Multidip 1.0
Multi-photon matrix elements
Loading...
Searching...
No Matches
multidip_params.F90 File Reference

Go to the source code of this file.

Modules

module  multidip_params
 Hard-coded parameters of MULTIDIP.

Functions/Subroutines

subroutine multidip_params::read_input_namelist (input, order, lusct, lukmt, lubnd, nkset, polar, omega, verbose, rmt_data, first_ip, rasym, raw, erange, mpiio, gpu, lab_polar, lu_pw_dipoles)

Variables

integer, parameter multidip_params::ntermsasy = 5
 Number of terms in expansion of the Coulomb-Hankel functions.
integer, parameter multidip_params::ntermsppt = 3
 Number of terms in expansion of the exponential integral.
integer, parameter multidip_params::nmaxphotons = bit_size(0)
 The limit on number of photons is nested_cgreen_integ
integer, parameter multidip_params::max_romb_level = 20
 Maximal nesting level for Romberg integration.
integer, parameter multidip_params::max_levin_level = 20
 Maximal nesting level for Levin integration.
integer, parameter multidip_params::cheb_order = 5
 Order of Chebyshev interpolation used in Levin quadrature.
integer multidip_params::maxtarg = 0
 Maximal number of target states to calculate dipoles for (0 = all)
logical multidip_params::cache_integrals = .false.
 Cache Coulomb-Green integrals in memory (but disables some threading)
logical multidip_params::check_dipoles = .true.
 Check that all dipole matrices in molecular_data are nonzero.
logical multidip_params::closed_interm = .false.
 Consider weakly closed channel in intermediate states (unfinished!)
logical multidip_params::coulomb_check = .true.
 Skip integrals that cannot be asymptotically approximated well.
logical multidip_params::print_warnings = .true.
 Print warnings about non-converged integrals.
logical multidip_params::custom_kmatrices = .false.
 Ignore RSOLVE K-matrices and calculate them from scratch.
logical multidip_params::extend_istate = .false.
 Continue initial state from the known inner region expansion outwards.
logical multidip_params::ion_ion_analytic = .true.
 Integrate one-dimensional ion-ion integrals using a closed-form formula.
integer multidip_params::num_integ_algo = 2
 Numerical integration mode (1 = Romberg, 2 = Levin)
real(wp) multidip_params::epsrel = 1e-6
 Romberg integration relative tolerance for convergence.
real(wp) multidip_params::coultol = 1e-4
 Coulomb matching relative tolerance (decides whether to use asym. forms)
real(wp) multidip_params::closed_range = 5.0
 Energy interval (a.u.) before threshold for inclusion of closed channels.
real(wp), parameter multidip_params::alpha = 1/137.03599907_wp
 Fine structure constant.
real(wp), parameter multidip_params::rzero = 0
real(wp), parameter multidip_params::rone = 1
real(wp), parameter multidip_params::rhalf = 0.5
real(wp), parameter multidip_params::pi = 4*atan(1.0_wp)
complex(wp), parameter multidip_params::czero = 0
complex(wp), parameter multidip_params::cone = 1
complex(wp), parameter multidip_params::imu = (0, 1)
character(len=1), dimension(3), parameter multidip_params::compt = ['x', 'y', 'z']
integer, dimension(3), parameter multidip_params::carti = [3, 1, 2]
 Position of a Cartesian coordinate in the real spherical basis (y, z, x).
integer, dimension(3), parameter multidip_params::cartm = [+1, -1, 0]
 Real spherical harmonic m-value corresponding to given a Cartesian coord.