Publikace ÚTF

Uniqueness of Galilean and Carrollian limits of gravitational theories and application to higher derivative gravity

Tadros P.; Kolář I.

We show that the seemingly different methods used to derive non-Lorentzian (Galilean and Carrollian) gravitational theories from Lorentzian ones are equivalent. Specifically, the pre-nonrelativistic and the preultralocal parametrizations can be constructed from the gauging of the Galilei and Carroll algebras, respectively. Also, the pre-ultralocal approach of taking the Carrollian limit is equivalent to performing the Arnowitt-Deser-Misner decomposition and then setting the signature of the Lorentzian manifold to zero. We use this uniqueness to write a generic expansion for the curvature tensors and construct Galilean and Carrollian limits of all metric theories of gravity of finite order ranging from the f(R) gravity to a completely generic higher derivative theory, the f(g mu nu, R mu nu sigma rho, del mu) gravity. We present an algorithm for calculation of the nth order of the Galilean and Carrollian expansions that transforms this problem into a constrained optimization problem. We also derive the condition under which a gravitational theory becomes a modification of general relativity in both limits simultaneously.
type:article
journal:Phys. Rev. D
volume:109
nr:8
pages:16
year:2024
month:4
link: https://doi.org/10.1103/PhysRevD.109.084019
grants:Prostoročasy a pole v teoriích s derivacemi vyššího řádu; 2023; Hlavní řešitel: Jan Kolář
Aktuální problémy teoretické fyziky, astronomie a astrofyziky - II; 2023;
files:
physrevd.109.084019_tadroskolar.pdf (305.36 kB)

Tato stránka byla vygenerována: 2025-04-19 19:48 GMT
Jakékoliv připomínky a dotazy ohledně webovských stránek zasílejte, prosím, na webadmin@utf.mff.cuni.cz.
Navigace pro textové prohlížeče [tato úroveň | o úroveň výš | ÚTF]
Přepnutí kodování češtiny. English version main page