Publikace ÚTF

Gravitational lensing by an ellipsoidal Navarro-Frenk-White dark-matter halo: An analytic solution and its properties

Heyrovsky D.; Karamazov M.

The analysis of gravitational lensing by galaxies and galaxy clusters typically relies on ellipsoidal lens models to describe the deflection of light by the involved dark-matter halos. These models are most often based on the isothermal density profile - not an optimal description of the halo, but easy to use because it leads to an analytic deflection-angle formula. Aims. Dark-matter halos are better described by the Navarro-Frenk-White (hereafter NFW) density profile. We set out to study lensing by a general triaxial ellipsoidal NFW halo, with the aim of providing an analytic model that would be more consistent with the current understanding of dark-matter halos. Methods. We computed the conversion between the properties of a triaxial ellipsoidal lens model and its elliptical surface-density profile. In the case of the NFW lens model, its angular scale is defined by the projected scale semi-major axis of the halo, while its lensing regime depends on two parameters: the projected eccentricity e and the convergence parameter kappa s. We employed the Bourassa & Kantowski formalism to compute the complex scattering function of the model, which yields the deflection-angle components when separated into its real and imaginary parts. Results. We present the obtained closed-form expressions for the deflection-angle components, valid for an arbitrary eccentricity of the surface-density profile. We use them to compute and describe the lensing properties of the model, including: the shear, its components, and the phase; the critical curves, caustics, and the parameter-space mapping of their different geometries; the deformations and orientations of images. Conclusions. The analytically solved ellipsoidal NFW lens model is available for implementation in gravitational lensing software. The techniques introduced here such as the image-plane analysis can prove to be useful for understanding the properties of other lens models as well.
type:article
journal:Astronomy & Astrophysics
volume:690
pages:40
year:2024
month:6
link: https://doi.org/10.1051/0004-6361/202450189
files:
heyrovsky_2024_aa_690_19.pdf (26558.08 kB)

Tato stránka byla vygenerována: 2025-04-04 03:10 GMT
Jakékoliv připomínky a dotazy ohledně webovských stránek zasílejte, prosím, na webadmin@utf.mff.cuni.cz.
Navigace pro textové prohlížeče [tato úroveň | o úroveň výš | ÚTF]
Přepnutí kodování češtiny. English version main page