DIPELM 2.0
Loading...
Searching...
No Matches
dipelm_smooth Module Reference

Dipole smoothing routines. More...

Functions/Subroutines

real(idp) function energy_dependent_width (ek, eleft, eright)
 Energy-dependent Gaussian smoothing width.
subroutine sigma2i (e, estart, escat, escat2, is, limits)
real(kind=idp) function sigma (e)
subroutine binary_search (arr, val, lr, i)
subroutine least_squares (pol_order, istart_point, iend_point, x_points, y_points)
real(kind=idp) function gaussian (e, ep, sigma_e)

Detailed Description

Dipole smoothing routines.

Author
Alex Harvey
Date
2019

Routines for smoothing partial wave dipoles before calculation of observables.

Parameters
ismoothTest

Function/Subroutine Documentation

◆ binary_search()

subroutine dipelm_smooth::binary_search ( real(kind=idp), dimension(:) arr,
real(kind=idp) val,
integer lr,
integer i )
Here is the call graph for this function:

◆ energy_dependent_width()

real(idp) function dipelm_smooth::energy_dependent_width ( real(idp), intent(in) ek,
real(idp), intent(in) eleft,
real(idp), intent(in) eright )

Energy-dependent Gaussian smoothing width.

◆ gaussian()

real(kind=idp) function dipelm_smooth::gaussian ( real(idp) e,
real(idp) ep,
real(idp) sigma_e )
Here is the call graph for this function:

◆ least_squares()

subroutine dipelm_smooth::least_squares ( integer pol_order,
integer, intent(in) istart_point,
integer, intent(in) iend_point,
real(idp), dimension(:), intent(in) x_points,
real(idp), dimension(:), intent(inout) y_points )

◆ sigma()

real(kind=idp) function dipelm_smooth::sigma ( real(kind=idp) e)
Here is the call graph for this function:

◆ sigma2i()

subroutine dipelm_smooth::sigma2i ( real(kind=idp) e,
real(kind=idp) estart,
real(kind=idp), dimension(:) escat,
real(kind=idp), dimension(:), allocatable escat2,
integer is,
integer, dimension(:,:), allocatable limits )
Here is the call graph for this function: