[an error occurred while processing this directive]

Publikace ÚTF

Rotation of inertial frames by angular momentum of matter and waves

Barker, W., Ledvinka, T., Lynden-Bell, D. and Bičák, J.

We elucidate the dynamics of a thin spherical material shell with a tangential
pressure, using a new approach. This is both simpler than the traditional
method of extrinsic curvature junction conditions (which we also employ),
and suggests an expression for a ‘gravitational potential energy’ of the shell.
Such a shell, if slowly spinning, can rotationally drag the inertial frames within
it through a fnite angle as it collapses and rebounds from a minimum radius.
Rebounding ‘spherical’ and cylindrical pulses of rotating gravitational waves
were studied previously. Here we calculate their angular momentum and show
that their rotational frame dragging is in agreement with that of the rotating
spherical shell and a rotating cylindrical dust shell. This shows that Machian
effects occur equally for material and analogous ‘immaterial’ sources.
journal:Class. Quantum Grav.
pages:205006 (16pp)
[an error occurred while processing this directive] [an error occurred while processing this directive]