Publikace ÚTF

Hidden symmetry in the presence of fluxes

Kubizňák, D.; Warnick, C. M.; Krtouš, P.

We derive the most general first order symmetry operator for the Dirac equation coupled to arbitrary fluxes. Such an operator is given in terms of an inhomogenous form omega which is a solution to a coupled system of first order partial differential equations which we call the generalized conformal Killing-Yano system. Except trivial fluxes, solutions of this system are subject to additional constraints. We discuss various special cases of physical interest. In particular, we demonstrate that in the case of a Dirac operator coupled to the skew symmetric torsion and U(1) field, the system of generalized conformal Killing-Yano equations decouples into the homogenous conformal Killing-Yano equations with torsion introduced in [arXiv:0905.0722] and the symmetry operator is essentially the one derived in [arXiv:1002.3616]. We also discuss the Dirac field coupled to a scalar potential and in the presence of 5-form and 7-form fluxes.
type:article
journal:Nucl. Phys. B
volume:844
pages:185
year:2011
eprint:arXiv:1009.2767
grants:Exact solutions in higher dimensional and classical gravity, GAČR 202/08/0187; 2008-2011; hlavní řešitel: Jiří Podolský
files:
kysdo-npb.pdf (174.17 kB)

Tato stránka byla vygenerována: 2025-01-15 06:25 GMT
Jakékoliv připomínky a dotazy ohledně webovských stránek zasílejte, prosím, na webadmin@utf.mff.cuni.cz.
Navigace pro textové prohlížeče [tato úroveň | o úroveň výš | ÚTF]
Přepnutí kodování češtiny. English version main page