GBTOlib: library for evaluation of molecular integrals in mixed Gaussian / B-spline basis  111
Functions/Subroutines | Variables
cgto_hgp_gbl Module Reference

Functions/Subroutines

subroutine cgto_hgp_final
 
subroutine calc_can (sum_l)
 
subroutine allocate_space (la, lb, lc, ld, space_vrr_tgt, space_et_tgt, space_sph_ints, space_vrr_buf, space_et_buf, space_hrr1_buf, space_hrr2_buf, space_hrr1_tgt, space_hrr2_tgt)
 
subroutine allocate_space_sph_transf (la, lb, lc, ld)
 
subroutine eri (lena, xa, ya, za, anorms, la, aexps, acoefs, ind_a, lenb, xb, yb, zb, bnorms, lb, bexps, bcoefs, ind_b, lenc, xc, yc, zc, cnorms, lc, cexps, ccoefs, ind_c, lend, xd, yd, zd, dnorms, ld, dexps, dcoefs, ind_d, two_el_column, int_index, keep_ab_cd_order, indexing_method, do_tails_for_this_quartet, ab_is_continuum, tgt_prop, tgt_pair, rmat_radius, sph_ints)
 
subroutine eri_shell (lena, xa, ya, za, anorms, la, aexps, acoefs, lenb, xb, yb, zb, bnorms, lb, bexps, bcoefs, lenc, xc, yc, zc, cnorms, lc, cexps, ccoefs, lend, xd, yd, zd, dnorms, ld, dexps, dcoefs, two_el_column, sph_ints)
 
subroutine reorder_p_shells (sph_ints, la, lb, lc, ld)
 
subroutine hrr1 (la, xa, ya, za, lb, xb, yb, zb, lc, ld, src, tgt, space_hrr1_buf)
 
subroutine hrr1_micro (can_y_start, can_y_end, s_xp1, stride, ind_wsys_base, ind_wxy_base, ind_p1_base, ind_base, buf1_tgt, buf1, buf2, et_tgt, can_w, can_wp1, r_ab)
 
subroutine hrr1_micro_xp1_p (can_y_start, can_y_end, stride, ind_base, ind_wsys_base, tgt, src, can_w, can_wp1, r_ab)
 
subroutine hrr1_micro_xp1_general (can_y_start, can_y_end, ind_wxy_base, ind_p1_base, ind_base, tgt, src, r_ab)
 
subroutine from_hrr1_tgt_to_hrr2_src (la, lb, s_y, src, tgt, last)
 
subroutine hrr2 (lc, xc, yc, zc, ld, xd, yd, zd, la, lb, src, tgt, space_hrr2_buf)
 
subroutine hrr2_micro (ld, s_zp1, in_shells_ab, r_cd, ind_base, ind_wxyp1z_base, ind_wxyz_base, hrr2_bufA_tgt, hrr2_bufA, hrr2_bufB, src, tgt)
 
subroutine hrr2_micro_zp1_general (in_shells_ab, ind_base, ind_wxyp1z_base, ind_wxyz_base, r_cd, src, tgt)
 
subroutine contr_vrr (lena, xa, ya, za, anorms, aexps, acoefs, lenb, xb, yb, zb, bnorms, bexps, bcoefs, lenc, xc, yc, zc, cnorms, cexps, ccoefs, lend, xd, yd, zd, dnorms, dexps, dcoefs, la, lb, lc, ld, contr_et_tgt, size_contr_et, size_vrr_tgt, size_vrr_buff, size_et_buff)
 
subroutine vrr_et (xa, ya, za, alphaa, xb, yb, zb, alphab, xc, yc, zc, alphac, xd, yd, zd, alphad, la, lb, lc, ld, rab2, rcd2, Fm, vrr_buf1, vrr_buf2, vrr_buf3, vrr_tgt, et_buf2, et_buf3, et_tgt)
 
subroutine vrr_psss (m_max, wpx, wpy, wpz, pax, pay, paz, aux1, aux2, tgt)
 
subroutine vrr_xsss (m_max, wpx, wpy, wpz, pax, pay, paz, two_zeta, e_o_ez, aux1, aux2, aux3, tgt)
 
subroutine xsss (m_max, shell, aux1, aux2, aux3, wpx, wpy, wpz, pax, pay, paz, two_zeta, e_o_ez)
 
subroutine et_xsys (m_max, la, lb, lc, ld, deltax, deltay, deltaz, zeta, eta, two_eta, et_buf1, et_buf2, et_buf3, et_tgt)
 
subroutine et_xsys_micro (x_dir, y_dir, col_ym1, col_y, col_yp1, n_y, s_x, in_shell, before_s_xm1, before_s_x, before_s_xp1, delta, alp_ab_cd, two_eta, src1, src2, et_buf1, et_buf2, et_buf3)
 
subroutine et_xsys_micro_X_dir (src1, src2, tgt, n_y, s_x, in_shell, before_s_xm1, before_s_x, before_s_xp1, col_ym1, col_y, col_yp1, delta, alp_ab_cd, two_eta)
 
subroutine et_xsys_micro_Y_dir (src1, src2, tgt, n_y, s_x, in_shell, before_s_xm1, before_s_x, before_s_xp1, col_ym1, col_y, col_yp1, delta, alp_ab_cd, two_eta)
 
subroutine et_xsys_micro_Z_dir (src1, src2, tgt, n_y, s_x, in_shell, before_s_xm1, before_s_x, before_s_xp1, col_ym1, col_y, col_yp1, delta, alp_ab_cd, two_eta)
 
subroutine sh_ab (cart_ints, ab_sph_ints, la, lb, nc, nd)
 
subroutine sh_cd (ab_sph_ints, sph_ints, na, nb, lc, ld)
 
elemental integer function nshell (l)
 
elemental integer function ncart (l)
 
elemental integer function can (ixyz, ix, iz)
 
elemental integer function can_shell (ixyz, ix, iz)
 
elemental real(kind=cfp) function dist2 (x1, y1, z1, x2, y2, z2)
 
elemental real(kind=cfp) function product_center_1D (alphaa, xa, alphab, xb)
 
subroutine sph_olap_kei (lena, xa, ya, za, acnorm, anorms, la, aexps, acoefs, ind_a, lenb, xb, yb, zb, bcnorm, bnorms, lb, bexps, bcoefs, ind_b, olap_column, kei_column, integrals, int_index)
 
subroutine sph_mult_mom (lena, xa, ya, za, acnorm, anorms, la, aexps, acoefs, ind_a, lc, xc, yc, zc, lenb, xb, yb, zb, bcnorm, bnorms, lb, bexps, bcoefs, ind_b, property_column, sph_mult, int_index)
 
subroutine sph_mult_mom_shell (lena, xa, ya, za, acnorm, anorms, la, aexps, acoefs, lc, xc, yc, zc, lenb, xb, yb, zb, bcnorm, bnorms, lb, bexps, bcoefs, property_column, sph_mult_mom)
 
subroutine prim_cart_mult_mom (la, lc, lb, Rab, Rpa, Rac, K_ab, alp_ab, cart_mom)
 Calculates the cartesian multipole moment integrals for a pair of shells of primitive GTOs and a given shell L of the multipole moment. More...
 
subroutine mult_mom_recurrence (S, Rab, Rpa, Rac, la, lc, lb, alp_ab)
 This routine implements the Obara-Saika recurrent relations for the GTO auxiliary overlap integrals needed for calculation of multipole moment integrals for a pair of cartesian GTOs. See Helgaker - Sections 9.3.2 for the equations. More...
 
subroutine sph_olap_kei_shell (lena, xa, ya, za, acnorm, anorms, la, aexps, acoefs, lenb, xb, yb, zb, bcnorm, bnorms, lb, bexps, bcoefs, olap_column, kei_column, integrals)
 
subroutine prim_cart_olap_kei (la, lb, Rab, Rpa, K_ab, a, alp_ab, cart_olap, cart_kei)
 
subroutine cart_olap (xa, ya, za, ix, iy, iz, aexp, xb, yb, zb, jx, jy, jz, bexp, olap)
 Calculates overlap integral between a pair of primitive cartesian functions. Note that this routine is used for conversion of orbital coefficients from one basis to another so it does not need to be very efficient or sophisticated. Therefore this routine is different to the sph_olap_kei which calculates the integrals over the whole pair of shells of functions and returns the KE integral as well. More...
 
subroutine cart_olap_pair (xa, ya, za, la, ix, iy, iz, aexp, xb, yb, zb, lb, jx, jy, jz, bexp, olap)
 Assuming la .ge. lb (la = ix+iy+iz, lb = jx+jy+jz) this routine calculates the overlap integral between a pair of primitive Gaussian functions. More...
 
subroutine olap_ke_recurrence (S0, Rab, Rpa, la, lb, alp_ab)
 This routine implements the Obara-Saika recurrent relations for the GTO auxiliary overlap integrals needed for calculation of overlaps and kinetic energy integrals for a pair of cartesian GTOs. See Helgaker - Sections 9.3.1, 9.3.4 for the equations. More...
 
subroutine S0_to_D2 (S0, D2, a, la, lb)
 
subroutine sph_nari (lena, xa, ya, za, acnorm, anorms, la, aexps, acoefs, ind_a, lenb, xb, yb, zb, bcnorm, bnorms, lb, bexps, bcoefs, ind_b, xc, yc, zc, sph_nari_int, int_index)
 
subroutine sph_nari_shell (lena, xa, ya, za, acnorm, anorms, la, aexps, acoefs, lenb, xb, yb, zb, bcnorm, bnorms, lb, bexps, bcoefs, xc, yc, zc, sph_nari_int)
 
subroutine contr_vrr_nari (lena, xa, ya, za, acnorm, anorms, aexps, acoefs, lenb, xb, yb, zb, bcnorm, bnorms, bexps, bcoefs, xc, yc, zc, la, lb, contr_et_tgt, size_contr_et, size_vrr_tgt, size_vrr_buff)
 
subroutine vrr_nari (xa, ya, za, alphaa, xb, yb, zb, alphab, xc, yc, zc, la, lb, Fm, vrr_buf1, vrr_buf2, vrr_buf3, vrr_tgt, et_tgt)
 

Variables

real(kind=cfp), dimension(:), allocatable eri_tail_int
 

Function/Subroutine Documentation

◆ allocate_space()

subroutine cgto_hgp_gbl::allocate_space ( integer, intent(in)  la,
integer, intent(in)  lb,
integer, intent(in)  lc,
integer, intent(in)  ld,
integer, intent(out)  space_vrr_tgt,
integer, intent(out)  space_et_tgt,
integer, intent(out)  space_sph_ints,
integer, intent(out)  space_vrr_buf,
integer, intent(out)  space_et_buf,
integer, intent(out)  space_hrr1_buf,
integer, intent(out)  space_hrr2_buf,
integer, intent(out)  space_hrr1_tgt,
integer, intent(out)  space_hrr2_tgt 
)
Here is the call graph for this function:

◆ allocate_space_sph_transf()

subroutine cgto_hgp_gbl::allocate_space_sph_transf ( integer, intent(in)  la,
integer, intent(in)  lb,
integer, intent(in)  lc,
integer, intent(in)  ld 
)
Here is the call graph for this function:

◆ calc_can()

subroutine cgto_hgp_gbl::calc_can ( integer, intent(in)  sum_l)
Here is the call graph for this function:

◆ can()

elemental integer function cgto_hgp_gbl::can ( integer, intent(in)  ixyz,
integer, intent(in)  ix,
integer, intent(in)  iz 
)

◆ can_shell()

elemental integer function cgto_hgp_gbl::can_shell ( integer, intent(in)  ixyz,
integer, intent(in)  ix,
integer, intent(in)  iz 
)

◆ cart_olap()

subroutine cgto_hgp_gbl::cart_olap ( real(kind=cfp), intent(in)  xa,
real(kind=cfp), intent(in)  ya,
real(kind=cfp), intent(in)  za,
integer, intent(in)  ix,
integer, intent(in)  iy,
integer, intent(in)  iz,
real(kind=cfp), intent(in)  aexp,
real(kind=cfp), intent(in)  xb,
real(kind=cfp), intent(in)  yb,
real(kind=cfp), intent(in)  zb,
integer, intent(in)  jx,
integer, intent(in)  jy,
integer, intent(in)  jz,
real(kind=cfp), intent(in)  bexp,
real(kind=cfp), intent(out)  olap 
)

Calculates overlap integral between a pair of primitive cartesian functions. Note that this routine is used for conversion of orbital coefficients from one basis to another so it does not need to be very efficient or sophisticated. Therefore this routine is different to the sph_olap_kei which calculates the integrals over the whole pair of shells of functions and returns the KE integral as well.

Here is the call graph for this function:

◆ cart_olap_pair()

subroutine cgto_hgp_gbl::cart_olap_pair ( real(kind=cfp), intent(in)  xa,
real(kind=cfp), intent(in)  ya,
real(kind=cfp), intent(in)  za,
integer, intent(in)  la,
integer, intent(in)  ix,
integer, intent(in)  iy,
integer, intent(in)  iz,
real(kind=cfp), intent(in)  aexp,
real(kind=cfp), intent(in)  xb,
real(kind=cfp), intent(in)  yb,
real(kind=cfp), intent(in)  zb,
integer, intent(in)  lb,
integer, intent(in)  jx,
integer, intent(in)  jy,
integer, intent(in)  jz,
real(kind=cfp), intent(in)  bexp,
real(kind=cfp), intent(out)  olap 
)

Assuming la .ge. lb (la = ix+iy+iz, lb = jx+jy+jz) this routine calculates the overlap integral between a pair of primitive Gaussian functions.

Here is the call graph for this function:

◆ cgto_hgp_final()

subroutine cgto_hgp_gbl::cgto_hgp_final

◆ contr_vrr()

subroutine cgto_hgp_gbl::contr_vrr ( integer, intent(in)  lena,
real(kind=cfp), intent(in)  xa,
real(kind=cfp), intent(in)  ya,
real(kind=cfp), intent(in)  za,
real(kind=cfp), dimension(:), allocatable  anorms,
real(kind=cfp), dimension(:), allocatable  aexps,
real(kind=cfp), dimension(:), allocatable  acoefs,
integer, intent(in)  lenb,
real(kind=cfp), intent(in)  xb,
real(kind=cfp), intent(in)  yb,
real(kind=cfp), intent(in)  zb,
real(kind=cfp), dimension(:), allocatable  bnorms,
real(kind=cfp), dimension(:), allocatable  bexps,
real(kind=cfp), dimension(:), allocatable  bcoefs,
integer, intent(in)  lenc,
real(kind=cfp), intent(in)  xc,
real(kind=cfp), intent(in)  yc,
real(kind=cfp), intent(in)  zc,
real(kind=cfp), dimension(:), allocatable  cnorms,
real(kind=cfp), dimension(:), allocatable  cexps,
real(kind=cfp), dimension(:), allocatable  ccoefs,
integer, intent(in)  lend,
real(kind=cfp), intent(in)  xd,
real(kind=cfp), intent(in)  yd,
real(kind=cfp), intent(in)  zd,
real(kind=cfp), dimension(:), allocatable  dnorms,
real(kind=cfp), dimension(:), allocatable  dexps,
real(kind=cfp), dimension(:), allocatable  dcoefs,
integer, intent(in)  la,
integer, intent(in)  lb,
integer, intent(in)  lc,
integer, intent(in)  ld,
real(kind=cfp), dimension(:), allocatable  contr_et_tgt,
integer, intent(in)  size_contr_et,
integer, intent(in)  size_vrr_tgt,
integer, intent(in)  size_vrr_buff,
integer, intent(in)  size_et_buff 
)
Here is the call graph for this function:

◆ contr_vrr_nari()

subroutine cgto_hgp_gbl::contr_vrr_nari ( integer, intent(in)  lena,
real(kind=cfp), intent(in)  xa,
real(kind=cfp), intent(in)  ya,
real(kind=cfp), intent(in)  za,
real(kind=cfp), intent(in)  acnorm,
real(kind=cfp), dimension(lena), intent(in)  anorms,
real(kind=cfp), dimension(lena), intent(in)  aexps,
real(kind=cfp), dimension(lena), intent(in)  acoefs,
integer, intent(in)  lenb,
real(kind=cfp), intent(in)  xb,
real(kind=cfp), intent(in)  yb,
real(kind=cfp), intent(in)  zb,
real(kind=cfp), intent(in)  bcnorm,
real(kind=cfp), dimension(lenb), intent(in)  bnorms,
real(kind=cfp), dimension(lenb), intent(in)  bexps,
real(kind=cfp), dimension(lenb), intent(in)  bcoefs,
real(kind=cfp), intent(in)  xc,
real(kind=cfp), intent(in)  yc,
real(kind=cfp), intent(in)  zc,
integer, intent(in)  la,
integer, intent(in)  lb,
real(kind=cfp), dimension(:), intent(out)  contr_et_tgt,
integer, intent(in)  size_contr_et,
integer, intent(in)  size_vrr_tgt,
integer, intent(in)  size_vrr_buff 
)
Here is the call graph for this function:

◆ dist2()

elemental real(kind=cfp) function cgto_hgp_gbl::dist2 ( real(kind=cfp), intent(in)  x1,
real(kind=cfp), intent(in)  y1,
real(kind=cfp), intent(in)  z1,
real(kind=cfp), intent(in)  x2,
real(kind=cfp), intent(in)  y2,
real(kind=cfp), intent(in)  z2 
)

◆ eri()

subroutine cgto_hgp_gbl::eri ( integer, intent(in)  lena,
real(kind=cfp), intent(in)  xa,
real(kind=cfp), intent(in)  ya,
real(kind=cfp), intent(in)  za,
real(kind=cfp), dimension(:), allocatable  anorms,
integer, intent(in)  la,
real(kind=cfp), dimension(:), allocatable  aexps,
real(kind=cfp), dimension(:), allocatable  acoefs,
integer, intent(in)  ind_a,
integer, intent(in)  lenb,
real(kind=cfp), intent(in)  xb,
real(kind=cfp), intent(in)  yb,
real(kind=cfp), intent(in)  zb,
real(kind=cfp), dimension(:), allocatable  bnorms,
integer, intent(in)  lb,
real(kind=cfp), dimension(:), allocatable  bexps,
real(kind=cfp), dimension(:), allocatable  bcoefs,
integer, intent(in)  ind_b,
integer, intent(in)  lenc,
real(kind=cfp), intent(in)  xc,
real(kind=cfp), intent(in)  yc,
real(kind=cfp), intent(in)  zc,
real(kind=cfp), dimension(:), allocatable  cnorms,
integer, intent(in)  lc,
real(kind=cfp), dimension(:), allocatable  cexps,
real(kind=cfp), dimension(:), allocatable  ccoefs,
integer, intent(in)  ind_c,
integer, intent(in)  lend,
real(kind=cfp), intent(in)  xd,
real(kind=cfp), intent(in)  yd,
real(kind=cfp), intent(in)  zd,
real(kind=cfp), dimension(:), allocatable  dnorms,
integer, intent(in)  ld,
real(kind=cfp), dimension(:), allocatable  dexps,
real(kind=cfp), dimension(:), allocatable  dcoefs,
integer, intent(in)  ind_d,
integer, intent(in)  two_el_column,
integer, dimension(:,:), allocatable  int_index,
logical, intent(in)  keep_ab_cd_order,
integer, intent(in)  indexing_method,
logical, intent(in)  do_tails_for_this_quartet,
logical, intent(in)  ab_is_continuum,
real(kind=cfp), dimension(:,:), allocatable  tgt_prop,
integer, intent(in)  tgt_pair,
real(kind=cfp), intent(in)  rmat_radius,
real(kind=cfp), dimension(:,:), allocatable  sph_ints 
)
Here is the call graph for this function:

◆ eri_shell()

subroutine cgto_hgp_gbl::eri_shell ( integer, intent(in)  lena,
real(kind=cfp), intent(in)  xa,
real(kind=cfp), intent(in)  ya,
real(kind=cfp), intent(in)  za,
real(kind=cfp), dimension(:), allocatable  anorms,
integer, intent(in)  la,
real(kind=cfp), dimension(:), allocatable  aexps,
real(kind=cfp), dimension(:), allocatable  acoefs,
integer, intent(in)  lenb,
real(kind=cfp), intent(in)  xb,
real(kind=cfp), intent(in)  yb,
real(kind=cfp), intent(in)  zb,
real(kind=cfp), dimension(:), allocatable  bnorms,
integer, intent(in)  lb,
real(kind=cfp), dimension(:), allocatable  bexps,
real(kind=cfp), dimension(:), allocatable  bcoefs,
integer, intent(in)  lenc,
real(kind=cfp), intent(in)  xc,
real(kind=cfp), intent(in)  yc,
real(kind=cfp), intent(in)  zc,
real(kind=cfp), dimension(:), allocatable  cnorms,
integer, intent(in)  lc,
real(kind=cfp), dimension(:), allocatable  cexps,
real(kind=cfp), dimension(:), allocatable  ccoefs,
integer, intent(in)  lend,
real(kind=cfp), intent(in)  xd,
real(kind=cfp), intent(in)  yd,
real(kind=cfp), intent(in)  zd,
real(kind=cfp), dimension(:), allocatable  dnorms,
integer, intent(in)  ld,
real(kind=cfp), dimension(:), allocatable  dexps,
real(kind=cfp), dimension(:), allocatable  dcoefs,
integer, intent(in)  two_el_column,
real(kind=cfp), dimension(:,:), allocatable  sph_ints 
)
Here is the call graph for this function:

◆ et_xsys()

subroutine cgto_hgp_gbl::et_xsys ( integer, intent(in)  m_max,
integer, intent(in)  la,
integer, intent(in)  lb,
integer, intent(in)  lc,
integer, intent(in)  ld,
real(kind=cfp), intent(in)  deltax,
real(kind=cfp), intent(in)  deltay,
real(kind=cfp), intent(in)  deltaz,
real(kind=cfp), intent(in)  zeta,
real(kind=cfp), intent(in)  eta,
real(kind=cfp), intent(in)  two_eta,
real(kind=cfp), dimension(*), intent(inout)  et_buf1,
real(kind=cfp), dimension(*), intent(inout)  et_buf2,
real(kind=cfp), dimension(*), intent(inout)  et_buf3,
real(kind=cfp), dimension(*), intent(inout)  et_tgt 
)
Here is the call graph for this function:

◆ et_xsys_micro()

subroutine cgto_hgp_gbl::et_xsys_micro ( logical, intent(in)  x_dir,
logical, intent(in)  y_dir,
integer, intent(in)  col_ym1,
integer, intent(in)  col_y,
integer, intent(in)  col_yp1,
integer, intent(in)  n_y,
integer, intent(in)  s_x,
integer, intent(in)  in_shell,
integer, intent(in)  before_s_xm1,
integer, intent(in)  before_s_x,
integer, intent(in)  before_s_xp1,
real(kind=cfp), intent(in)  delta,
real(kind=cfp), intent(in)  alp_ab_cd,
real(kind=cfp), intent(in)  two_eta,
integer(kind=shortint), intent(in)  src1,
integer(kind=shortint), intent(in)  src2,
real(kind=cfp), dimension(*), intent(inout)  et_buf1,
real(kind=cfp), dimension(*), intent(inout)  et_buf2,
real(kind=cfp), dimension(*), intent(inout)  et_buf3 
)

◆ et_xsys_micro_X_dir()

subroutine cgto_hgp_gbl::et_xsys_micro_X_dir ( real(kind=cfp), dimension(*), intent(in)  src1,
real(kind=cfp), dimension(*), intent(in)  src2,
real(kind=cfp), dimension(*), intent(out)  tgt,
integer, intent(in)  n_y,
integer, intent(in)  s_x,
integer, intent(in)  in_shell,
integer, intent(in)  before_s_xm1,
integer, intent(in)  before_s_x,
integer, intent(in)  before_s_xp1,
integer, intent(in)  col_ym1,
integer, intent(in)  col_y,
integer, intent(in)  col_yp1,
real(kind=cfp), intent(in)  delta,
real(kind=cfp), intent(in)  alp_ab_cd,
real(kind=cfp), intent(in)  two_eta 
)

◆ et_xsys_micro_Y_dir()

subroutine cgto_hgp_gbl::et_xsys_micro_Y_dir ( real(kind=cfp), dimension(*), intent(in)  src1,
real(kind=cfp), dimension(*), intent(in)  src2,
real(kind=cfp), dimension(*), intent(out)  tgt,
integer, intent(in)  n_y,
integer, intent(in)  s_x,
integer, intent(in)  in_shell,
integer, intent(in)  before_s_xm1,
integer, intent(in)  before_s_x,
integer, intent(in)  before_s_xp1,
integer, intent(in)  col_ym1,
integer, intent(in)  col_y,
integer, intent(in)  col_yp1,
real(kind=cfp), intent(in)  delta,
real(kind=cfp), intent(in)  alp_ab_cd,
real(kind=cfp), intent(in)  two_eta 
)

◆ et_xsys_micro_Z_dir()

subroutine cgto_hgp_gbl::et_xsys_micro_Z_dir ( real(kind=cfp), dimension(*), intent(in)  src1,
real(kind=cfp), dimension(*), intent(in)  src2,
real(kind=cfp), dimension(*), intent(out)  tgt,
integer, intent(in)  n_y,
integer, intent(in)  s_x,
integer, intent(in)  in_shell,
integer, intent(in)  before_s_xm1,
integer, intent(in)  before_s_x,
integer, intent(in)  before_s_xp1,
integer, intent(in)  col_ym1,
integer, intent(in)  col_y,
integer, intent(in)  col_yp1,
real(kind=cfp), intent(in)  delta,
real(kind=cfp), intent(in)  alp_ab_cd,
real(kind=cfp), intent(in)  two_eta 
)

◆ from_hrr1_tgt_to_hrr2_src()

subroutine cgto_hgp_gbl::from_hrr1_tgt_to_hrr2_src ( integer, intent(in)  la,
integer, intent(in)  lb,
integer, intent(in)  s_y,
real(kind=cfp), dimension(*), intent(in)  src,
real(kind=cfp), dimension(:), allocatable  tgt,
integer, intent(in)  last 
)
Here is the call graph for this function:

◆ hrr1()

subroutine cgto_hgp_gbl::hrr1 ( integer, intent(in)  la,
real(kind=cfp), intent(in)  xa,
real(kind=cfp), intent(in)  ya,
real(kind=cfp), intent(in)  za,
integer, intent(in)  lb,
real(kind=cfp), intent(in)  xb,
real(kind=cfp), intent(in)  yb,
real(kind=cfp), intent(in)  zb,
integer, intent(in)  lc,
integer, intent(in)  ld,
real(kind=cfp), dimension(:), allocatable  src,
real(kind=cfp), dimension(:), allocatable  tgt,
integer, intent(in)  space_hrr1_buf 
)
Here is the call graph for this function:

◆ hrr1_micro()

subroutine cgto_hgp_gbl::hrr1_micro ( integer, intent(in)  can_y_start,
integer, intent(in)  can_y_end,
integer, intent(in)  s_xp1,
integer, intent(in)  stride,
integer, intent(in)  ind_wsys_base,
integer, intent(in)  ind_wxy_base,
integer, intent(in)  ind_p1_base,
integer, intent(in)  ind_base,
logical, intent(in)  buf1_tgt,
real(kind=cfp), dimension(*), intent(inout)  buf1,
real(kind=cfp), dimension(*), intent(inout)  buf2,
real(kind=cfp), dimension(:), allocatable  et_tgt,
integer, intent(in)  can_w,
integer, intent(in)  can_wp1,
real(kind=cfp), intent(in)  r_ab 
)
Here is the call graph for this function:

◆ hrr1_micro_xp1_general()

subroutine cgto_hgp_gbl::hrr1_micro_xp1_general ( integer, intent(in)  can_y_start,
integer, intent(in)  can_y_end,
integer, intent(in)  ind_wxy_base,
integer, intent(in)  ind_p1_base,
integer, intent(in)  ind_base,
real(kind=cfp), dimension(*), intent(out)  tgt,
real(kind=cfp), dimension(*), intent(in)  src,
real(kind=cfp)  r_ab 
)

◆ hrr1_micro_xp1_p()

subroutine cgto_hgp_gbl::hrr1_micro_xp1_p ( integer, intent(in)  can_y_start,
integer, intent(in)  can_y_end,
integer, intent(in)  stride,
integer, intent(in)  ind_base,
integer, intent(in)  ind_wsys_base,
real(kind=cfp), dimension(*), intent(out)  tgt,
real(kind=cfp), dimension(*), intent(in)  src,
integer, intent(in)  can_w,
integer, intent(in)  can_wp1,
real(kind=cfp)  r_ab 
)

◆ hrr2()

subroutine cgto_hgp_gbl::hrr2 ( integer, intent(in)  lc,
real(kind=cfp), intent(in)  xc,
real(kind=cfp), intent(in)  yc,
real(kind=cfp), intent(in)  zc,
integer, intent(in)  ld,
real(kind=cfp), intent(in)  xd,
real(kind=cfp), intent(in)  yd,
real(kind=cfp), intent(in)  zd,
integer, intent(in)  la,
integer, intent(in)  lb,
real(kind=cfp), dimension(:), allocatable  src,
real(kind=cfp), dimension(:), allocatable  tgt,
integer, intent(in)  space_hrr2_buf 
)
Here is the call graph for this function:

◆ hrr2_micro()

subroutine cgto_hgp_gbl::hrr2_micro ( integer, intent(in)  ld,
integer, intent(in)  s_zp1,
integer, intent(in)  in_shells_ab,
real(kind=cfp), intent(in)  r_cd,
integer, intent(in)  ind_base,
integer, intent(in)  ind_wxyp1z_base,
integer, intent(in)  ind_wxyz_base,
logical, intent(in)  hrr2_bufA_tgt,
real(kind=cfp), dimension(*), intent(inout)  hrr2_bufA,
real(kind=cfp), dimension(*), intent(inout)  hrr2_bufB,
real(kind=cfp), dimension(:), allocatable  src,
real(kind=cfp), dimension(:), allocatable  tgt 
)
Here is the call graph for this function:

◆ hrr2_micro_zp1_general()

subroutine cgto_hgp_gbl::hrr2_micro_zp1_general ( integer, intent(in)  in_shells_ab,
integer, intent(in)  ind_base,
integer, intent(in)  ind_wxyp1z_base,
integer, intent(in)  ind_wxyz_base,
real(kind=cfp), intent(in)  r_cd,
real(kind=cfp), dimension(*), intent(in)  src,
real(kind=cfp), dimension(*), intent(out)  tgt 
)

◆ mult_mom_recurrence()

subroutine cgto_hgp_gbl::mult_mom_recurrence ( real(kind=cfp), dimension(0:max(la+lb+lc,1),0:lb,0:lc,1:3), intent(out)  S,
real(kind=cfp), dimension(1:3), intent(in)  Rab,
real(kind=cfp), dimension(1:3), intent(in)  Rpa,
real(kind=cfp), dimension(1:3), intent(in)  Rac,
integer, intent(in)  la,
integer, intent(in)  lc,
integer, intent(in)  lb,
real(kind=cfp), intent(in)  alp_ab 
)

This routine implements the Obara-Saika recurrent relations for the GTO auxiliary overlap integrals needed for calculation of multipole moment integrals for a pair of cartesian GTOs. See Helgaker - Sections 9.3.2 for the equations.

Parameters
[out]SOn output S contains the auxiliary overlap integrals. Prior call to this routine the array S(0:d1,0:d2,0:d3,1:3) must be allocated with d1 .ge. la+lb+lc, d2 .ge. lb, d3 .ge. lc.
[in]RabReal vector \(\mathbf{R}_{ab}=\mathbf{R}_{a}-\mathbf{R}_{b}\), where \(\mathbf{R}_{a}\) is the center of the GTO a and \(\mathbf{R}_{b}\) is the center of the GTO b.
[in]RpaReal vector \(\mathbf{R}_{pa}=\mathbf{R}_{p}-\mathbf{R}_{a}\), where \(\mathbf{R}_{p}\) is the center of the product GTO, while \(\mathbf{R}_{a}\) is the center of the GTO a.
[in]RacReal vector \(\mathbf{R}_{ac}=\mathbf{R}_{a}-\mathbf{R}_{c}\), where \(\mathbf{R}_{a}\) is the center of the GTO a and \(\mathbf{R}_{c}\) is the center of the multipole moment.
[in]laAngular momentum on the GTO a.
[in]lcMultipole moment L.
[in]lbAngular momentum on the GTO b.
[in]alp_abSum of the exponents on the two GTOs.

◆ ncart()

elemental integer function cgto_hgp_gbl::ncart ( integer, intent(in)  l)

◆ nshell()

elemental integer function cgto_hgp_gbl::nshell ( integer, intent(in)  l)

◆ olap_ke_recurrence()

subroutine cgto_hgp_gbl::olap_ke_recurrence ( real(kind=cfp), dimension(0:la+lb+2,0:lb,1:3), intent(out)  S0,
real(kind=cfp), dimension(1:3), intent(in)  Rab,
real(kind=cfp), dimension(1:3), intent(in)  Rpa,
integer, intent(in)  la,
integer, intent(in)  lb,
real(kind=cfp), intent(in)  alp_ab 
)

This routine implements the Obara-Saika recurrent relations for the GTO auxiliary overlap integrals needed for calculation of overlaps and kinetic energy integrals for a pair of cartesian GTOs. See Helgaker - Sections 9.3.1, 9.3.4 for the equations.

Parameters
[out]S0On output S0 contains the auxiliary overlap integrals. Prior call to this routine the array S0(0:d1,0:d2,1:3) must be allocated with d1 .ge. 2*max(la,lb)+2, d2 .ge. max(la,lb).
[in]RabReal vector \(\mathbf{R}_{ab}=\mathbf{R}_{a}-\mathbf{R}_{b}\), where \(\mathbf{R}_{a}\) is the center of the GTO a and \(\mathbf{R}_{b}\) is the center of the GTO b.
[in]RpaReal vector \(\mathbf{R}_{pa}=\mathbf{R}_{p}-\mathbf{R}_{a}\), where \(\mathbf{R}_{p}\) is the center of the product GTO, while \(\mathbf{R}_{a}\) is the center of the GTO a.
[in]laAngular momentum on the GTO a.
[in]lbAngular momentum on the GTO b.
[in]alp_abSum of the exponents on the two GTOs.

◆ prim_cart_mult_mom()

subroutine cgto_hgp_gbl::prim_cart_mult_mom ( integer, intent(in)  la,
integer, intent(in)  lc,
integer, intent(in)  lb,
real(kind=cfp), dimension(1:3), intent(in)  Rab,
real(kind=cfp), dimension(1:3), intent(in)  Rpa,
real(kind=cfp), dimension(1:3), intent(in)  Rac,
real(kind=cfp), intent(in)  K_ab,
real(kind=cfp), intent(in)  alp_ab,
real(kind=cfp), dimension(:), intent(out)  cart_mom 
)

Calculates the cartesian multipole moment integrals for a pair of shells of primitive GTOs and a given shell L of the multipole moment.

Here is the call graph for this function:

◆ prim_cart_olap_kei()

subroutine cgto_hgp_gbl::prim_cart_olap_kei ( integer, intent(in)  la,
integer, intent(in)  lb,
real(kind=cfp), dimension(1:3), intent(in)  Rab,
real(kind=cfp), dimension(1:3), intent(in)  Rpa,
real(kind=cfp), intent(in)  K_ab,
real(kind=cfp), intent(in)  a,
real(kind=cfp), intent(in)  alp_ab,
real(kind=cfp), dimension(:), intent(out)  cart_olap,
real(kind=cfp), dimension(:), intent(out)  cart_kei 
)
Here is the call graph for this function:

◆ product_center_1D()

elemental real(kind=cfp) function cgto_hgp_gbl::product_center_1D ( real(kind=cfp), intent(in)  alphaa,
real(kind=cfp), intent(in)  xa,
real(kind=cfp), intent(in)  alphab,
real(kind=cfp), intent(in)  xb 
)

◆ reorder_p_shells()

subroutine cgto_hgp_gbl::reorder_p_shells ( real(kind=cfp), dimension(*), intent(inout)  sph_ints,
integer, intent(in)  la,
integer, intent(in)  lb,
integer, intent(in)  lc,
integer, intent(in)  ld 
)
Here is the call graph for this function:

◆ S0_to_D2()

subroutine cgto_hgp_gbl::S0_to_D2 ( real(kind=cfp), dimension(0:la+lb+2,0:lb,1:3), intent(in)  S0,
real(kind=cfp), dimension(0:la,0:lb,1:3), intent(out)  D2,
real(kind=cfp), intent(in)  a,
integer, intent(in)  la,
integer, intent(in)  lb 
)

◆ sh_ab()

subroutine cgto_hgp_gbl::sh_ab ( real(kind=cfp), dimension(*), intent(in)  cart_ints,
real(kind=cfp), dimension(*), intent(out)  ab_sph_ints,
integer, intent(in)  la,
integer, intent(in)  lb,
integer, intent(in)  nc,
integer, intent(in)  nd 
)
Here is the call graph for this function:

◆ sh_cd()

subroutine cgto_hgp_gbl::sh_cd ( real(kind=cfp), dimension(*), intent(inout)  ab_sph_ints,
real(kind=cfp), dimension(*), intent(out)  sph_ints,
integer, intent(in)  na,
integer, intent(in)  nb,
integer, intent(in)  lc,
integer, intent(in)  ld 
)
Here is the call graph for this function:

◆ sph_mult_mom()

subroutine cgto_hgp_gbl::sph_mult_mom ( integer, intent(in)  lena,
real(kind=cfp), intent(in)  xa,
real(kind=cfp), intent(in)  ya,
real(kind=cfp), intent(in)  za,
real(kind=cfp), intent(in)  acnorm,
real(kind=cfp), dimension(:), intent(in)  anorms,
integer, intent(in)  la,
real(kind=cfp), dimension(:), intent(in)  aexps,
real(kind=cfp), dimension(:), intent(in)  acoefs,
integer, intent(in)  ind_a,
integer, intent(in)  lc,
real(kind=cfp), intent(in)  xc,
real(kind=cfp), intent(in)  yc,
real(kind=cfp), intent(in)  zc,
integer, intent(in)  lenb,
real(kind=cfp), intent(in)  xb,
real(kind=cfp), intent(in)  yb,
real(kind=cfp), intent(in)  zb,
real(kind=cfp), intent(in)  bcnorm,
real(kind=cfp), dimension(:), intent(in)  bnorms,
integer, intent(in)  lb,
real(kind=cfp), dimension(:), intent(in)  bexps,
real(kind=cfp), dimension(:), intent(in)  bcoefs,
integer, intent(in)  ind_b,
integer, intent(in)  property_column,
real(kind=cfp), dimension(:,:), intent(out)  sph_mult,
integer, dimension(:,:), intent(out)  int_index 
)
Here is the call graph for this function:

◆ sph_mult_mom_shell()

subroutine cgto_hgp_gbl::sph_mult_mom_shell ( integer, intent(in)  lena,
real(kind=cfp), intent(in)  xa,
real(kind=cfp), intent(in)  ya,
real(kind=cfp), intent(in)  za,
real(kind=cfp), intent(in)  acnorm,
real(kind=cfp), dimension(:), intent(in)  anorms,
integer, intent(in)  la,
real(kind=cfp), dimension(:), intent(in)  aexps,
real(kind=cfp), dimension(:), intent(in)  acoefs,
integer, intent(in)  lc,
real(kind=cfp), intent(in)  xc,
real(kind=cfp), intent(in)  yc,
real(kind=cfp), intent(in)  zc,
integer, intent(in)  lenb,
real(kind=cfp), intent(in)  xb,
real(kind=cfp), intent(in)  yb,
real(kind=cfp), intent(in)  zb,
real(kind=cfp), intent(in)  bcnorm,
real(kind=cfp), dimension(:), intent(in)  bnorms,
integer, intent(in)  lb,
real(kind=cfp), dimension(:), intent(in)  bexps,
real(kind=cfp), dimension(:), intent(in)  bcoefs,
integer, intent(in)  property_column,
real(kind=cfp), dimension(:,:), intent(out)  sph_mult_mom 
)
Here is the call graph for this function:

◆ sph_nari()

subroutine cgto_hgp_gbl::sph_nari ( integer, intent(in)  lena,
real(kind=cfp), intent(in)  xa,
real(kind=cfp), intent(in)  ya,
real(kind=cfp), intent(in)  za,
real(kind=cfp), intent(in)  acnorm,
real(kind=cfp), dimension(lena), intent(in)  anorms,
integer, intent(in)  la,
real(kind=cfp), dimension(lena), intent(in)  aexps,
real(kind=cfp), dimension(lena), intent(in)  acoefs,
integer, intent(in)  ind_a,
integer, intent(in)  lenb,
real(kind=cfp), intent(in)  xb,
real(kind=cfp), intent(in)  yb,
real(kind=cfp), intent(in)  zb,
real(kind=cfp), intent(in)  bcnorm,
real(kind=cfp), dimension(lenb), intent(in)  bnorms,
integer, intent(in)  lb,
real(kind=cfp), dimension(lenb), intent(in)  bexps,
real(kind=cfp), dimension(lenb), intent(in)  bcoefs,
integer, intent(in)  ind_b,
real(kind=cfp), intent(in)  xc,
real(kind=cfp), intent(in)  yc,
real(kind=cfp), intent(in)  zc,
real(kind=cfp), dimension(:), intent(out)  sph_nari_int,
integer, dimension(:,:), intent(out)  int_index 
)
Here is the call graph for this function:

◆ sph_nari_shell()

subroutine cgto_hgp_gbl::sph_nari_shell ( integer, intent(in)  lena,
real(kind=cfp), intent(in)  xa,
real(kind=cfp), intent(in)  ya,
real(kind=cfp), intent(in)  za,
real(kind=cfp), intent(in)  acnorm,
real(kind=cfp), dimension(lena), intent(in)  anorms,
integer, intent(in)  la,
real(kind=cfp), dimension(lena), intent(in)  aexps,
real(kind=cfp), dimension(lena), intent(in)  acoefs,
integer, intent(in)  lenb,
real(kind=cfp), intent(in)  xb,
real(kind=cfp), intent(in)  yb,
real(kind=cfp), intent(in)  zb,
real(kind=cfp), intent(in)  bcnorm,
real(kind=cfp), dimension(lenb), intent(in)  bnorms,
integer, intent(in)  lb,
real(kind=cfp), dimension(lenb), intent(in)  bexps,
real(kind=cfp), dimension(lenb), intent(in)  bcoefs,
real(kind=cfp), intent(in)  xc,
real(kind=cfp), intent(in)  yc,
real(kind=cfp), intent(in)  zc,
real(kind=cfp), dimension(:), intent(out)  sph_nari_int 
)
Here is the call graph for this function:

◆ sph_olap_kei()

subroutine cgto_hgp_gbl::sph_olap_kei ( integer, intent(in)  lena,
real(kind=cfp), intent(in)  xa,
real(kind=cfp), intent(in)  ya,
real(kind=cfp), intent(in)  za,
real(kind=cfp), intent(in)  acnorm,
real(kind=cfp), dimension(:), intent(in)  anorms,
integer, intent(in)  la,
real(kind=cfp), dimension(:), intent(in)  aexps,
real(kind=cfp), dimension(:), intent(in)  acoefs,
integer, intent(in)  ind_a,
integer, intent(in)  lenb,
real(kind=cfp), intent(in)  xb,
real(kind=cfp), intent(in)  yb,
real(kind=cfp), intent(in)  zb,
real(kind=cfp), intent(in)  bcnorm,
real(kind=cfp), dimension(:), intent(in)  bnorms,
integer, intent(in)  lb,
real(kind=cfp), dimension(:), intent(in)  bexps,
real(kind=cfp), dimension(:), intent(in)  bcoefs,
integer, intent(in)  ind_b,
integer, intent(in)  olap_column,
integer, intent(in)  kei_column,
real(kind=cfp), dimension(:,:), intent(out)  integrals,
integer, dimension(:,:), intent(out)  int_index 
)
Here is the call graph for this function:

◆ sph_olap_kei_shell()

subroutine cgto_hgp_gbl::sph_olap_kei_shell ( integer, intent(in)  lena,
real(kind=cfp), intent(in)  xa,
real(kind=cfp), intent(in)  ya,
real(kind=cfp), intent(in)  za,
real(kind=cfp), intent(in)  acnorm,
real(kind=cfp), dimension(:), intent(in)  anorms,
integer, intent(in)  la,
real(kind=cfp), dimension(:), intent(in)  aexps,
real(kind=cfp), dimension(:), intent(in)  acoefs,
integer, intent(in)  lenb,
real(kind=cfp), intent(in)  xb,
real(kind=cfp), intent(in)  yb,
real(kind=cfp), intent(in)  zb,
real(kind=cfp), intent(in)  bcnorm,
real(kind=cfp), dimension(:), intent(in)  bnorms,
integer, intent(in)  lb,
real(kind=cfp), dimension(:), intent(in)  bexps,
real(kind=cfp), dimension(:), intent(in)  bcoefs,
integer, intent(in)  olap_column,
integer, intent(in)  kei_column,
real(kind=cfp), dimension(:,:), intent(out)  integrals 
)
Here is the call graph for this function:

◆ vrr_et()

subroutine cgto_hgp_gbl::vrr_et ( real(kind=cfp), intent(in)  xa,
real(kind=cfp), intent(in)  ya,
real(kind=cfp), intent(in)  za,
real(kind=cfp), intent(in)  alphaa,
real(kind=cfp), intent(in)  xb,
real(kind=cfp), intent(in)  yb,
real(kind=cfp), intent(in)  zb,
real(kind=cfp), intent(in)  alphab,
real(kind=cfp), intent(in)  xc,
real(kind=cfp), intent(in)  yc,
real(kind=cfp), intent(in)  zc,
real(kind=cfp), intent(in)  alphac,
real(kind=cfp), intent(in)  xd,
real(kind=cfp), intent(in)  yd,
real(kind=cfp), intent(in)  zd,
real(kind=cfp), intent(in)  alphad,
integer, intent(in)  la,
integer, intent(in)  lb,
integer, intent(in)  lc,
integer, intent(in)  ld,
real(kind=cfp), intent(in)  rab2,
real(kind=cfp), intent(in)  rcd2,
real(kind=cfp), dimension(*), intent(out)  Fm,
real(kind=cfp), dimension(*), intent(out)  vrr_buf1,
real(kind=cfp), dimension(*), intent(out)  vrr_buf2,
real(kind=cfp), dimension(*), intent(out)  vrr_buf3,
real(kind=cfp), dimension(*), intent(out)  vrr_tgt,
real(kind=cfp), dimension(*), intent(out)  et_buf2,
real(kind=cfp), dimension(*), intent(out)  et_buf3,
real(kind=cfp), dimension(*), intent(out)  et_tgt 
)
Here is the call graph for this function:

◆ vrr_nari()

subroutine cgto_hgp_gbl::vrr_nari ( real(kind=cfp), intent(in)  xa,
real(kind=cfp), intent(in)  ya,
real(kind=cfp), intent(in)  za,
real(kind=cfp), intent(in)  alphaa,
real(kind=cfp), intent(in)  xb,
real(kind=cfp), intent(in)  yb,
real(kind=cfp), intent(in)  zb,
real(kind=cfp), intent(in)  alphab,
real(kind=cfp), intent(in)  xc,
real(kind=cfp), intent(in)  yc,
real(kind=cfp), intent(in)  zc,
integer, intent(in)  la,
integer, intent(in)  lb,
real(kind=cfp), dimension(:), intent(out)  Fm,
real(kind=cfp), dimension(:), intent(out)  vrr_buf1,
real(kind=cfp), dimension(:), intent(out)  vrr_buf2,
real(kind=cfp), dimension(:), intent(out)  vrr_buf3,
real(kind=cfp), dimension(:), intent(out)  vrr_tgt,
real(kind=cfp), dimension(:), intent(out)  et_tgt 
)
Here is the call graph for this function:

◆ vrr_psss()

subroutine cgto_hgp_gbl::vrr_psss ( integer, intent(in)  m_max,
real(kind=cfp), intent(in)  wpx,
real(kind=cfp), intent(in)  wpy,
real(kind=cfp), intent(in)  wpz,
real(kind=cfp), intent(in)  pax,
real(kind=cfp), intent(in)  pay,
real(kind=cfp), intent(in)  paz,
real(kind=cfp), dimension(*), intent(in)  aux1,
real(kind=cfp), dimension(*), intent(out)  aux2,
real(kind=cfp), dimension(*), intent(out)  tgt 
)

◆ vrr_xsss()

subroutine cgto_hgp_gbl::vrr_xsss ( integer, intent(in)  m_max,
real(kind=cfp), intent(in)  wpx,
real(kind=cfp), intent(in)  wpy,
real(kind=cfp), intent(in)  wpz,
real(kind=cfp), intent(in)  pax,
real(kind=cfp), intent(in)  pay,
real(kind=cfp), intent(in)  paz,
real(kind=cfp), intent(in)  two_zeta,
real(kind=cfp), intent(in)  e_o_ez,
real(kind=cfp), dimension(*), intent(inout)  aux1,
real(kind=cfp), dimension(*), intent(inout)  aux2,
real(kind=cfp), dimension(*), intent(inout)  aux3,
real(kind=cfp), dimension(*), intent(out)  tgt 
)
Here is the call graph for this function:

◆ xsss()

subroutine cgto_hgp_gbl::xsss ( integer, intent(in)  m_max,
integer, intent(in)  shell,
real(kind=cfp), dimension(*), intent(inout)  aux1,
real(kind=cfp), dimension(*), intent(inout)  aux2,
real(kind=cfp), dimension(*), intent(inout)  aux3,
real(kind=cfp), intent(in)  wpx,
real(kind=cfp), intent(in)  wpy,
real(kind=cfp), intent(in)  wpz,
real(kind=cfp), intent(in)  pax,
real(kind=cfp), intent(in)  pay,
real(kind=cfp), intent(in)  paz,
real(kind=cfp), intent(in)  two_zeta,
real(kind=cfp), intent(in)  e_o_ez 
)
Here is the call graph for this function:

Variable Documentation

◆ eri_tail_int

real(kind=cfp), dimension(:), allocatable cgto_hgp_gbl::eri_tail_int