GBTOlib: library for evaluation of molecular integrals in mixed Gaussian / B-spline basis  111
Public Member Functions | Public Attributes | List of all members
function_integration_gbl::bessel_fn Type Reference

Bessel function \(J_{l+1/2}(kr)\), of half integral order \(l\) multiplied by \(r^{p}\): \(r^{p}J_{l+1/2}(kr)\). This function can be used to calculate representation of the Bessel orbital in terms of the B-spline orbitals. More...

Inheritance diagram for function_integration_gbl::bessel_fn:
Inheritance graph
[legend]
Collaboration diagram for function_integration_gbl::bessel_fn:
Collaboration graph
[legend]

Public Member Functions

procedure wp_eval => wp_bessel_eval
 Bessel function \(J_{l+1/2}(kr)\) at \(r\). More...
 
procedure ep_eval => ep_bessel_eval
 Bessel function \(J_{l+1/2}(kr)\) at \(r\). More...
 

Public Attributes

integer l
 Angular momentum of the Bessel function. More...
 
real(kind=cfp) k
 Linear momentum. More...
 
integer p
 Power of the radial coordinate. More...
 

Detailed Description

Bessel function \(J_{l+1/2}(kr)\), of half integral order \(l\) multiplied by \(r^{p}\): \(r^{p}J_{l+1/2}(kr)\). This function can be used to calculate representation of the Bessel orbital in terms of the B-spline orbitals.

Member Function/Subroutine Documentation

◆ ep_eval()

procedure function_integration_gbl::bessel_fn::ep_eval

Bessel function \(J_{l+1/2}(kr)\) at \(r\).

◆ wp_eval()

procedure function_integration_gbl::bessel_fn::wp_eval

Bessel function \(J_{l+1/2}(kr)\) at \(r\).

Member Data Documentation

◆ k

real(kind=cfp) function_integration_gbl::bessel_fn::k

Linear momentum.

◆ l

integer function_integration_gbl::bessel_fn::l

Angular momentum of the Bessel function.

◆ p

integer function_integration_gbl::bessel_fn::p

Power of the radial coordinate.


The documentation for this type was generated from the following file: