|
subroutine | cgto_hgp_gbl::cgto_hgp_final |
|
subroutine | cgto_hgp_gbl::calc_can (sum_l) |
|
subroutine | cgto_hgp_gbl::allocate_space (la, lb, lc, ld, space_vrr_tgt, space_et_tgt, space_sph_ints, space_vrr_buf, space_et_buf, space_hrr1_buf, space_hrr2_buf, space_hrr1_tgt, space_hrr2_tgt) |
|
subroutine | cgto_hgp_gbl::allocate_space_sph_transf (la, lb, lc, ld) |
|
subroutine | cgto_hgp_gbl::eri (lena, xa, ya, za, anorms, la, aexps, acoefs, ind_a, lenb, xb, yb, zb, bnorms, lb, bexps, bcoefs, ind_b, lenc, xc, yc, zc, cnorms, lc, cexps, ccoefs, ind_c, lend, xd, yd, zd, dnorms, ld, dexps, dcoefs, ind_d, two_el_column, int_index, keep_ab_cd_order, indexing_method, do_tails_for_this_quartet, ab_is_continuum, tgt_prop, tgt_pair, rmat_radius, sph_ints) |
|
subroutine | cgto_hgp_gbl::eri_shell (lena, xa, ya, za, anorms, la, aexps, acoefs, lenb, xb, yb, zb, bnorms, lb, bexps, bcoefs, lenc, xc, yc, zc, cnorms, lc, cexps, ccoefs, lend, xd, yd, zd, dnorms, ld, dexps, dcoefs, two_el_column, sph_ints) |
|
subroutine | cgto_hgp_gbl::reorder_p_shells (sph_ints, la, lb, lc, ld) |
|
subroutine | cgto_hgp_gbl::hrr1 (la, xa, ya, za, lb, xb, yb, zb, lc, ld, src, tgt, space_hrr1_buf) |
|
subroutine | cgto_hgp_gbl::hrr1_micro (can_y_start, can_y_end, s_xp1, stride, ind_wsys_base, ind_wxy_base, ind_p1_base, ind_base, buf1_tgt, buf1, buf2, et_tgt, can_w, can_wp1, r_ab) |
|
subroutine | cgto_hgp_gbl::hrr1_micro_xp1_p (can_y_start, can_y_end, stride, ind_base, ind_wsys_base, tgt, src, can_w, can_wp1, r_ab) |
|
subroutine | cgto_hgp_gbl::hrr1_micro_xp1_general (can_y_start, can_y_end, ind_wxy_base, ind_p1_base, ind_base, tgt, src, r_ab) |
|
subroutine | cgto_hgp_gbl::from_hrr1_tgt_to_hrr2_src (la, lb, s_y, src, tgt, last) |
|
subroutine | cgto_hgp_gbl::hrr2 (lc, xc, yc, zc, ld, xd, yd, zd, la, lb, src, tgt, space_hrr2_buf) |
|
subroutine | cgto_hgp_gbl::hrr2_micro (ld, s_zp1, in_shells_ab, r_cd, ind_base, ind_wxyp1z_base, ind_wxyz_base, hrr2_bufA_tgt, hrr2_bufA, hrr2_bufB, src, tgt) |
|
subroutine | cgto_hgp_gbl::hrr2_micro_zp1_general (in_shells_ab, ind_base, ind_wxyp1z_base, ind_wxyz_base, r_cd, src, tgt) |
|
subroutine | cgto_hgp_gbl::contr_vrr (lena, xa, ya, za, anorms, aexps, acoefs, lenb, xb, yb, zb, bnorms, bexps, bcoefs, lenc, xc, yc, zc, cnorms, cexps, ccoefs, lend, xd, yd, zd, dnorms, dexps, dcoefs, la, lb, lc, ld, contr_et_tgt, size_contr_et, size_vrr_tgt, size_vrr_buff, size_et_buff) |
|
subroutine | cgto_hgp_gbl::vrr_et (xa, ya, za, alphaa, xb, yb, zb, alphab, xc, yc, zc, alphac, xd, yd, zd, alphad, la, lb, lc, ld, rab2, rcd2, Fm, vrr_buf1, vrr_buf2, vrr_buf3, vrr_tgt, et_buf2, et_buf3, et_tgt) |
|
subroutine | cgto_hgp_gbl::vrr_psss (m_max, wpx, wpy, wpz, pax, pay, paz, aux1, aux2, tgt) |
|
subroutine | cgto_hgp_gbl::vrr_xsss (m_max, wpx, wpy, wpz, pax, pay, paz, two_zeta, e_o_ez, aux1, aux2, aux3, tgt) |
|
subroutine | cgto_hgp_gbl::xsss (m_max, shell, aux1, aux2, aux3, wpx, wpy, wpz, pax, pay, paz, two_zeta, e_o_ez) |
|
subroutine | cgto_hgp_gbl::et_xsys (m_max, la, lb, lc, ld, deltax, deltay, deltaz, zeta, eta, two_eta, et_buf1, et_buf2, et_buf3, et_tgt) |
|
subroutine | cgto_hgp_gbl::et_xsys_micro (x_dir, y_dir, col_ym1, col_y, col_yp1, n_y, s_x, in_shell, before_s_xm1, before_s_x, before_s_xp1, delta, alp_ab_cd, two_eta, src1, src2, et_buf1, et_buf2, et_buf3) |
|
subroutine | cgto_hgp_gbl::et_xsys_micro_X_dir (src1, src2, tgt, n_y, s_x, in_shell, before_s_xm1, before_s_x, before_s_xp1, col_ym1, col_y, col_yp1, delta, alp_ab_cd, two_eta) |
|
subroutine | cgto_hgp_gbl::et_xsys_micro_Y_dir (src1, src2, tgt, n_y, s_x, in_shell, before_s_xm1, before_s_x, before_s_xp1, col_ym1, col_y, col_yp1, delta, alp_ab_cd, two_eta) |
|
subroutine | cgto_hgp_gbl::et_xsys_micro_Z_dir (src1, src2, tgt, n_y, s_x, in_shell, before_s_xm1, before_s_x, before_s_xp1, col_ym1, col_y, col_yp1, delta, alp_ab_cd, two_eta) |
|
subroutine | cgto_hgp_gbl::sh_ab (cart_ints, ab_sph_ints, la, lb, nc, nd) |
|
subroutine | cgto_hgp_gbl::sh_cd (ab_sph_ints, sph_ints, na, nb, lc, ld) |
|
elemental integer function | cgto_hgp_gbl::nshell (l) |
|
elemental integer function | cgto_hgp_gbl::ncart (l) |
|
elemental integer function | cgto_hgp_gbl::can (ixyz, ix, iz) |
|
elemental integer function | cgto_hgp_gbl::can_shell (ixyz, ix, iz) |
|
elemental real(kind=cfp) function | cgto_hgp_gbl::dist2 (x1, y1, z1, x2, y2, z2) |
|
elemental real(kind=cfp) function | cgto_hgp_gbl::product_center_1D (alphaa, xa, alphab, xb) |
|
subroutine | cgto_hgp_gbl::sph_olap_kei (lena, xa, ya, za, acnorm, anorms, la, aexps, acoefs, ind_a, lenb, xb, yb, zb, bcnorm, bnorms, lb, bexps, bcoefs, ind_b, olap_column, kei_column, integrals, int_index) |
|
subroutine | cgto_hgp_gbl::sph_mult_mom (lena, xa, ya, za, acnorm, anorms, la, aexps, acoefs, ind_a, lc, xc, yc, zc, lenb, xb, yb, zb, bcnorm, bnorms, lb, bexps, bcoefs, ind_b, property_column, sph_mult, int_index) |
|
subroutine | cgto_hgp_gbl::sph_mult_mom_shell (lena, xa, ya, za, acnorm, anorms, la, aexps, acoefs, lc, xc, yc, zc, lenb, xb, yb, zb, bcnorm, bnorms, lb, bexps, bcoefs, property_column, sph_mult_mom) |
|
subroutine | cgto_hgp_gbl::prim_cart_mult_mom (la, lc, lb, Rab, Rpa, Rac, K_ab, alp_ab, cart_mom) |
| Calculates the cartesian multipole moment integrals for a pair of shells of primitive GTOs and a given shell L of the multipole moment. More...
|
|
subroutine | cgto_hgp_gbl::mult_mom_recurrence (S, Rab, Rpa, Rac, la, lc, lb, alp_ab) |
| This routine implements the Obara-Saika recurrent relations for the GTO auxiliary overlap integrals needed for calculation of multipole moment integrals for a pair of cartesian GTOs. See Helgaker - Sections 9.3.2 for the equations. More...
|
|
subroutine | cgto_hgp_gbl::sph_olap_kei_shell (lena, xa, ya, za, acnorm, anorms, la, aexps, acoefs, lenb, xb, yb, zb, bcnorm, bnorms, lb, bexps, bcoefs, olap_column, kei_column, integrals) |
|
subroutine | cgto_hgp_gbl::prim_cart_olap_kei (la, lb, Rab, Rpa, K_ab, a, alp_ab, cart_olap, cart_kei) |
|
subroutine | cgto_hgp_gbl::cart_olap (xa, ya, za, ix, iy, iz, aexp, xb, yb, zb, jx, jy, jz, bexp, olap) |
| Calculates overlap integral between a pair of primitive cartesian functions. Note that this routine is used for conversion of orbital coefficients from one basis to another so it does not need to be very efficient or sophisticated. Therefore this routine is different to the sph_olap_kei which calculates the integrals over the whole pair of shells of functions and returns the KE integral as well. More...
|
|
subroutine | cgto_hgp_gbl::cart_olap_pair (xa, ya, za, la, ix, iy, iz, aexp, xb, yb, zb, lb, jx, jy, jz, bexp, olap) |
| Assuming la .ge. lb (la = ix+iy+iz, lb = jx+jy+jz) this routine calculates the overlap integral between a pair of primitive Gaussian functions. More...
|
|
subroutine | cgto_hgp_gbl::olap_ke_recurrence (S0, Rab, Rpa, la, lb, alp_ab) |
| This routine implements the Obara-Saika recurrent relations for the GTO auxiliary overlap integrals needed for calculation of overlaps and kinetic energy integrals for a pair of cartesian GTOs. See Helgaker - Sections 9.3.1, 9.3.4 for the equations. More...
|
|
subroutine | cgto_hgp_gbl::S0_to_D2 (S0, D2, a, la, lb) |
|
subroutine | cgto_hgp_gbl::sph_nari (lena, xa, ya, za, acnorm, anorms, la, aexps, acoefs, ind_a, lenb, xb, yb, zb, bcnorm, bnorms, lb, bexps, bcoefs, ind_b, xc, yc, zc, sph_nari_int, int_index) |
|
subroutine | cgto_hgp_gbl::sph_nari_shell (lena, xa, ya, za, acnorm, anorms, la, aexps, acoefs, lenb, xb, yb, zb, bcnorm, bnorms, lb, bexps, bcoefs, xc, yc, zc, sph_nari_int) |
|
subroutine | cgto_hgp_gbl::contr_vrr_nari (lena, xa, ya, za, acnorm, anorms, aexps, acoefs, lenb, xb, yb, zb, bcnorm, bnorms, bexps, bcoefs, xc, yc, zc, la, lb, contr_et_tgt, size_contr_et, size_vrr_tgt, size_vrr_buff) |
|
subroutine | cgto_hgp_gbl::vrr_nari (xa, ya, za, alphaa, xb, yb, zb, alphab, xc, yc, zc, la, lb, Fm, vrr_buf1, vrr_buf2, vrr_buf3, vrr_tgt, et_tgt) |
|