Light propagation in a plasma on an axially symmetric and stationary spacetime: Separability of the Hamilton–Jacobi equation and shadow
Bezděková, B.; Perlick, V.; Bičák, J.
The properties of light rays around compact objects surrounded by a plasma are affected by both strong gravitational fields described by a general-relativistic spacetime and by a dispersive and refractive medium, characterized by the density distribution of the plasma. We study these effects employing the relativistic Hamiltonian formalism under the assumption of stationarity and axisymmetry. The necessary and sufficient conditions on the metric and on the plasma frequency are formulated such that the rays can be analytically determined from a fully separated Hamilton–Jacobi equation. We demonstrate how these results allow us to analytically calculate the photon region and the shadow if they exist. Several specific examples are discussed in detail: the “hairy” Kerr black holes, the Hartle–Thorne spacetime metrics, the Melvin universe, and the Teo rotating traversable wormhole. In all of these cases, a plasma medium is present as well.
type: | article |
journal: | Journal of Mathematical Physics |
volume: | 63 |
nr: | 9 |
pages: | 092501 |
year: | 2022 |
eprint: | arXiv:2204.05593 |
grants: | Mass and charge currents in general relativity and astrophysics, GAČR 21-11268S; 2021-2023; hlavní řešitel: Oldřich Semerák |