The global existence, uniqueness and C^1-regularity of geodesics in nonexpanding impulsive gravitational waves
Podolský, J.; Sämann, C.; Steinbauer R.; Švarc, R.
We study geodesics in the complete family of nonexpanding impulsive gravitational waves propagating in spaces of constant curvature, that is Minkowski, de Sitter and anti-de Sitter universes. Employing the continuous form of the metric we prove the existence and uniqueness of continuously differentiable geodesics (in the sense of Filippov) and use a C^1-matching procedure to explicitly derive their form.
| type: | article |
| journal: | Class. Quantum Grav. |
| volume: | 32 |
| nr: | 2 |
| pages: | 025003 |
| year: | 2015 |
| month: | 1 |
| eprint: | arXiv:1409.1782 |
| grants: | Albert Einstein Center for Gravitation and Astrophysics, GAČR 14-37086G; 2014-2018; hlavní řešitel: Jiří Bičák
Centrum Alberta Einsteina pro gravitaci a astrofyzikuVýzkum Země a vesmíru metodami teoretické, počítačové a experimentální fyziky; 2012-2017; řešitelé: David Vokrouhlický, Marek Wolf, Oldřich Semerák |