Publikace ÚTF

Comparing Hamiltonians of a spinning test particle for different tetrad fields

Kunst, D., Ledvinka, T., Lukes-Gerakopoulos, G., Seyrich, J.

This work is concerned with suitable choices of tetrad fields and coordinate systems for the Hamiltonian
formalism of a spinning particle derived in [E. Barausse, E. Racine, and A. Buonanno, Phys. Rev. D 80,
104025 (2009)]. After demonstrating that with the originally proposed tetrad field the components of the
total angular momentum are not preserved in the Schwarzschild limit, we analyze other hitherto proposed
tetrad choices. Then, we introduce and thoroughly test two new tetrad fields in the horizon penetrating
Kerr–Schild coordinates. Moreover, we show that for the Schwarzschild spacetime background the
linearized in spin Hamiltonian corresponds to an integrable system, while for the Kerr spacetime we find
chaos which suggests a nonintegrable system.
journal:Phys. Rev. D
physrevd.93.044004(kunst,ledvinka,lukes-gerakopoulos,seyrich).pdf (560.95 kB)

Tato stránka byla vygenerována: 2017-02-25 02:08 GMT
Jakékoliv připomínky a dotazy ohledně webovských stránek zasílejte, prosím, na
Navigace pro textové prohlížeče [tato úroveň | o úroveň výš | ÚTF]
Přepnutí kodování češtiny. English version main page