) 1609-1615 by W.H. Furry.

Modifications—And Recent Publicity

- Natário, a.k.a., zero expansion: Demand

$$
\nabla \cdot \mathbf{v}=0
$$

- Zero vorticity (arXiv:2006.07125):

$$
\nabla \times \mathbf{v}=0 \quad \Longrightarrow \quad \mathbf{v}=\nabla \cdot \Phi
$$

- $\mathfrak{W a r n i n g !}$
- arXiv:2006.07125 does not provide an explicit example that can be checked; but zero-vorticity warp drives in general violate the NEC
- arXiv:2104.06488 only uses metrics not fulfilling junction conditions
- arXiv:2102.06824 only provides static, spherically symmetric metrics, no warp drives
- arXiv:2102.05119, arXiv:2101.11467, arXiv:2008.06560 have issues of their own (require conflicting assumptions, giving empty space, wrong \& important index placement, ...)
- All six (and others before them) claim fulfilment of the energy conditions by finding one(!) observer, usually the Eulerian, to fulfil the necessary inequalities.
- The ' \forall ' in the EC is not, and cannot be shown.

Travelling with It-The 'Rest Frame'

Travelling with It-The 'Boosted Frame'

Sketch of Proof for NEC Violation in Warp Drives

- NEC for $\operatorname{tr}\left(K_{i j}\right)=: K=0, \Longrightarrow \rho+\bar{p}=-\frac{1}{8 \pi} \operatorname{tr}\left(K_{i j} K^{j k}\right) \leq 0$
- NEC for $K=0$ fulfilled $\Longrightarrow K_{i j}=0 \Longrightarrow$ Minkowski

Sketch of Proof for NEC Violation in Warp Drives

- NEC for $\operatorname{tr}\left(K_{i j}\right)=: K=0, \Longrightarrow \rho+\bar{p}=-\frac{1}{8 \pi} \operatorname{tr}\left(K_{i j} K^{j k}\right) \leq 0$
- NEC for $K=0$ fulfilled $\Longrightarrow K_{i j}=0 \Longrightarrow$ Minkowski

- If $K \neq 0$, Eulerian obs. see: $K \simeq 0 \rightarrow K \neq 0 \rightarrow K \simeq 0$ (due to asymptotics)
- In their proper time τ, however:

$$
\mathrm{NEC} \quad \Rightarrow \quad \frac{\mathrm{~d} K}{\mathrm{~d} \tau} \leq-\frac{3}{2} \operatorname{tr}\left(\left[K_{i j}^{\mathrm{tf}}\right]^{2}\right)
$$

- So, either:

Sketch of Proof for NEC Violation in Warp Drives

- NEC for $\operatorname{tr}\left(K_{i j}\right)=: K=0, \Longrightarrow \rho+\bar{p}=-\frac{1}{8 \pi} \operatorname{tr}\left(K_{i j} K^{j k}\right) \leq 0$
- NEC for $K=0$ fulfilled $\Longrightarrow K_{i j}=0 \Longrightarrow$ Minkowski

- If $K \neq 0$, Eulerian obs. see: $K \simeq 0 \rightarrow K \neq 0 \rightarrow K \simeq 0$ (due to asymptotics)
- In their proper time τ, however:

$$
\mathrm{NEC} \quad \Rightarrow \quad \frac{\mathrm{~d} K}{\mathrm{~d} \tau} \leq-\frac{3}{2} \operatorname{tr}\left(\left[K_{i j}^{\mathrm{tf}}\right]^{2}\right)
$$

- So, either:
- K decreases monotonically if NEC fulfilled

Sketch of Proof for NEC Violation in Warp Drives

- NEC for $\operatorname{tr}\left(K_{i j}\right)=: K=0, \Longrightarrow \rho+\bar{p}=-\frac{1}{8 \pi} \operatorname{tr}\left(K_{i j} K^{j k}\right) \leq 0$
- NEC for $K=0$ fulfilled $\Longrightarrow K_{i j}=0 \Longrightarrow$ Minkowski

- If $K \neq 0$, Eulerian obs. see: $K \simeq 0 \rightarrow K \neq 0 \rightarrow K \simeq 0$ (due to asymptotics)
- In their proper time τ, however:

$$
\mathrm{NEC} \quad \Rightarrow \quad \frac{\mathrm{~d} K}{\mathrm{~d} \tau} \leq-\frac{3}{2} \operatorname{tr}\left(\left[K_{i j}^{\mathrm{tf}}\right]^{2}\right)
$$

- So, either:
- K decreases monotonically if NEC fulfilled X, as $K \rightarrow 0$, eventually

Sketch of Proof for NEC Violation in Warp Drives

- NEC for $\operatorname{tr}\left(K_{i j}\right)=: K=0, \Longrightarrow \rho+\bar{p}=-\frac{1}{8 \pi} \operatorname{tr}\left(K_{i j} K^{j k}\right) \leq 0$
- NEC for $K=0$ fulfilled $\Longrightarrow K_{i j}=0 \Longrightarrow$ Minkowski

- If $K \neq 0$, Eulerian obs. see: $K \simeq 0 \rightarrow K \neq 0 \rightarrow K \simeq 0$ (due to asymptotics)
- In their proper time τ, however:

$$
\mathrm{NEC} \quad \Rightarrow \quad \frac{\mathrm{~d} K}{\mathrm{~d} \tau} \leq-\frac{3}{2} \operatorname{tr}\left(\left[K_{i j}^{\mathrm{tf}}\right]^{2}\right)
$$

- So, either:
- K decreases monotonically if NEC fulfilled x, as $K \rightarrow 0$, eventually
- K stays 0

Sketch of Proof for NEC Violation in Warp Drives

- NEC for $\operatorname{tr}\left(K_{i j}\right)=: K=0, \Longrightarrow \rho+\bar{p}=-\frac{1}{8 \pi} \operatorname{tr}\left(K_{i j} K^{j k}\right) \leq 0$
- NEC for $K=0$ fulfilled $\Longrightarrow K_{i j}=0 \Longrightarrow$ Minkowski

- If $K \neq 0$, Eulerian obs. see: $K \simeq 0 \rightarrow K \neq 0 \rightarrow K \simeq 0$ (due to asymptotics)
- In their proper time τ, however:

$$
\mathrm{NEC} \quad \Rightarrow \quad \frac{\mathrm{~d} K}{\mathrm{~d} \tau} \leq-\frac{3}{2} \operatorname{tr}\left(\left[K_{i j}^{\mathrm{tf}}\right]^{2}\right)
$$

- So, either:
- K decreases monotonically if NEC fulfilled x, as $K \rightarrow 0$, eventually
- K stays $0 X$, as now $K \neq 0$

Talking about $T_{a b}$ without $T_{a b}$

- In a given orthonormal frame, the components have an easy interpretation:

$$
\left(T_{\hat{a} \hat{b}}\right)_{\hat{a}, \hat{b}}=\left(\right)
$$

where ρ energy density, \mathbf{f} energy flux, $p_{\hat{\imath}}$ pressures, $T_{\hat{j}}$ shear ${ }^{22}$

- In many contexts, one has relations between these components; 'equations of state'

[^42]
Talking about $T_{a b}$ without $T_{a b}$

- In a given orthonormal frame, the components have an easy interpretation:

$$
\left(T_{\hat{a} \hat{b}}\right)_{\hat{a}, \hat{b}}=\left(\right)
$$

where ρ energy density, \mathbf{f} energy flux, $p_{\hat{\imath}}$ pressures, $T_{\hat{j}}$ shear ${ }^{22}$

- In many contexts, one has relations between these components; 'equations of state'-but GR does not have a lot

[^43]
Talking about $T_{a b}$ without $T_{a b}$

- In a given orthonormal frame, the components have an easy interpretation:

$$
\left(T_{\hat{a} \hat{b}}\right)_{\hat{a}, \hat{b}}=\left(\right)
$$

where ρ energy density, \mathbf{f} energy flux, $p_{\hat{\imath}}$ pressures, $T_{\hat{j}}$ shear ${ }^{22}$

- In many contexts, one has relations between these components; 'equations of state'—but GR does not have a lot
- Instead of such equalities, find more general inequalities \Rightarrow Energy Conditions (ECs)

[^44]
An Important Technicality

- There is some reliance on the 'Hawking-Ellis classification' of stress-energy tensors ${ }^{23}$
- This is based on classifying eigenvectors of $T^{\hat{a}}{ }_{\hat{b}}$
- Warnint!
- $T_{\hat{b}}^{\hat{b}}$ is not necessarily symmetric, even in GR!
- Equivalently, not every self-adjoint ('symmetric') endomorphism T is real diagonalizable if the scalar product g is Lorentzian
- Equivalently, there is not necessarily a real tetrad diagonalizing T

[^45]
An Important Technicality

- There is some reliance on the 'Hawking-Ellis classification' of stress-energy tensors ${ }^{23}$
- This is based on classifying eigenvectors of $T^{\hat{a}}{ }_{\hat{b}}$
- Warníny!
- $T_{\hat{b}}^{\hat{b}}$ is not necessarily symmetric, even in GR!
- Equivalently, not every self-adjoint ('symmetric') endomorphism T is real diagonalizable if the scalar product g is Lorentzian
- Equivalently, there is not necessarily a real tetrad diagonalizing T
- Care is needed if diagonalizability of $T^{\hat{a}}{ }_{\hat{b}}$ is assumed

[^46]
An Important Technicality

- There is some reliance on the 'Hawking-Ellis classification' of stress-energy tensors ${ }^{23}$
- This is based on classifying eigenvectors of $T^{\hat{a}}{ }_{\hat{b}}$
- Warníny!
- $T_{\hat{a}}^{\hat{b}}$ is not necessarily symmetric, even in GR!
- Equivalently, not every self-adjoint ('symmetric') endomorphism T is real diagonalizable if the scalar product g is Lorentzian
- Equivalently, there is not necessarily a real tetrad diagonalizing T
- Care is needed if diagonalizability of $T_{\hat{b}}^{\hat{b}}$ is assumed
- Much.

[^47]
Extensions, Part I: Averaged Energy Conditions

Maybe, the issue is the 'pointwise'. Instead average over various things:

Extensions, Part I: Averaged Energy Conditions

Maybe, the issue is the 'pointwise'. Instead average over various things:

- $R_{a b}$ or $T_{a b}$ over null curves \longrightarrow ANEC

Extensions, Part I: Averaged Energy Conditions

Maybe, the issue is the 'pointwise'. Instead average over various things:

- $R_{a b}$ or $T_{a b}$ over null curves \longrightarrow ANEC
- $R_{a b}$ or $T_{a b}$ over achronal, null curves \longrightarrow AANEC

Extensions, Part I: Averaged Energy Conditions

Maybe, the issue is the 'pointwise'. Instead average over various things:

- $R_{a b}$ or $T_{a b}$ over null curves \longrightarrow ANEC
- $R_{a b}$ or $T_{a b}$ over achronal, null curves \longrightarrow AANEC
- $G_{a b}$ or $T_{a b}$ over timelike curves \longrightarrow AWEC

Extensions, Part I: Averaged Energy Conditions

Maybe, the issue is the 'pointwise'. Instead average over various things:

- $R_{a b}$ or $T_{a b}$ over null curves \longrightarrow ANEC
- $R_{a b}$ or $T_{a b}$ over achronal, null curves \longrightarrow AANEC
- $G_{a b}$ or $T_{a b}$ over timelike curves \longrightarrow AWEC
- $R_{a b}$ or $T_{a b}-\frac{1}{2} T g_{a b}$ over null curves \longrightarrow ASEC

Extensions, Part I: Averaged Energy Conditions

Maybe, the issue is the 'pointwise'. Instead average over various things:

- $R_{a b}$ or $T_{a b}$ over null curves \longrightarrow ANEC
- $R_{a b}$ or $T_{a b}$ over achronal, null curves \longrightarrow AANEC
- $G_{a b}$ or $T_{a b}$ over timelike curves \longrightarrow AWEC
- $R_{a b}$ or $T_{a b}-\frac{1}{2} T g_{a b}$ over null curves \longrightarrow ASEC

Still, especially (plausible) quantum matter can violate them.

Extensions, Part I: Averaged Energy Conditions

Maybe, the issue is the 'pointwise'. Instead average over various things:

- $R_{a b}$ or $T_{a b}$ over null curves \longrightarrow ANEC
- $R_{a b}$ or $T_{a b}$ over achronal, null curves \longrightarrow AANEC
- $G_{a b}$ or $T_{a b}$ over timelike curves \longrightarrow AWEC
- $R_{a b}$ or $T_{a b}-\frac{1}{2} T g_{a b}$ over null curves \longrightarrow ASEC

Still, especially (plausible) quantum matter can violate them.

Especially ANEC and AANEC found use, e.g., in the topological censorship theorem, see arXiv:gr-qc/9305017

Extensions, Part II: Quantum Energy Inequalities ${ }^{24}$

- Instead of trying to guess the conditions, start from first principles.

[^48]
Extensions, Part II: Quantum Energy Inequalities ${ }^{24}$

- Instead of trying to guess the conditions, start from first principles.
- Choose a quantum field, compare possible (Hadamard) states with a reference state (e.g., normal-ordered, ...)

[^49]
Extensions, Part II: Quantum Energy Inequalities ${ }^{24}$

- Instead of trying to guess the conditions, start from first principles.
- Choose a quantum field, compare possible (Hadamard) states with a reference state (e.g., normal-ordered, ...)
- Get a lower (negative) bound that cannot be broken

[^50]
Extensions, Part II: Quantum Energy Inequalities ${ }^{24}$

- Instead of trying to guess the conditions, start from first principles.
- Choose a quantum field, compare possible (Hadamard) states with a reference state (e.g., normal-ordered, ...)
- Get a lower (negative) bound that cannot be broken
- Some averaged energy conditions can be regained sometimes

[^51]
Extensions, Part II: Quantum Energy Inequalities ${ }^{24}$

- Instead of trying to guess the conditions, start from first principles.
- Choose a quantum field, compare possible (Hadamard) states with a reference state (e.g., normal-ordered, ...)
- Get a lower (negative) bound that cannot be broken
- Some averaged energy conditions can be regained sometimes
- Finally a definitive application of algebraic QFT

[^52]
Kuchař's Criticisms

(1) Wrong localization for relativistic particles
\rightarrow Covariant POVM allow approximate Newton-Wigner localization ${ }^{2}$
(2) Constraint violation
\rightarrow PW's conditional probabilities as gauge-fixed expressions of a gauge-invariant ('clock-neutral') quantity ${ }^{1}$
(3) Predict wrong propagators
\rightarrow Resolved by introducing a two-time conditional probability ${ }^{1}$

[^53]
Unruh and Wald's Criticism

Lack of monotonicity (variant of Pauli/Schrödinger result)
\rightarrow Covariance of POVM saves the day ${ }^{1}$
${ }^{1}$ Höhn et al. arXiv:1912.00033

[^0]: Image source: Hawking \& Ellis, p. 169

[^1]: ${ }^{1}$ Alcubierre '94, arXiv:gr-qc/0110086
 ${ }^{2} \mathfrak{W}$ arning! The quotation marks do heavy lifting! Cf. Painlevé-Gullstrand coordinates!
 ${ }^{3}$ Natário '02 arXiv:gr-qc/0009013

[^2]: ${ }^{4}$ Santiago, SeSc, Visser '22 arXiv:2105.03079
 ${ }^{5}$ Santiago, SeSc, Visser '22 arXiv:2205.15950

[^3]: ${ }^{4}$ Santiago, SeSc, Visser '22 arXiv:2105.03079
 ${ }^{5}$ Santiago, SeSc, Visser '22 arXiv:2205.15950

[^4]: ${ }^{4}$ Santiago, SeSc, Visser '22 arXiv:2105.03079
 ${ }^{5}$ Santiago, SeSc, Visser '22 arXiv:2205.15950

[^5]: ${ }^{4}$ Santiago, SeSc, Visser '22 arXiv:2105.03079
 ${ }^{5}$ Santiago, SeSc, Visser '22 arXiv:2205.15950

[^6]: ${ }^{8}$ Following Curiel '14 arXiv:1405.0403 and Barceló \& Visser '02 arXiv:gr-qc/0205066

[^7]: ${ }^{8}$ Following Curiel '14 arXiv:1405.0403 and Barceló \& Visser '02 arXiv:gr-qc/0205066

[^8]: ${ }^{9}$ Zel'dovich '62 JETP 14(5), 1143-1147
 ${ }^{10}$ Martín-Moruno \& Visser '17 arXiv:1702.05915

[^9]: ${ }^{9}$ Zel'dovich '62 JETP 14(5), 1143-1147
 ${ }^{10}$ Martín-Moruno \& Visser '17 arXiv:1702.05915

[^10]: ${ }^{9}$ Zel'dovich '62 JETP 14(5), 1143-1147
 ${ }^{10}$ Martín-Moruno \& Visser '17 arXiv:1702.05915

[^11]: ${ }^{9}$ Zel'dovich '62 JETP 14(5), 1143-1147
 ${ }^{10}$ Martín-Moruno \& Visser '17 arXiv:1702.05915

[^12]: ${ }^{9}$ Zel'dovich '62 JETP 14(5), 1143-1147
 ${ }^{10}$ Martín-Moruno \& Visser '17 arXiv:1702.05915

[^13]: ${ }^{11}$ Manchak (2021), doi:10.1007/978-3-030-64187-0_17

[^14]: ${ }^{11}$ Manchak（2021），doi：10．1007／978－3－030－64187－0＿17
 ${ }^{12}$ Manchak（2009），doi：10．1086／605806

[^15]: ${ }^{11}$ Manchak（2021），doi：10．1007／978－3－030－64187－0＿17
 ${ }^{12}$ Manchak（2009），doi：10．1086／605806

[^16]: ${ }^{13}$ SeSc 2023 arXiv:2305.08725

[^17]: ${ }^{14}$ Well . . . given the topic

[^18]: ${ }^{14}$ Well . . . given the topic

[^19]: ${ }^{14}$ Well . . . given the topic

[^20]: ${ }^{15}$ Pons, Sundermeyer, Salisbury arXiv:1001.2726

[^21]: ${ }^{15}$ Pons, Sundermeyer, Salisbury arXiv:1001.2726

[^22]: ${ }^{15}$ Pons, Sundermeyer, Salisbury arXiv:1001.2726

[^23]: ${ }^{16}$ Barceló, Visser arXiv:gr-qc/0205066, Santiago et al. arXiv:2105.03079, SeSc arXiv:2305.08725

[^24]: ${ }^{16}$ Barceló, Visser arXiv:gr-qc/0205066, Santiago et al. arXiv:2105.03079, SeSc arXiv:2305.08725

[^25]: ${ }^{16}$ Barceló, Visser arXiv:gr-qc/0205066, Santiago et al. arXiv:2105.03079, SeSc arXiv:2305.08725

[^26]: ${ }^{16}$ Barceló, Visser arXiv:gr-qc/0205066, Santiago et al. arXiv:2105.03079, SeSc arXiv:2305.08725

[^27]: ${ }^{16}$ Barceló, Visser arXiv:gr-qc/0205066, Santiago et al. arXiv:2105.03079, SeSc arXiv:2305.08725

[^28]: ${ }^{17}$ Busch, Grabowski, Lahti - 'Operational Quantum Physics', ISBN: 3-540-59358-6

[^29]: ${ }^{17}$ Busch, Grabowski, Lahti - 'Operational Quantum Physics', ISBN: 3-540-59358-6

[^30]: ${ }^{17}$ Busch, Grabowski, Lahti - 'Operational Quantum Physics', ISBN: 3-540-59358-6

[^31]: ${ }^{17}$ Busch, Grabowski, Lahti - 'Operational Quantum Physics', ISBN: 3-540-59358-6

[^32]: ${ }^{18}$ Paraphrasing Einstein's 1905 article on special relativity.

[^33]: ${ }^{18}$ Paraphrasing Einstein's 1905 article on special relativity.

[^34]: ${ }^{18}$ Paraphrasing Einstein's 1905 article on special relativity.

[^35]: ${ }^{18}$ Paraphrasing Einstein's 1905 article on special relativity.

[^36]: ${ }^{18}$ Paraphrasing Einstein's 1905 article on special relativity.

[^37]: ${ }^{18}$ Paraphrasing Einstein's 1905 article on special relativity.

[^38]: ${ }^{19}$ E.g., arXiv:1912.00033 and arXiv:2007.00580.

[^39]: ${ }^{19}$ E.g., arXiv:1912.00033 and arXiv:2007.00580.
 ${ }^{20}$ Unruh, Wald 1989 doi:10.1103/PhysRevD.40.2598, Kuchař 2011/1991, doi:10.1142/S0218271811019347

[^40]: ${ }^{21}$ Safranek et al., arXiv:1803.00665

[^41]: ${ }^{21}$ Safranek et al., arXiv:1803.00665

[^42]: ${ }^{22}$ Assuming GR; hence $T_{a b}=T_{b a}$.

[^43]: ${ }^{22}$ Assuming GR; hence $T_{a b}=T_{b a}$.

[^44]: ${ }^{22}$ Assuming GR; hence $T_{a b}=T_{b a}$.

[^45]: ${ }^{23}$ arXiv:1802.00865

[^46]: ${ }^{23}$ arXiv:1802.00865

[^47]: ${ }^{23}$ arXiv:1802.00865

[^48]: ${ }^{24}$ See arXiv:1208.5399, or arXiv:2108.12668

[^49]: ${ }^{24}$ See arXiv:1208.5399, or arXiv:2108.12668

[^50]: ${ }^{24}$ See arXiv:1208.5399, or arXiv:2108.12668

[^51]: ${ }^{24}$ See arXiv:1208.5399, or arXiv:2108.12668

[^52]: ${ }^{24}$ See arXiv:1208.5399, or arXiv:2108.12668

[^53]: ${ }^{2}$ Höhn et al. arXiv:2007.00580
 ${ }^{1}$ Höhn et al. arXiv:1912.00033

