Publikace ÚTF

Static fluid cylinders and their fields: global solutions

Bičák, J.; Ledvinka, T.; Schmidt, B. G; Žofka, M.

The global properties of static perfect-fluid cylinders and their external Levi-Civita fields are studied both analytically and numerically. The existence and uniqueness of global solutions is demonstrated for a fairly general equation of state of the fluid. In the case of a fluid admitting a non-vanishing density for zero pressure, it is shown that the cylinder's radius has to be finite. For incompressible fluid, the field equations are solved analytically for nearly Newtonian cylinders and numerically in fully relativistic situations. Various physical quantities such as proper and circumferential radii, external conicity parameter and masses per unit proper/coordinate length are exhibited graphically.
typ:article
journal:Class. Quantum Grav.
volume:21
nr:0
pages:1583-1608
year:2004
pacs:04.20.-q, 04.20.Jb, 04.40.-b, 04.40.Nr
eprint:arXiv:gr-qc/0403012
odkaz: http://www.iop.org/EJ/abstract/0264-9381/21/6/019
files:
statitfluidcylinders.pdf (323.89 kB)

Tato stránka byla vygenerována: 2018-09-24 05:35 GMT
Jakékoliv připomínky a dotazy ohledně webovských stránek zasílejte, prosím, na webadmin@utf.mff.cuni.cz.
Navigace pro textové prohlížeče [tato úroveň | o úroveň výš | ÚTF]
Přepnutí kodování češtiny. English version main page